AI in Test Engineering: Use Cases, Tools, and Real-World Impact
In today’s electronics-driven world, test engineering and management are critical to ensuring the quality and reliability of increasingly complex semiconductor devices. As Integrated Circuits (ICs) power everything from IoT sensors…
November 18–20, 2025 Join us at one of Asia’s leading technology events that brings together innovators across deep tech, biotech, electronics, and emerging technologies. Explore how Tessolve is contributing to India’s…
AI in Test Engineering: Use Cases, Tools, and Real-World Impact
In today’s electronics-driven world, test engineering and management are critical to ensuring the quality and reliability of increasingly complex semiconductor devices. As Integrated Circuits (ICs) power everything from IoT sensors…
November 18–20, 2025 Join us at one of Asia’s leading technology events that brings together innovators across deep tech, biotech, electronics, and emerging technologies. Explore how Tessolve is contributing to India’s…
November 18–20, 2025 Join us at one of Asia’s leading technology events that brings together innovators across deep tech, biotech, electronics, and emerging technologies. Explore how Tessolve is contributing to India’s…
AI in Test Engineering: Use Cases, Tools, and Real-World Impact
In today’s electronics-driven world, test engineering and management are critical to ensuring the quality and reliability of increasingly complex semiconductor devices. As Integrated Circuits (ICs) power everything from IoT sensors…
November 18–20, 2025 Join us at one of Asia’s leading technology events that brings together innovators across deep tech, biotech, electronics, and emerging technologies. Explore how Tessolve is contributing to India’s…
The verification of processor architectures designed for Machine Learning (ML) applications represent a departure from conventional techniques. Conventional constrained random testbenches, which focus on stimulus driving coverage, cannot scale for many ML algorithm realizations. ML architectures involve neural networks of processors that “learn” by manipulating coefficients across the network to match ideal outputs to a large quantity of input data. Furthermore, smart compiler technology is employed to leverage the many paths available in the network. An effective verification strategy can leverage planning algorithms that start with the desired output and optimize input values to achieve that output. Ensuring the paths that the compiler might trigger have all been tested, and that the test content can scale from individual processors to the entire network are critical challenges. Breker will share various approaches to this problem, developed through cooperation with three noted AI processor providers.
3 Key Points:
Current verification methodologies cannot scale to meet ML processor challenges
ML verification approach: consider desired outputs, optimize inputs to match
Test Suite Synthesis enable planning algorithm approach to target ML requirements
An Emulation Strategy for Artificial Intelligence Designs
The emergence of Artificial Intelligence is the “next big thing” and presents a unique opportunity for disruptive semiconductor development. End applications could range from ADAS, to 3D facial recognition, to voice and image processing, or to intelligent search. The SoCs for AI applications whether targeted for training or inference will have their own unique characteristics, but present quite common verification challenges that we will present in this session.
Supporting designs as big as 15 billion gates, Mentor’s Veloce Strato has unique virtualization capabilities that enable highly accurate pre-silicon execution of AI benchmarking applications like MLPerf. The Veloce Power App enables analysis of peak and average. We will cover how Veloce Strato and its supporting solutions are the best tool to help address the verification challenges of SoCs targeted for AI applications.
Most AI chips and hardware accelerators that power machine learning (ML) and deep learning (DL) applications include floating-point units (FPUs). Algorithms used in neural networks are often based on operations that use multiplication and addition of floating-point values. FPUs are difficult to implement. The IEEE 754 standard defines many corner-case scenarios and non-ordinary values. Even a minor rounding mistake could accumulate over many iterations and produce a large error. An FPU formal verification app compliant with IEEE-754 provides an efficient and rigorous solutions to FPU functional verification
3 Key Points:
Floating-point unit (FPU) for AI chips
FPU Formal Verification App
Compliance with IEEE-754
Name: Mike Bartley
Designation: Senior Vice President – VLSI Design
Title: Introduction
Biography:
Mike Bartley has a PhD in Mathematics from Bristol University, an MSc in Software Engineering, an MBA from the Open University and over 25 years of experience in software testing and hardware verification. He has built and managed state-of-the-art test and verification teams in a number of companies who still use the methodologies he established. Since founding TVS in 2008 he has grown the company to over 100 employees worldwide. Dr Bartley is Chair of both the Bristol branch of the British Computer Society and the West of England Bristol Local Enterprise Partnership (LEP). He has had over 50 articles and presentations published on the subjects of hardware verification, software testing and outsourcing.
Please fill the form below
Please fill the form below
Please fill the form below
Please fill the form below
Please fill the form below
Error: Contact form not found.
Please fill the form below
Please fill the form below
SUBMIT RESUME
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
Error: Contact form not found.
SUBMIT YOUR RESUME
Cookie Consent
We use cookies to improve your experience on our site. By using our site, you consent to cookies.
Contains information related to marketing campaigns of the user. These are shared with Google AdWords / Google Ads when the Google Ads and Google Analytics accounts are linked together.
90 days
__utma
ID used to identify users and sessions
2 years after last activity
__utmt
Used to monitor number of Google Analytics server requests
10 minutes
__utmb
Used to distinguish new sessions and visits. This cookie is set when the GA.js javascript library is loaded and there is no existing __utmb cookie. The cookie is updated every time data is sent to the Google Analytics server.
30 minutes after last activity
__utmc
Used only with old Urchin versions of Google Analytics and not with GA.js. Was used to distinguish between new sessions and visits at the end of a session.
End of session (browser)
__utmz
Contains information about the traffic source or campaign that directed user to the website. The cookie is set when the GA.js javascript is loaded and updated when data is sent to the Google Anaytics server
6 months after last activity
__utmv
Contains custom information set by the web developer via the _setCustomVar method in Google Analytics. This cookie is updated every time new data is sent to the Google Analytics server.
2 years after last activity
__utmx
Used to determine whether a user is included in an A / B or Multivariate test.
18 months
_ga
ID used to identify users
2 years
_gali
Used by Google Analytics to determine which links on a page are being clicked
30 seconds
_ga_
ID used to identify users
2 years
_gid
ID used to identify users for 24 hours after last activity
24 hours
_gat
Used to monitor number of Google Analytics server requests when using Google Tag Manager
1 minute
Marketing cookies are used to follow visitors to websites. The intention is to show ads that are relevant and engaging to the individual user.
A video-sharing platform for users to upload, view, and share videos across various genres and topics.
Registers a unique ID on mobile devices to enable tracking based on geographical GPS location.
1 day
VISITOR_INFO1_LIVE
Tries to estimate the users' bandwidth on pages with integrated YouTube videos. Also used for marketing
179 days
PREF
This cookie stores your preferences and other information, in particular preferred language, how many search results you wish to be shown on your page, and whether or not you wish to have Google’s SafeSearch filter turned on.
10 years from set/ update
YSC
Registers a unique ID to keep statistics of what videos from YouTube the user has seen.
Session
DEVICE_INFO
Used to detect if the visitor has accepted the marketing category in the cookie banner. This cookie is necessary for GDPR-compliance of the website.
179 days
LOGIN_INFO
This cookie is used to play YouTube videos embedded on the website.