SYNOPSYS'

Acceleration of Complex RISC-V
Processor Verification Using Test

Generation Integrated with Hardware
Emulation

Wei-Hua Han

Legal
Disclosure

CONFIDENTIAL INFORMATION

The information contained in this presentation is the confidential and proprietary
information of Synopsys. You are not permitted to disseminate or use any of the
information provided to you in this presentation outside of Synopsys without prior
written authorization.

IMPORTANT NOTICE

This presentation may include information related to Synopsys’ future product or
business plans. Such plans are as of the date of this presentation and subject to
change. Synopsys is not obligated to update this presentation or develop the
products with the features and/or functionality discussed in this presentation.
Additionally, Synopsys’ products and services may only be offered and purchased
pursuant to an authorized quote and purchase order or a mutually agreed upon
written contract.

FORWARD LOOKING STATEMENTS

This presentation may include certain statements including, but not limited to,
Synopsys’ financial targets, expectations and objectives; business and market
outlook, business opportunities, strategies and technological trends; and more.
These statements are made only as of the date hereof and subject to change.
Actual results or events could differ materially from those anticipated in such
statements due to a number of factors. Synopsys undertakes no duty to, and does
not intend to, update any statement in this presentation, whether as a result of new
information, future events or otherwise, unless required by law.

Verification to Meet the Needs of Today's RISC-V

RISC-V Today - - Verification
Requirements

» Test stimulus based on a
thorough understanding of
the RISC-V spec

Complex extensions
(e.g. vector, hypervisor)

Virtual memory

MMU, TLB « Complex and long-running
. tests to get the design into
mglr;lsﬁ/ ieelscache interesting states
_ A fast execution platform to
Interrupts: AIA/IMSIC achieve verification closure

out-of-order execution

To verify a typical high-end RISC-V core, it takes a staggering number of cycles —

on the order of 10'° (one quadrillion)

© 2025 Synopsys, Inc. 3

DUT: XiangShan RISC-V Core

Frontend n:.a“:'?""ﬁ. th;r‘ug.;l-uuuu ME uFTB || FT8 | TAGE | sC ..IﬂAGE.
. . . i ! FrC Tw e Bra:nA:odx‘:hon Unit . .
« Supports RV64 and its extended instruction set e m“"‘;“'mfmh‘i';ef ——
M 64K, 4way . § 32 Oy . "ummml ReOrder Buffer
+ Supports RVV 1.0, VLEN 128bit x 2. i —_—— | -
a8 ennes [mlﬁ‘u::- | Instruction Fusion Harz?emmah‘:ﬂ“
» Supports unaligned access to Cacheable space enams & Dlepetch s L ey W N
Integer Rename Table FP Rename Table Vector Rename Table
« Memory Management Unit (MMU) e gt || Merepommiome | [Ponpspingren | [psenone|

» Up to 48-bit physical addresses, and 39-bit and 48-t

» Timer interrupts and the RVA23-Sstc feature

 ICache 64KB, supports Parity |"m1m”w”|

» DCache, up to 64KB, supports ECC . :"” %.MZJ

« Unified L2, up to 1MB, supports ECC N =

» Supports Level 1 and Level 2 TLB /m R

« CRS/IMSIC compliant with AIA 1.0 _mag}, { o M -

© 2025 Synopsys, Inc. 4

STING — Bare Metal Test Generator for
RISC-V

Configurations

C++ based tests

- Bare metal tool using a software driven methodology for RISC-V design verification
ASM-like Directed Tests

- Integrates several test generation methodologies to give the best verification
coverage and productivity: Test Generator

— Random stimulus, workloads, directed tests, real world scenarios
| |
- Generates both self-checking and pure stimulus tests
— Tests are portable across simulation, emulation, FPGA and silicon e

Device Drivers

« Complete support for 32-bit and 64-bit RISC-V specifications
— All ratified extensions, and stable, unratified extensions "

— Comprehensive coverage of privilege specification: MMU, PMP, PMA, e
Hypervisor, Supervisor, CSRs

— Compatible with any system configuration / memory map

— Supports multi-hart, multi-processor designs e M (4 ()
— Support for RVA22 and RVA23 profiles o > 7 S
° | |18 = | 2
+ Includes a library of over 100,000 test fragments (snippets) N = 7z

4 A J

Silicon-Proven RISC-V Processor Verification

© 2025 Synopsys, Inc. 5

Stimulus for Advanced RISC-V Implementations

Complex implementations need longer and more stressful workloads to build interesting microarchitectural

states

Most areas like cache coherency, ordering and OS use cases need workloads - long running test sequences

to get desired coverage.

For MP platforms, same test sequence is advised to be repeatedly executed to cover all possible

combinations of instruction scheduling across the processors

Algorithmic Ordering Random Cache Coherency
— Atomicity Tests — Litmus Tests — Conflicting Traffic — True Sharing
— Synchronization Tests (Dekker) — Fence Ordering Testing — Non-conflicting Traffic — False Sharing
L Forward Progress — Random Memory Ordering Tests — ISA Coverage — Cache fills, evictions
— Code Modification

Fast execution platform is needed for complex, long-running stimulus

© 2025 Synopsys, Inc. 6

Hardware-Assisted Test Solution for RISC-V

Hardware Assisted Verification

;I: The DUT is synthesized and run at a high rate of speed using

emulation or prototyping hardware (e.g. Synopsys ZeBu or HAPS)

STING generates self-checking tests
e

Reference model results (e.g. ImperasFPM) embedded in the elf file

Generate many tests in parallel

K’LJ To keep up with the speed of hardware execution

))) Continuously populate new tests in memory

Using a streaming interface maximizes test throughput

© 2025 Synopsys, Inc. 7

Hardware-Assisted Test Solution for RISC-V

STING

STING

-

-—

testO.elf test1.elf

SYNoPsys

Streaming
Interface

”)

testN.elf

© 2025 Synopsys, Inc. 8

H-A Test Solution for RISC-V: How it works

STING STING
! E testO.elf !E test1.elf
N w ¥
STING a
Streaming
| Interface
= test2.elf)))
STING a, STING

E test3.elf EtestN elf
r B l »

Est management

=
(-

test1 ‘

Test
Results

”

oA NN

Streaming methodology enables significant
performance improvement

* Performance benefits through:
— Avoiding re-initialization of Zebu HW
— Avoiding redundant configuration cycles per test
— Concurrent generation and execution

 Results across 70 STING tests

Streaming 277.98 600.72
NI TCEE I [1081.26 1189.22 451.07

« Simulation to Emulation improvement : ~6000X per test

ssssssssssssssssss

H-A TS for RISC-V: Debug methodology

« Steps to debug a failing test

1. Re-run a specific streaming-enabled test

— This may not reproduce the failure because the
microarchitecture is in a "clean” state

2. Re-run the same test multiple times
— This may not reproduce the failure if it is due to an artifact

from a different test

3. Re-run the same sequence of N tests =5t

— Increase the number of tests in the sequence until the
failure is identified

[oy e P

uuuuuu

streaming enabled: yes
streaming debug sequence: yes

streaming debug sequence nof test: 7
streaming debug sequence elf file name:

elf target dir:
nof test: 3

../saved/run_result

Lo L]

ST_INFO] =e ait time to 60

STING Test Status: PRSS

t sting . n001,only_st_c_sub,
Mame 1 sting,

STING Test Status: PRSS

Flush!
[ST INFO] Peady for new round: 2

../saved/run_result/round 35/sting.m@O0.only arith 1lbu.4430798757004886781.elf

© 2025 Synopsys, Inc. 11

Debug using Verdi Hardware/Software Debug

A SVEIUL I ALEM AL W_LUP.LY D LESUA_W_WIaPPET 1LV LESUX_LUIE_IWU_SLaye_| LYILESUA_WU_SLaye |/yIual/yLsia_

File Edit Search Run Window Help [| file View Source Oneface Simulgtion Tools Window Help

= .
=] 5 & € = = "8
e o % s E(aemw M < #-im-~) =l El=y78"] : L]:E2%8 PY
H insance % (3 _ O] *Srcl:th_top cv32e40x_th wrapper._Lcv32ed0x_core i.wb_s...-V_zebu/c
45 Debug x | Executables = <0 O 3, o R 8 = 8 Regi [Mem (x-Varia & Expr % Brea x [Con = 8 Hierrchy , Module - 123)
5 & thtop th_top 124| /7 wb_valid .
% HW SW Debug [Synopsys HW/SW Debug] RE D e BEG 3O e el cuB2ei0 b wrapper 2s s R ,
~ #cpuo [Cluster Synopsys HW/SW Debug] ¥4 [function: spawn test] 8 cuszedox core i cuszedox core 2Oy 0 for dnerrupted dnet i - - .
~ @ sting.elf [cores: 0] -) - 1] centroller | cu32e40x controlier 128 7/ cannot be used to increment the mi csR (
~ @ Thread #1 1 (cpuo) [core: 0] (Suspended : Signal : SIGINT:Interrupt) 47 [function:to_testol (] e regiters | cu3zedOn cs registers 129) r the second ph a split ai
if P : P : Signal : : P! ¥ .#" [function: my_main] 5 B ex_stage | Cu3Zed0x_ex_stage 130 ub e 1due t
= %] id_stage.| cuszedox_id stage 131
=0x0 wl f) if stage i cv32e40x_if_stage 132 {(tex wb_pipe i.lsu_en && !xif waiti]

valid result in W, also f

i ffs/Release/daily_builds/linux64_VERDI2023.12.ZEBU.B4_opt/20250: rdi debug_gdb (10.1) {30 int_controller i cv32e40x_int_controller v 0 L]
v - - debug_g 1 f5] load_store_uniti cv32240x_load_store_un = el |)
o &) register file_wrapper i cv32e40x_register file v e](&:’125(?’?:;"“ en su_except

2 B steep_un cua2e40x sieep it b

& it resor cpu resuit 138
i 8 m_c_obi data_it itc_obi 138 7/ Export signal indicating W stage stalled by load/
146| 1

w8 m_c_obi_instr_if if_c_obi assign data_stall o = (ex_wb_pipe i.lsu_en & !lsu_val
& i commit it cpu_commic 141
{5 xir compressea_it cpu_compressed W,
= &= =) =
Disassembly x & Debugger Console O @ mytestc [c]spawn test() at 0x14684 X o cpu_lssue 144| 7/ extension interface
i & F4 = £ | No source available for "spawn_test() at 0x14684" & cpumem 145 //- i . .
Enter location here & 3B il pawn_| F mem_resut | cpu mem_result 146] [l
»00014684: | jal ra,0x25b42 < 734get STING CONF_DUMP_TEST INIT DATAvx @ i resute it cpu_result - 147\ 7/ T0D0: How to handle conflicting values of ex wb_pirf @)
00014688: mv ad,a0 “ » 148
0001468a: mv a5,al ol \nstance | Declaration [/ TODO: How to handle conflicting values of ex wb pipe
: , stance 7
0001468¢: sw a4,-40(s0)

nv

- " . "
©0014690: jal ra,®x25b66 < 729get STING CONF_DUMPED_TEST NOv> Configure when this editor is shown | Preferences i X V.2 E: o ' l ' l
00014694: mv ad,a0 File Signal Yiew Waveform Analog Tools Window e u e r u SI l l rea OI S SI e
60014696 : as,al]

00014698: W a4,-44(50) =2 3839 |dblo Ax e xaes O Qo s § - [4][] Goto: (61

0001469c: jal ra,@x25afa < 733get STING CONF_ENABLE MEM PRELOADV> .
00014620 : mv a4,al

008146a2: mv as,al

000146a4: sW a4,-48(s0)

000146a8: jal ra,0x25b8c < 741get STING CONF DISABLE PAGE TABLE PF

o08146ac: mv ad.a0

006146ae: mv as.al

00014600: W a4,-52(s0)

000146b4: jal ra,0x25ble < 739get STING CONF_DISABLE SNIP_MEM PREL wb_pip e[3 Y | D N N D (N (N OO O

=T . e Vaveform is synchronized with the

000146bc: v a4,-56(s0)
jal ra,0x25c62 < 719get STING CONF_FLEXv>
mv a4,a0 =
my a5,al
v a4,-60(s0)
a1 2 0v95h30_ 73704t STING CONE DIMD TEST PESINLTSis

T lconst scdiiveot- mycomp.sh" [readonly] 24L, 640C
- return memd~ | Setectedith_top.cv3zedox o wrapper i.cvi2e40x core Lwb stage Lub valkt o

© 2025 Synopsys, Inc. 12

Future development

Integration of 00 -6 i
Nz O - O ¢ Integration of
ImperasFPM and 2 ° ©° functional coverage

checking

gﬁ% Streaming
| /performance | [Debug automation

Improvement

ssssssssssssssssss

Summary

HAV plays a critical role in high quality RISC-V processor

verification
« High performance is needed to address the verification cycle challenge

HAV Test Solution for RISC-V combines a high-performance test
generation technology (STING) with a hardware-assisted
verification platform

« Resulting in comprehensive stimulus and high verification throughput

Debug techniques are needed to efficiently address failures found

in high-speed regression runs

« Hardware/Software debug is an effective approach enabling concurrent debug of
test program with DUT waveforms

© 2025 Synopsys, Inc. 14

SYNOPSYS Thank you

	Slide 1: Acceleration of Complex RISC-V Processor Verification Using Test Generation Integrated with Hardware Emulation
	Slide 2
	Slide 3: Verification to Meet the Needs of Today’s RISC-V
	Slide 4: DUT: XiangShan RISC-V Core
	Slide 5: STING – Bare Metal Test Generator for RISC-V
	Slide 6: Stimulus for Advanced RISC-V Implementations
	Slide 7: Hardware-Assisted Test Solution for RISC-V
	Slide 8: Hardware-Assisted Test Solution for RISC-V
	Slide 9: H-A Test Solution for RISC-V: How it works
	Slide 10: Streaming methodology enables significant performance improvement
	Slide 11: H-A TS for RISC-V: Debug methodology
	Slide 12: Debug using Verdi Hardware/Software Debug
	Slide 13: Future development
	Slide 14: Summary
	Slide 15

