
Acceleration of Complex RISC-V 

Processor Verification Using Test 

Generation Integrated with Hardware 

Emulation

Wei-Hua Han



Legal 
Disclosure

CONFIDENTIAL INFORMATION

The information contained in this presentation is the confidential and proprietary 

information of Synopsys. You are not permitted to disseminate or use any of the 

information provided to you in this presentation outside of Synopsys without prior 

written authorization. 

IMPORTANT NOTICE

This presentation may include information related to Synopsys’ future product or 

business plans. Such plans are as of the date of this presentation and subject to 

change. Synopsys is not obligated to update this presentation or develop the 

products with the features and/or functionality discussed in this presentation. 

Additionally, Synopsys’ products and services may only be offered and purchased 

pursuant to an authorized quote and purchase order or a mutually agreed upon 

written contract.

FORWARD LOOKING STATEMENTS

This presentation may include certain statements including, but not limited to, 

Synopsys’ financial targets, expectations and objectives; business and market 

outlook, business opportunities, strategies and technological trends; and more. 

These statements are made only as of the date hereof and subject to change. 

Actual results or events could differ materially from those anticipated in such 

statements due to a number of factors. Synopsys undertakes no duty to, and does 

not intend to, update any statement in this presentation, whether as a result of new 

information, future events or otherwise, unless required by law.



© 2025 Synopsys, Inc. 3

Verification to Meet the Needs of Today’s RISC-V

• Complex extensions 

(e.g. vector, hypervisor) 

• Virtual memory

• MMU, TLB

• Multi-level cache 

hierarchies

• Interrupts: AIA / IMSIC

• Multi-hart, multi-issue, 

out-of-order execution

RISC-V Today Verification 

Requirements

• Test stimulus based on a 

thorough understanding of 

the RISC-V spec

• Complex and long-running 

tests to get the design into 

interesting states

• A fast execution platform to 

achieve verification closure 

in a reasonable time

To verify a typical high-end RISC-V core, it takes a staggering number of cycles – 

on the order of 1015 (one quadrillion)



© 2025 Synopsys, Inc. 4

DUT: XiangShan RISC-V Core

• Supports RV64 and its extended instruction set

• Supports RVV 1.0, VLEN 128bit x 2.

• Supports unaligned access to Cacheable space

• Memory Management Unit (MMU)

• Up to 48-bit physical addresses, and 39-bit and 48-bit virtual addresses

• Timer interrupts and the RVA23-Sstc feature

• ICache 64KB, supports Parity

• DCache, up to 64KB, supports ECC

• Unified L2, up to 1MB, supports ECC

• Supports Level 1 and Level 2 TLB

• CRS/IMSIC compliant with AIA 1.0



© 2025 Synopsys, Inc. 5

STING – Bare Metal Test Generator for 
RISC-V

• Bare metal tool using a software driven methodology for RISC-V design verification

• Integrates several test generation methodologies to give the best verification 
coverage and productivity: 

– Random stimulus, workloads, directed tests, real world scenarios

• Generates both self-checking and pure stimulus tests

– Tests are portable across simulation, emulation, FPGA and silicon

• Complete support for 32-bit and 64-bit RISC-V specifications

– All ratified extensions, and stable, unratified extensions

– Comprehensive coverage of privilege specification: MMU, PMP, PMA, 
Hypervisor, Supervisor, CSRs 

– Compatible with any system configuration / memory map

– Supports multi-hart, multi-processor designs

– Support for RVA22 and RVA23 profiles 

• Includes a library of over 100,000 test fragments (snippets)

Silicon-Proven RISC-V Processor Verification

Configurations

C++ based tests

ASM-like Directed Tests

Test Generator

Micro-Kernel

Library

Device Drivers

STING

STING.elf



© 2025 Synopsys, Inc. 6

• Complex implementations need longer and more stressful workloads to build interesting microarchitectural 

states

• Most areas like cache coherency, ordering and OS use cases need workloads - long running test sequences 

to get desired coverage.

• For MP platforms, same test sequence is advised to be repeatedly executed to cover all possible 

combinations of instruction scheduling across the processors

Atomicity Tests

Synchronization Tests (Dekker)

Forward Progress

Code Modification

Algorithmic

Litmus Tests

Fence Ordering Testing

Random Memory Ordering Tests

Ordering Random

Stimulus for Advanced RISC-V Implementations

Fast execution platform is needed for complex, long-running stimulus

Conflicting Traffic

Non-conflicting Traffic

ISA Coverage

True Sharing

False Sharing

Cache fills, evictions

Cache Coherency



© 2025 Synopsys, Inc. 7

Hardware-Assisted Test Solution for RISC-V

Hardware Assisted Verification

The DUT is synthesized and run at a high rate of speed using 

emulation or prototyping hardware (e.g. Synopsys ZeBu or HAPS)

STING generates self-checking tests

Reference model results (e.g. ImperasFPM) embedded in the elf file

Generate many tests in parallel

To keep up with the speed of hardware execution

Continuously populate new tests in memory

Using a streaming interface maximizes test throughput



© 2025 Synopsys, Inc. 8

Hardware-Assisted Test Solution for RISC-V

Streaming

Interface

Test 

Results

STING

test2.elf

STING

test0.elf

STING

test1.elf

STING

test3.elf

STING

testN.elf

X

DUT and 

memory



© 2025 Synopsys, Inc. 9

H-A Test Solution for RISC-V: How it works

Streaming

Interface

STING

test2.elf

STING

test0.elf

STING

test1.elf

STING

test3.elf

STING

testN.elf

test0

test management

…
.

test1

testN

X

Test 

Results



© 2025 Synopsys, Inc. 10

Streaming methodology enables significant 
performance improvement 

• Performance benefits through: 

– Avoiding re-initialization of Zebu HW

– Avoiding redundant configuration cycles per test

– Concurrent generation and execution

• Results across 70 STING tests 

• Simulation to Emulation improvement : ~6000X per test 

Real User sys

Streaming 277.98 600.72 367.23

Non  streaming 1081.26 1189.22 451.07



© 2025 Synopsys, Inc. 11

H-A TS for RISC-V: Debug methodology

• Steps to debug a failing test

1. Re-run a specific streaming-enabled test

– This may not reproduce the failure because the 

microarchitecture is in a ”clean” state

2. Re-run the same test multiple times

– This may not reproduce the failure if it is due to an artifact 

from a different test

3. Re-run the same sequence of N tests

– Increase the number of tests in the sequence until the 

failure is identified



© 2025 Synopsys, Inc. 12

Debug using Verdi Hardware/Software Debug

• CPU trace data is extracted from the test execution (PC, GPRs, etc.)

• Waveform data is dumped from the hardware platform

• Test can be replayed in the debugger using breakpoints, single stepping

• Waveform is synchronized with the program execution 

• CPU trace data is extracted from the 
test execution (PC, GPRs, etc.)

• Waveform data is dumped from the 
hardware platform

• Test can be replayed in the 
debugger using breakpoints, single 
stepping

• Waveform is synchronized with the 
program execution 



© 2025 Synopsys, Inc. 13

Future development

Integration of 
ImperasFPM and 
checking

Integration of 
functional coverage

Streaming 
performance 
improvement

Debug automation



© 2025 Synopsys, Inc. 14

Summary

HAV plays a critical role in high quality RISC-V processor 

verification

• High performance is needed to address the verification cycle challenge

HAV Test Solution for RISC-V combines a high-performance test 

generation technology (STING) with a hardware-assisted 

verification platform

• Resulting in comprehensive stimulus and high verification throughput

Debug techniques are needed to efficiently address failures found 

in high-speed regression runs

• Hardware/Software debug is an effective approach enabling concurrent debug of 

test program with DUT waveforms



Thank you


	Slide 1: Acceleration of Complex RISC-V Processor Verification Using Test Generation Integrated with Hardware Emulation
	Slide 2
	Slide 3: Verification to Meet the Needs of Today’s RISC-V
	Slide 4: DUT: XiangShan RISC-V Core
	Slide 5: STING – Bare Metal Test Generator for RISC-V
	Slide 6: Stimulus for Advanced RISC-V Implementations
	Slide 7: Hardware-Assisted Test Solution for RISC-V
	Slide 8: Hardware-Assisted Test Solution for RISC-V
	Slide 9: H-A Test Solution for RISC-V: How it works
	Slide 10: Streaming methodology enables significant  performance improvement 
	Slide 11: H-A TS for RISC-V: Debug methodology
	Slide 12: Debug using Verdi Hardware/Software Debug
	Slide 13: Future development
	Slide 14: Summary
	Slide 15

