

Revitalizing Semiconductor StartUps

Tarun Verma
Managing Partner
November 12, 2025

Disclaimer

The keynote contents are my personal opinion and takeaways as part of

Silicon Catalyst

it's about what's next.®

Silicon Catalyst is the only accelerator focused on

the Global Semiconductor Industry

including Chips, Chiplets, Materials, IP and <u>Silicon fabrication</u> based Photonics, MEMS, Sensors, Life Science and Quantum

Established 2015 in Silicon Valley
Global portfolio companies (PCs) are worth > \$3B
Screened over 1,500 early-stage semiconductor companies
Admitted over 150 Companies globally into our bespoke incubation programs
Established Silicon Catalyst Israel (2019), UK (2021) & EU (2024); >400 advisors worldwide; >500 partners
5G, AI / ML, UWB, IP, Comms infrastructure, Photonics, IoT, Power, Life Science, MEMS/Sensing, Materials, Quantum
Si Catalyst Angels (2019) & Si Catalyst Ventures (2024); PCs have raised > \$1B in VC + > \$200M in IKP + > \$200M in grants

Bottom line up front (BLUF)

Semiconductors are resurgent

Company valuations and profitability

- 16 of the top 20 market caps in tech
- 3rd most profitable industry

Al is profoundly hardware limited -- it's the next gold rush

Essential assets in a geopolitical sea change away from globalism

A surge of investments are underway

CHIPS Act(s) in various countries and regions.

Rise of Sovereign Wealth Funds

VCs are wading back in as there are green shoots in Deep Tech and specialty funds – A contrarian opportunity

Reasonable M&A and IPO opportunities for startups

Chiplets and advanced packaging can advantage startups

Semiconductor startups face daunting challenges

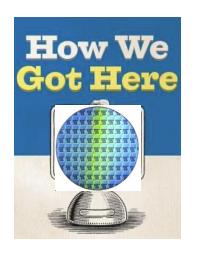
Escalating cost of innovation: prototyping access and costs

Sustained decline of venture capital for semiconductors

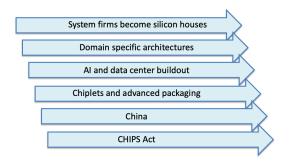
Achieving product-market fit remains challenging

Diminished customer appetite to award design wins to startups

But more research will not lead to commercialization unless we continue to build the startup playbook


Aggressively implement CHIPS Act investments across the globe for prototyping and startup funds with a sense of urgency

Supplement with existing government programs and funding streams


Strengthen startup ecosystem for translation to industry

State of Semiconductors in 2025

Forces shaping evolution

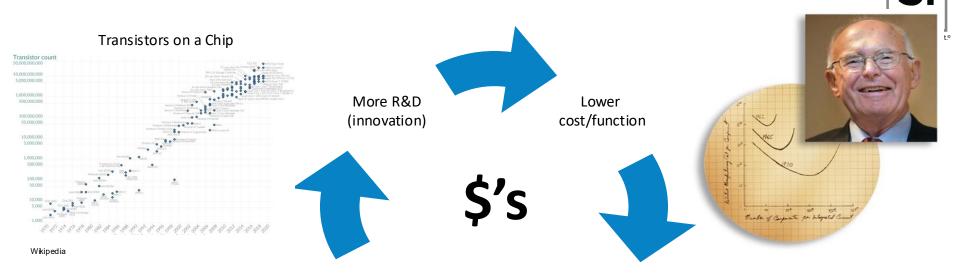
How did we get here?

- 1950's Invention of the transistor by Bell Labs and dissemination through licensing core technology
- 1960's Integrated circuits driven by gov't needs, invention of venture capital and startups in Silicon Valley
- 1970's Invention of microprocessors and DRAM memory
- 1980's Japanese DRAM threat leads to formation of SIA / SRC / SEMATECH to restore US competitiveness
- 1990's Foundry business model lead by TSMC in Taiwan
- 2000's Beginning of industry consolidation; decline in venture capital investment
- 2010's Moore's Law slowdown, the rise of AI, and emergence of a Chinese threat, pricing power
- 2020's Pandemic chips shortages, CHIPS Act(s), China's access restrictions, Generative AI

Historical Evolution

Government

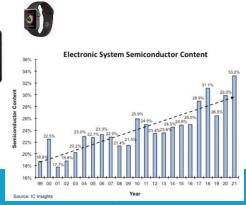
Venture Capital & StartUps



Geographic
Dispersion &
Consolidation

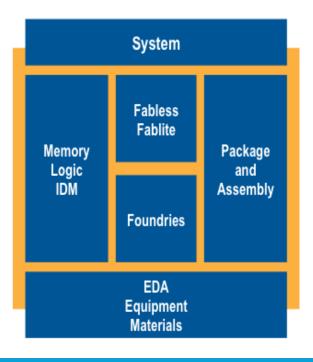
1940-50's 1960-80's 1990-2020's

Virtuous Cycle of Moore's law

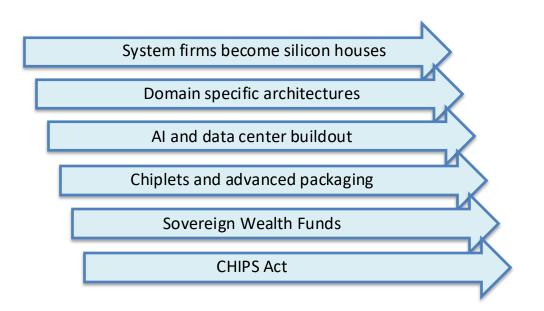

Increasing

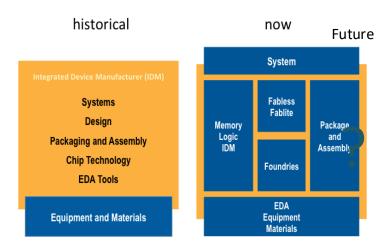
revenue

Silicon Catalyst


Evolution of the supply chain and it's fragmentation

historical


Systems Design Packaging and Assembly Chip Technology **EDA Tools Equipment and Materials**


now

Forces shaping future industry evolution

System companies becoming silicon houses

	Apple	Google	Amazon	Microsoft	Meta	Baidu	C is co	Huawei	Samsung	Nvidia
System		П	几		Д					
Chip De sign limited	Û	1		$\hat{\Box}$		$\hat{\mathbf{T}}$	$\hat{\mathbf{U}}$		^	1
Chip Design extensive	•							V	廿	
Chip Mfg										

The Semiconductor Supercycle

2020

The Invisible Industry

Cyclical

Cost-Driven

Behind-the-Scenes

2025

AI Compute Boom

Al Accelerators

Foundry Power

Supply Chain Tension

2030

\$1T Industry

Edge Al

Electrification

Advanced **Packaging** **Beyond**

Beyond -Quantum, **Photonic**

Quantum

Photonic

Neuromorphic Computing

Still subject to the classic semiconductor boom/bust constraints

Verification Futures Austin 2025 Silicon Catalyst

The Five-Year Shift (2020 \rightarrow 2025)

The AI Compute Boom

Generative Al pushing chipmakers to the center of the tech economy.

Supply Chain & Geopolitics

Owning silicon capacity implies owning economic resilience

The Sovereignty Push

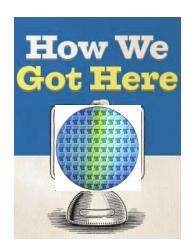
- Chips are now instruments of national power
- Rise of Sovereign Wealth Funds

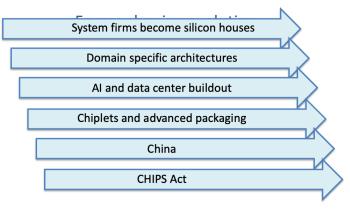
Rise of System Houses

Expanding In house chip design

What's Next (2026 → 2030)

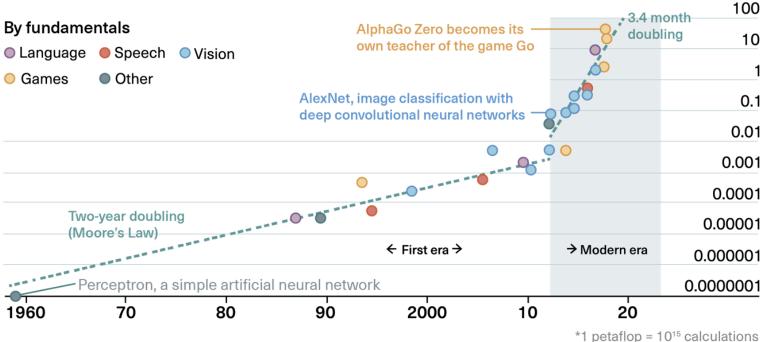
- Industry is on track to exceed \$1 trillion in annual revenue by 2030
 - Driven by AI, electrification, advanced packaging and edge computing.
- Edge AI Everywhere
 - Efficient NPUs will move AI from the cloud to devices.
 - Wearables, Phones, Robots, IoTs, Drones, etc.
- Electrification & Energy
 - EVs and smart grids are accelerating demand for SiC and GaN power chips.
- Packaging Bottleneck
 - Performance now hinges on chiplets, 3D stacking, and HBM
 - Advanced packaging capacity will be a new battleground.


Beyond 2030: The Quantum & Photonic Horizon

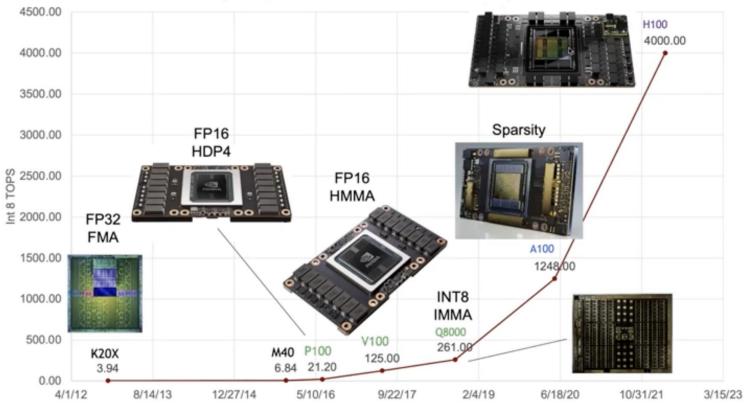


- Quantum, Photonic and Neuromorphic chips will bring massive leaps in speed and energy efficiency,
 - Reshape how AI, computing, and communication systems are built.
 - Early days

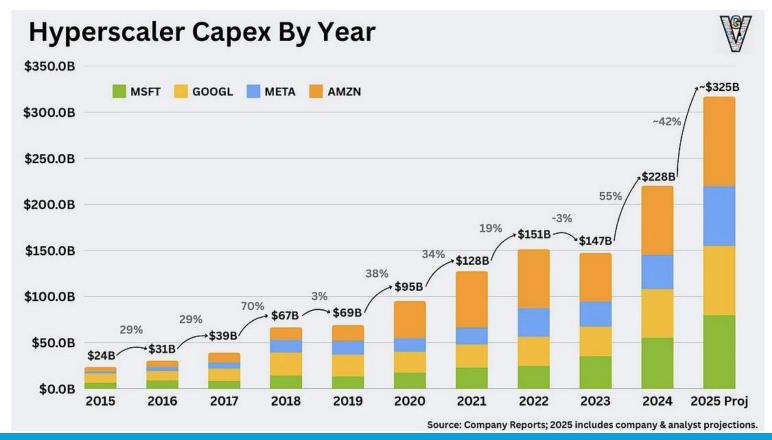
State of semiconductors in 2025

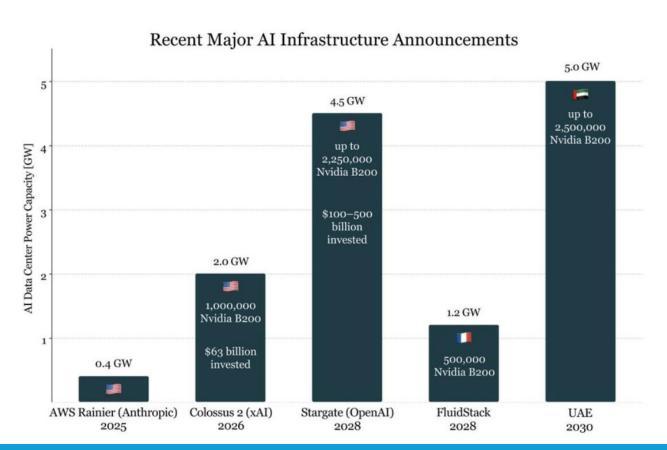


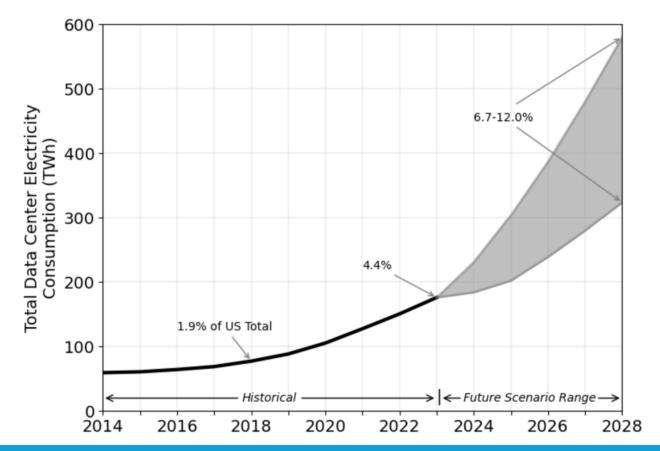
Al scaling into a new exponential for compute requirements

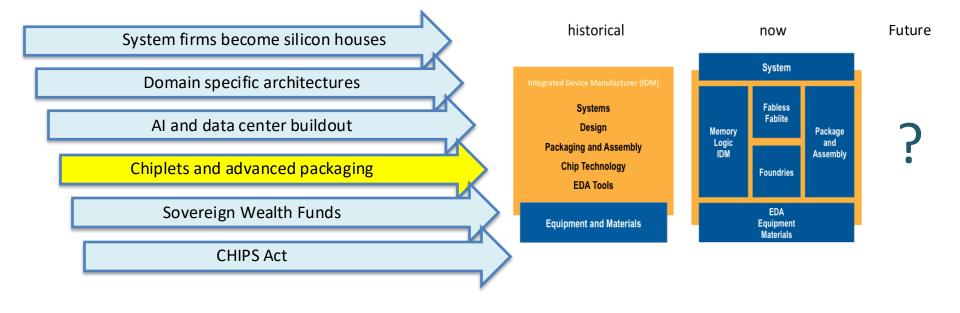

Computing power used in training Al systems Days spent calculating at one petaflop per second*, log scale

Acceleration of AI with GPUs

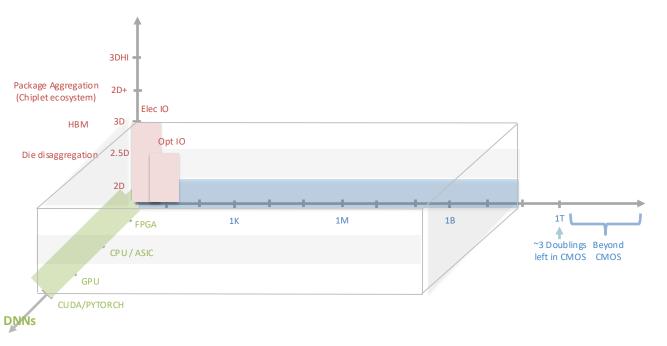



Hyperscaler CapEx investments for cloud data centers


Al data center investments


U.S. power consumption from data centers

Forces shaping future industry evolution



Expanding the computing volume

Moore's Law Scaling (Tx Count and Perf.)

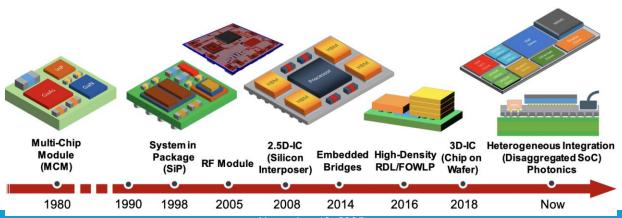
Algorithms and Specialized Architectures

Chiplets and heterogeneous integration

Why now?

Yield loss from reticle size die

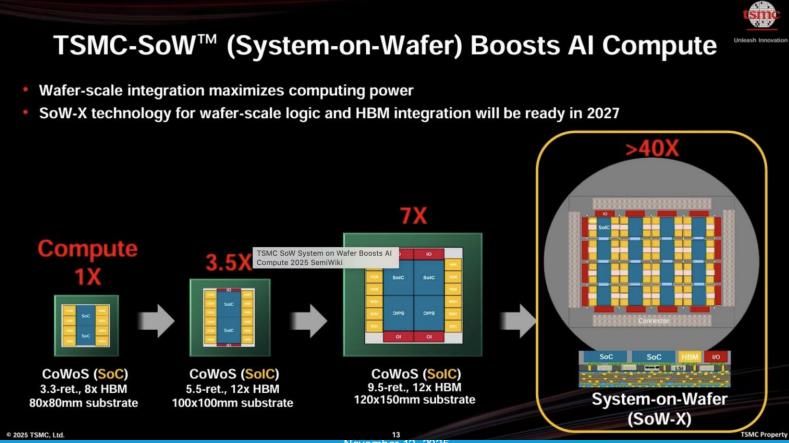
Optimize intended function to best technology node


It works: Xilinx FPGA, AMD CPUs, Intel, DARPA CHIPS

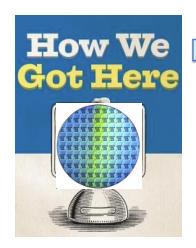
Challenges

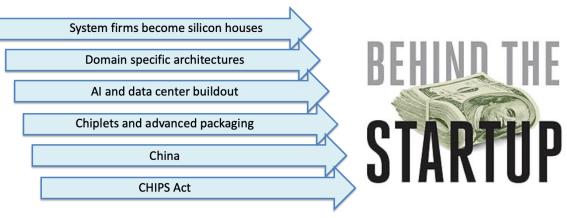
Chip to chip interfaces: AIB or BoW or UCle

Business model: KGD

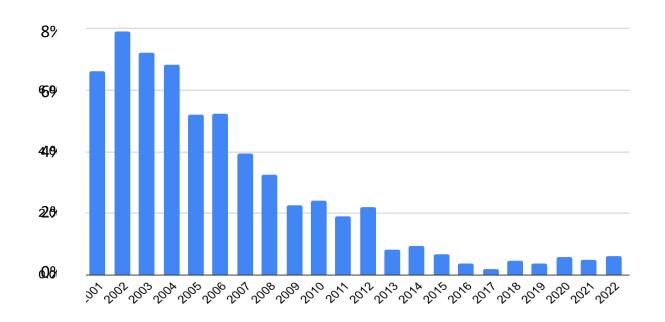

Marketplace of available chiplets

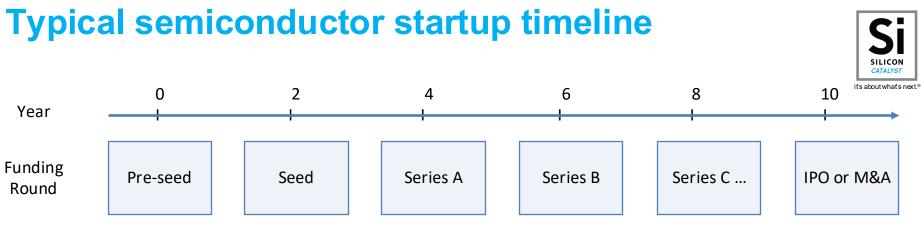
November 12, 2025 Silicon Catalyst


TSMC packaging roadmap



State of semiconductors in 2025





Venture Capital has moved past semiconductors to software and services

VC investment in semiconductor startups as % of total VC funding

Funding Round	Pre-seed	Seed	Series A	Series B	Series C	IPO or M&A
Funding Source	Self / F&F Angels Grants (SBIR) NSF, DOD, DOE, DARPA	Angels VC and CVC Grants (SBIR) NSF, DOD, DOE, DARPA	Grants (SBIR) NSF, DOD, DOE, DARPA	VC and CVC	VC and CVC Growth VC	IPO or SPAC Corp M&A
<u>Fund raise (\$M)</u> Low Medium High	0.5 1-2 2	1 2-5 15	5 10-20 100	20 30-70 150	30 50-100 150	100 200-300 500

November 12, 2025 Verification Futures Austin 2025 Silicon Catalyst

VC model at a glance

Goal is return 3-5x or 20-30% annual IRR over the 10-year life of the fund

Invest fund in 20-25 companies which represent 0.1-1% of deal flow

Hits driven business – need 1-3 companies to return 10-100x of investment

VCs are compensated 2% of fund annually for OpEx and retain 20% (carry) of profits

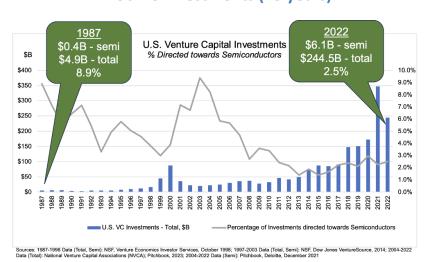
Each startup funding round is lead by a new VC that sets the valuation and investing terms for others, and for existing investors, exercising pro-rata rights is key

VCs raise follow-up funds based upon track record of the prior fund

VC model dictates where investments are made and why semiconductors struggle

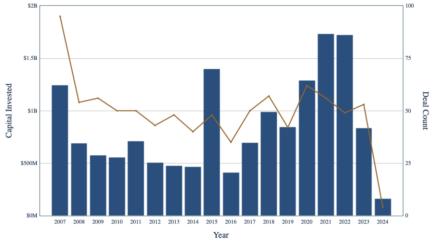
Investments in semiconductors are less attractive compared to software and services

- Higher capital required
- Longer time to revenue ramp
- Higher innovation failure rates
- Longer time to liquidity
- Lower returns


Semiconductors requires extensive and specific due diligence, a skill mostly atrophied

Product-market fit is hard to predict based upon early measures of traction and adoption

Dramatic ramp of venture investment in the last decade – semis not benefiting



US VC investments (25 years)

CHIPS IAC Organization/PPP Working Group November 8, 2023 Public Meeting

US VC investments in semiconductors (15 years)

Pitch book

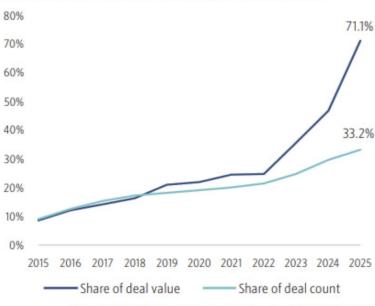
Venture Capital and Corporate VC: major players in semiconductors?

VC by Deal Count

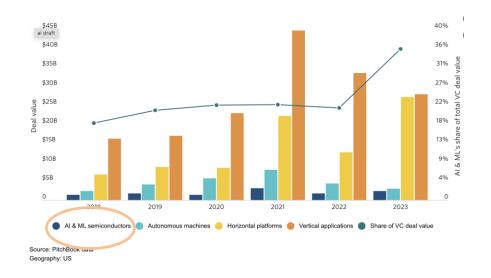
v C by Dear Col	alit.
Celesta	26
Walden International	24
A&E Investments	23
Eclipse Ventures	15
Foothill Ventures	15
Sutter Hill Ventures	15
Alumni Ventures	13
GSR Ventures	12
InQTel	12
Cambium	10
DCVC	10
Foundation Capital	10
Klein er Perkins	10
Lux Capital	10
Bessemer Ventures	9

CVC by Deal Count

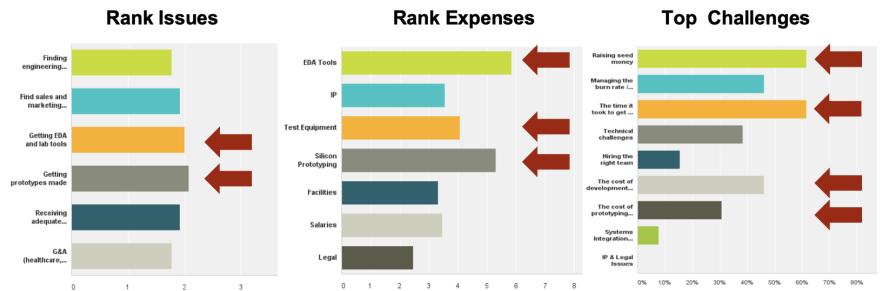
Intel Capital	74
Applied Ventures	16
Samsung Catalyst Fund	16
TEL Venture Capital	11
Cisco Investments	10
Lockheed Martin Ventures	10
AMD Ventures	9
Dell Tech Capital	9
Western Digital Capital	7
M12	6
Xilinx Ventures	6
TDK Ventures	5
3M Ventures	4
Airbus Ventures	4
Eni Next	4



Al share of Venture Capital

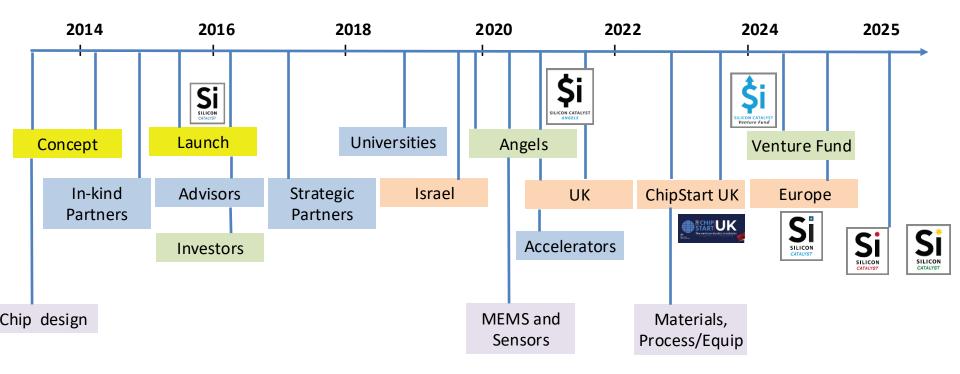

AI & ML scoops up 71% of capital

AI & ML VC deal activity as a share of all VC deal activity


Source: PitchBook • Geography: US • As of March 31, 2025

Al funding by sector

Challenges facing semiconductor startups



Time, EDA, Prototypes, Test, \$'s
Source: 70 startups surveyed in 2014 & > 500 startups 2015 - 2023

Silicon Catalyst timeline

Ecosystem Centered on Startups

PCAST Semi DoCIAC CA CHIPS Co. N-W AI Hub

Architecture, Design Review Go-to-Market, Supply Chain

Investors

SandHill Angels

SOCIALCAPITAL

400+

Advisors

Good for Startups, Partners, Investors, Advisors ... the industry

Silicon Catalyst Track -Emerging Hardware Technologies and Startups

11:30–11:40 Introduction to Silicon Catalyst

Tarun Verma, Managing Partner

https://www.linkedin.com/in/tarunverma01/

11:40 – 12:00 Emerging Trends in AI for Chip Design and EDA

David Pan, UT Austin and SC Advisor

https://www.linkedin.com/in/davidzpan/

12:00–12:15 *Ultra-Fast AI Inference at the Edge*

Frank Thiel, SC Advisor and CTO of Glgantor (https://gigantor.com)

https://www.linkedin.com/in/frank-thiel/

12:15 –12:30 New Sensing Technologies Provide Insight Inside Batteries

Rick Seger, SVP, SigmaSense (https://sigmasense.com)

https://www.linkedin.com/in/rickseger

Bottom line up front (BLUF)

Semiconductors are resurgent

Company valuations and profitability

- 16 of the top 20 market caps in tech
- 3rd most profitable industry

Al is profoundly hardware limited -- it's the next gold rush

Essential assets in a geopolitical sea change away from globalism

A surge of investments are underway

CHIPS Act(s) in various countries and regions.

Rise of Sovereign Wealth Funds

VCs are wading back in as there are green shoots in Deep Tech and specialty funds – A contrarian opportunity

Reasonable M&A and IPO opportunities for startups

Chiplets and advanced packaging can advantage startups

Semiconductor startups face daunting challenges

Escalating cost of innovation: prototyping access and costs

Sustained decline of venture capital for semiconductors

Achieving product-market fit remains challenging

Diminished customer appetite to award design wins to startups

But more research will not lead to commercialization unless we continue to build the startup playbook

Aggressively implement CHIPS Act investments across the globe for prototyping and startup funds with a sense of urgency

Supplement with existing government programs and funding streams

Strengthen startup ecosystem for translation to industry

Follow up

Website - https://siliconcatalyst.com

Email - tarun@sicatalyst.com

Join us in driving innovation!

it's about what's next®

