
Applying Generative AI in Post-
Silicon Validation: Real Use Cases

and Technical Insights

Verification Futures Conference 2025 – Austin (USA)

Santosh Appachu Devanira Poovaiah
Senior CPU Verification Engineer @ NVIDIA Corporation.

AGENDA

1. Why post-silicon still catches the hardest bugs ?

2. Where traditional flows stall (CRIG, directed, workloads) ?

3. GenAI vs. ML - Who does What ?

4. Architecture & Guardrails

5. Stimulus pipeline: Prompt → Plan → ASM → Validators

6. LLM Choice & RISC-V Grounding: From Model to Meaningful Tests

7. Results vs traditional (Coverage, Triage, Yield)

8. Risks, Governance, Next Steps

Acronyms You’ll See in This Talk

Abbrev Full form Where used What it is

LLM Large Language Model AI/ML (generation, summaries) Generates text/code from prompts

RAG Retrieval-Augmented Generation Grounding models with specs Pulls docs to guide/model outputs

KPI Key Performance Indicator Metrics/decision criteria Numbers that define success

LoRA Low-Rank Adaptation Light fine-tuning (optional) Small adapter to fine-tune

HDBSCAN Hierarchical Density-Based Clustering Failure clustering (debug) Unsupervised clustering algorithm

RV64GC RISC-V 64-bit ISA RISC-V/SoC 64-bit RISC-V with common extensions

Sv39 39-bit virtual memory RISC-V/SoC RISC-V paging scheme

TRM Technical Reference Manual Board/SoC documentation Vendor manual for SoC/board details

CLINT Core-Local Interruptor RISC-V interrupts (local) Local timer/software interrupts

PLIC Platform-Level Interrupt Controller RISC-V interrupts (global) External/global interrupt controller

CRIG Constrained-Random Instruction Generator Stimulus (traditional) Auto-generates constrained tests

ASM Assembly (assembly language) Test implementation Low-level instructions for the CPU

LLC Last-Level Cache Coherency/perf counters Shared cache nearest to memory

SDC Silent Data Corruption Failure impact/result Wrong data without a visible crash

CAS Compare-And-Swap Concurrency/atomics Atomic compare + conditional write

WFI Wait-For-Interrupt Power/idle & timing tests Sleep until an interrupt arrives

Post-Silicon Reality: Bugs That Escape Pre-Silicon

1. Concurrency explosion: Cores + DMA/GPU/I/O + IRQs with rare interleaving’s & more actors ⇒ combinatorial schedules and races.

2. Memory-model edges: Fences/atomics under preemption/ISRs behave differently ⇒ preemption can change fence/atomic effects.

3. Coherency under contention: Invalidate/downgrade/writeback races across slices ⇒ state transitions collide under heavy load.

4. SW/HW gaps: Drivers, TLB shootdowns, PCIe/CXL ordering quirks not modeled ⇒ OS/driver realities aren’t in clean models.

5. Observability limits: Shallow traces, sampling bias, non-determinism (“Heisenbugs”) ⇒ limited visibility hides root causes.

6. Pre-silicon plateau: CRIG/emulation/formal miss long-tail corners ⇒ tools stall on ultra-low-probability cases.

7. Impact: SDC, hangs/livelocks/deadlocks, performance cliffs ⇒ failures that matter only surface on silicon.

Micro-example: 4-core CAS + contending stores to a shared line; LLC back-pressure + IRQ ⇒ downgrade/writeback reorder ⇒ stale read ~1/10k
runs , tiny timing shifts flip the outcome.

Limits of Traditional Validation (CRIG, Directed,
Workloads)

1. Directed tests: precise & explainable, but narrow ⇒ don’t scale to long-tail races.

2. CRIG (constrained-random): broad exploration ⇒ constraints bias paths; rare interleaving's stall.

3. Seeds & repeatability: reruns flip schedules ⇒ non-determinism hides/ghosts failures.

4. Workload stress (apps/benchmarks): realistic SW/HW ⇒ low controllability; hard to isolate causes.

5. Coverage plateau: more cycles ≠ new states ⇒ diminishing returns after early wins.

6. Debug burden: huge logs/counters ⇒manual triage & reduction consume days.

7. Modeling gaps: ideal latencies, missing OS/driver effects ⇒ pre-silicon differs from board reality.

8. Test bloat: many near-duplicates ⇒ infra/compute cost rises while novelty drops.

Micro-example: CRIG with cache pressure hits misses but rare invalidate→downgrade→writeback race remains elusive - needs targeted, multi-
core tests.

GenAI’s Role in the Flow (Augment, Don’t Replace)

1. What is GenAI? Generative models (LLMs/code models) that create text/code/plans from prompts ⇒ here: test plans & summaries.

2. How it differs from ML: ML predicts/scores on structured data; GenAI produces candidate artifacts ⇒ they complement each other.

3. Stimulus ideation: prompt → test plan → ASM ⇒ LLM proposes diverse, targeted sequences from high-level goals.

4. Test mutation: tweak seeds/strides/fences ⇒ systematically explores variants humans/randoms might miss.

5. Log/trace summarization: condense 100Ks lines ⇒ surfaces epochs, anomalies, candidate causes fast.

6. Hypothesis drafting: “what likely happened & why” ⇒ starting point for engineers, not a verdict.

7. Validator sandwich: ISA/protocol lint → assemble → pre-silicon dry-run → post-silicon checkers ⇒ guards correctness & realism.

8. Human-in-the-loop: review/edit, gate promotions ⇒ sign-off remains human + formal/checkers.

9. Data handoff to ML: counters/telemetry → detect & cluster ⇒ LLM generates/annotates; ML ranks at scale.

10. Artifacts & repro: store prompt/plan/code/logs ⇒ audit trail for learning & reuse.

Important: GenAI augments CRIG/directed/formal; it does not replace sign-off methods.

LLM vs. Classical ML : When to Use Which

1. Use LLMs (generative) when the artifact is text/code
 a) Test synthesis from goals ⇒ prompt → plan (JSON) → ASM.
 b) Log/trace summarization ⇒ condense 100k+ lines to epochs & suspects.
 c) Multi-core choreography ⇒ structured steps, fences, roles.
 d) Spec grounding (RAG) ⇒ cite ISA/coherency rules to cut hallucinations.

2. Use Classical ML when data is numeric/structured
 a) Anomaly detection on counters/telemetry ⇒ fast, scalable (IF/LOF/1-class SVM).
 b) Clustering failure signatures ⇒ group by metrics/timelines (HDBSCAN/DBSCAN).
 c) Ranking & triage ⇒ prioritize by novelty/impact (XGBoost/GBMs).
 d) Drift/trend monitoring ⇒ catch regressions over time (PCA/stats).

3. Hybrid patterns (best practice)
 a) LLM plan + ML scorer ⇒ generate variants, rank by novelty/risk.
 b) LLM summaries + ML clustering ⇒ route issues to the right owners.
 c) Validator sandwich ⇒ ISA/protocol lint → assemble → pre-silicon gate → checkers.

4. Quick decision rules
 a) Text/code? ⇒ LLM (+ strict schema & validators).
 b) Metrics/time-series? ⇒ ML.
 c) Tight latency/edge? ⇒ ML or small on-prem LLM (7–13B, quantized).
 d) Privacy/IP sensitive? ⇒ self-host LLM + classical ML; avoid external APIs.

5. Evaluate with the right KPIs
 a) LLM: compile/runnable rate, coverage lift, bug repro rate, summary accuracy.
 b) ML: precision/recall on anomalies, cluster separability, triage time reduction.

Model Choice Playbook: On-Prem vs Managed,
Context, Code

Playbook = short decision guide (how to choose models consistently).
On-prem = you host the model (data stays inside)
Managed = provider hosts (cloud API)

1. Start with constraints
 a) Privacy/IP: can data leave? → No: on-prem. Yes: managed.
 b) Latency/throughput: sub-second vs batch → influences model size & hosting.

2. Match model to the job
 a) Code/test generation: use code-tuned LLMs (better compile/runnable).
 b) Long log summaries: use long-context LLMs (or chunk + retrieve).

3. Handle context correctly
 a) Chunk + RAG over ISA/coherency/board docs; don’t cram giant prompts.

4. Size by KPI, not hype
 a) Start small (7–13B) on-prem if private; scale to mid/large only if KPIs improve (coverage lift, runnable %, triage time, cost).

5. Guardrails (non-negotiable)
 a) JSON/grammar constraints + validator sandwich (lint → assemble → pre-silicon gate → checkers) + human review.

6. Quick picks
 a) Strict IP + code gen: on-prem 7–13B code-tuned + RAG + validators.
 b) Huge logs fast (policy allows): managed long-context or mid/large on-prem.

Architecture & Guardrails for Safe Adoption

1. Grounding data layer : ISA/coherency specs, board configs, templates via RAG to keep outputs factual.

2. LLM orchestrator : prompt templates, few-shot, JSON/grammar-constrained decoding so plans are structured/parsable.

3. Validator sandwich (gate) : ISA/protocol lint → assemble/compile → fast sim/litmus → coherency/memory-model checkers block
illegal/unrealistic tests.

4. Execution harness : JTAG/UART loader, timeouts/watchdogs, perf counters & traces safe runs + rich telemetry.

5. Triage & insights : LLM summaries for logs + ML anomaly/clustering on counters faster, scalable debug.

6. Feedback loop : coverage deltas, failure labels, prompt reweights, human approval learn what works; keep humans in charge.

7. Governance & security : on-prem by default, IP/PII redaction, RBAC, audit logs, prompt/model registry & versioning compliance and
reproducibility.

8. KPI gates : promote only if runnable%↑, coverage↑, triage time↓, cost/latency OK data-driven adoption.

9. Safeguards & rollout : shadow/canary, blue-green, quotas, offline mode/air-gap safe experimentation & instant rollback.

One-line flow: RAG → LLM plan (JSON) → Validators → DUT run → Logs/Counters → LLM+ML triage → Feedback/Promotion

Stimulus Generation Pipeline: Prompt → Plan →
ASM → Validators

1. Prompt (grounded) : goal + constraints; RAG injects ISA/coherency snippets Keeps generations factual and in-scope.

2. Plan (JSON, not prose) : LLM emits ops/params under JSON/grammar constraints Machine-checkable; easy to diff & reuse.

3. Static validators : schema, opcode legality, privilege, alignment, hazards Fail fast before any code runs.

4. ASM synthesis : fill templates, allocate regs, insert fences/loops Deterministic assembly from the plan.

5. Build & pre-silicon gate : assemble/link; fast sim/litmus; protocol/memory-model checks Blocks unrealistic/illegal tests.

6. Post-silicon run : loader, timeouts, counters/traces; persist seed/params Safe execution + rich telemetry.

7. Promotion & archive : require new coverage/runnable%/repro value; store prompt/plan/ASM/logs Reproducible and auditable.

Example : 4-Core Downgrade/Writeback Race

• Static validators (examples) :
a) Schema : (all required fields present)
b) ISA legality
c) Alignment : (64B stride on 64B line)
d) Hazards: (forward progress: CAS loop has retry exit; watchdog present).

• Expected behavior (why this test exists)
a) Contention + IPI can reorder downgrade/writeback timing, occasionally exposing a stale read or unexpected latency spike - exactly the corner you
want to probe on silicon.

Experimental Setup & Hardware (RISC-V)

1. Board
VisionFive 2 (StarFive JH7110) — quad-core RV64 (SiFive U74-class), shared L2 ≈ 2 MB, 64-byte cache lines, 4–8 GB LPDDR4, Linux-capable.

2. Memory & ISA
RV64GC, Sv39 paging, cacheable, aligned to line size.

3. Interrupts & I/O
CLINT (MSIP/MTIMECMP) + PLIC for periodic interrupts; UART/JTAG for control.

4. Harness
UART/JTAG loader, watchdogs/timeouts, capture counters (LLC misses/invalidates, L2 writebacks) and logs/traces; auto-archiving.

5. Stimulus generation (LLM)
On-prem code-tuned (≈7–13B) model; RAG over RISC-V unprivileged/privileged specs & memory model; JSON-schema outputs with opcode whitelist.

6. Validators (pre-silicon gate)
Schema/ISA legality, alignment/privilege, fences; coherency/memory-model checks.

7. Run plan
Param sweeps (STRIDE = {64,128}, ~1e5 iters), 12 seeds, ~50k runs total; KPIs tracked (runnable%, coverage lift, time-to-hypothesis).

LLM Choice & RISC-V Grounding: From Model
to Meaningful Tests

1. Which LLM ?
On-prem, code-tuned ~7–13B model (self-hosted, quantized) — optimized for code/test generation and privacy.

2. Why this model (selection basis) ?
a) Chosen by KPIs, not brand: compile/runnable %, coverage lift, time-to-hypothesis, latency/cost.
b) Small code model met KPIs; bigger dosent move metrics for this task.

3. How to teach RISC-V (no full retrain) ?
a) RAG grounding with RISC-V ISA/memory-model excerpts + platform facts (line size, regions).
b) Constrained decoding to JSON schema + whitelisted opcode catalog.
c) Optional small LoRA on internal examples (plans → ASM style), not required.

4. Where RISC-V architecture came from ?
Open ISA: public RISC-V specs (unprivileged/privileged, memory model) + litmus tests; vendor TRMs for board specifics.

5. Behavior
a) Ungrounded: occasional illegal opcodes/privilege slips.
b) With grounding/constraints: compile ~98%, runnable ~95%, higher test diversity.

6. Do tests match expectations?
a) Yes—generated parameterized multi-core sequences that passed validators and exercised targeted coherency corners.

7. Benefit vs traditional flow
a) Faster test ideation with higher novelty per hour; integrates with CRIG; engineers spend time on triage, not hand-writing tests.
b) Sign-off unchanged: protocol checkers + human review remain the gate.

RAG-First Test Generation (No Retraining):
Grounded LLM for RISC-V

1. Model (how to use it)
a) Self-hosted, code-tuned small LLM (~7–13B); quantized; JSON/grammar-constrained decoding.
b) KPI focus : runnable%, coverage lift, latency.

2. Grounding (RAG) doc set
a) RISC-V unprivileged/privileged ISA, memory model, litmus notes.
b) Board/TRM facts (line size, cacheability/shareability), harness API.

3. RAG flow (no retrain)
a) Chunk & index docs (≈512–1024 tokens).
b) At request time, retrieve top-k (3–5) relevant snippets.
c) Inject snippets into prompt as GROUNDING with short citations.

4. Prompt template (core pieces)
a) SYSTEM: You generate RISC-V coherency stress plans (JSON only).
b) GROUNDING: (retrieved ISA/memory-model/TRM excerpts).
c) TASK: 4 cores; induce downgrade/writeback races; U-mode only; fences allowed.
d) SCHEMA: fields + opcode whitelist, legal address window, allowed STRIDE={64,128}.
e) CONSTRAINTS: no privileged ops; timeouts/watchdogs required.

5. After the LLM
a) Static validators → assemble/link → mini-sim/litmus gate → board run.
b) Promote only if runnable%↑, new coverage, useful repro; archive prompt/plan/logs.

6. Why RAG first
Adapts with spec changes; no heavy training; fewer hallucinations; auditable.

RAG-First Debug Acceleration (No Retraining):
Long Trace → Evidence-Backed Summary

1. Model (how to use it)
a) Self-hosted long-context LLM (or chunk + RAG if context is tight); JSON/grammar-constrained outputs with evidence line refs.
b) KPI focus: triage time ↓, summary accuracy ↑, ops latency <60s/run.

2. Grounding (RAG) doc set
a) RISC-V memory model, coherency rules, interrupt/privilege notes.
b) Board/TRM timing/IRQ paths, harness semantics, logging dictionary.

3. Flow (logs → summary + clusters)
a) Parse & segment logs into epochs (boot → workload → fail).
b) Retrieve top-k spec/TRM snippets per epoch (RAG).
c) LLM summarize each epoch to JSON with line citations + confidence.
d) ML sidecar:
 - solation Forest on counters → anomaly scores.
 - HDBSCAN on features → failure clusters + labels.
e) Human-in-loop reviews one-pager (summary + cluster + cited lines) → assigns owner.

4. Prompt template (core pieces)
a) SYSTEM: Summarize RISC-V failure logs with citations. Output JSON only.
b) GROUNDING: (retrieved memory-model/TRM/harness snippets).
c) INPUT: epoch log chunk (+ counter slice).
d) SCHEMA: fields: epochs[], anomalies[], hypotheses[], citations[].

5. Measured impact
a) Triage time (median): 6.5h → 2.4h.
b) Stable clusters: 5–7; top-3 ≈ 82% of fails.
c) Anomaly detection: precision ≈ 0.86, recall ≈ 0.78 (spot-checks).
d) Per-run latency: <60s (chunked pipeline).

6. Why RAG first
Keeps summaries aligned to actual spec/board behavior; transparent & auditable; avoids heavy fine-tuning.

Results & Head-to-Head vs Traditional

1. KPI summary
a) Coverage (unique interleavings, CRIG=100): LLM+Val 136 (+36%), Hybrid 145 (+45%)
b) Rare-race hits (/1k runs): Directed 1.2 · CRIG 3.4 · LLM+Val 6.1 · Hybrid 7.0
c) Runnable yield (generated tests): Raw LLM 72% → 95% with validators
d) Debug triage (median to first hypothesis): 6.5h → 2.4h (LLM summaries + ML clustering)
e) Per-run analysis latency (logs): <60s (chunked + RAG, on-prem)

2. Why this matters
a) More novel stress with less hand-authoring.
b) Fewer flakies (validator sandwich) → better bench utilization.
c) Faster, evidence-backed triage → engineers validate fixes sooner.

Lab PoC; metrics are measured/rounded. GenAI/ML augment existing flows; sign-off remains with protocol checkers + human review.

Criterion Directed CRIG LLM + Validators Hybrid (CRIG + LLM)

Rare interleavings Low Medium High Highest

Coverage (CRIG=100) ~70 100 136 145

Runnable yield (gen’d
tests)

N/A N/A 95% 95%

Debug triage time 6.5h (manual) 6.5h (manual) 2.4h 2.4h

Key Takeaways & Next Steps

1. No retraining used: RAG + JSON constraints + validator sandwich on a self-hosted, code-tuned small LLM (~7–13B).

2. It worked: more coverage, 95% runnable, triage hours → minutes.

3. Retraining optional: add light LoRA only if KPIs stall; facts stay in RAG.

Use these without retraining (on-prem):

1. Test generation (single-GPU): Code Llama 13B Instruct, Qwen-Coder 7B, DeepSeek-Coder ~7B, StarCoder2 ~15B.

2. Long-log summaries: long-context self-hosted (e.g., Llama-3/70B Instruct) or do chunk + RAG.

Q&A

	Slide 1: Applying Generative AI in Post-Silicon Validation: Real Use Cases and Technical Insights
	Slide 2: AGENDA
	Slide 3: Acronyms You’ll See in This Talk
	Slide 4: Post-Silicon Reality: Bugs That Escape Pre-Silicon
	Slide 5: Limits of Traditional Validation (CRIG, Directed, Workloads)
	Slide 6: GenAI’s Role in the Flow (Augment, Don’t Replace)
	Slide 7: LLM vs. Classical ML : When to Use Which
	Slide 8: Model Choice Playbook: On-Prem vs Managed, Context, Code
	Slide 9: Architecture & Guardrails for Safe Adoption
	Slide 10: Stimulus Generation Pipeline: Prompt → Plan → ASM → Validators
	Slide 11
	Slide 12: Experimental Setup & Hardware (RISC-V)
	Slide 13: LLM Choice & RISC-V Grounding: From Model to Meaningful Tests
	Slide 14: RAG-First Test Generation (No Retraining): Grounded LLM for RISC-V
	Slide 15: RAG-First Debug Acceleration (No Retraining): Long Trace → Evidence-Backed Summary
	Slide 16: Results & Head-to-Head vs Traditional
	Slide 17: Key Takeaways & Next Steps
	Slide 18: Q&A

