Applying Generative Al in Post-
Silicon Validation: Real Use Cases
and Technical Insights

Verification Futures Conference 2025 — Austin (USA)

Santosh Appachu Devanira Poovaiah
Senior CPU Verification Engineer @ NVIDIA Corporation.

AGENDA

. Why post-silicon still catches the hardest bugs ?

. Where traditional flows stall (CRIG, directed, workloads) ?

. GenAl vs. ML - Who does What ?

. Architecture & Guardrails

. Stimulus pipeline: Prompt - Plan -> ASM - Validators

LLM Choice & RISC-V Grounding: From Model to Meaningful Tests

Results vs traditional (Coverage, Triage, Yield)

Risks, Governance, Next Steps

Acronyms You’'ll See in This Talk

L ..

Large Language Model Al/ML (generation, summaries) Generates text/code from prompts
RAG Retrieval-Augmented Generation Grounding models with specs Pulls docs to guide/model outputs
KPI Key Performance Indicator Metrics/decision criteria Numbers that define success
LoRA Low-Rank Adaptation Light fine-tuning (optional) Small adapter to fine-tune
HDBSCAN Hierarchical Density-Based Clustering Failure clustering (debug) Unsupervised clustering algorithm
RV64GC RISC-V 64-bit ISA RISC-V/SoC 64-bit RISC-V with common extensions
Sv39 39-bit virtual memory RISC-V/SoC RISC-V paging scheme
TRM Technical Reference Manual Board/SoC documentation Vendor manual for SoC/board details
CLINT Core-Local Interruptor RISC-V interrupts (local) Local timer/software interrupts
PLIC Platform-Level Interrupt Controller RISC-V interrupts (global) External/global interrupt controller
CRIG Constrained-Random Instruction Generator Stimulus (traditional) Auto-generates constrained tests
ASM Assembly (assembly language) Test implementation Low-level instructions for the CPU
LLC Last-Level Cache Coherency/perf counters Shared cache nearest to memory
SDC Silent Data Corruption Failure impact/result Wrong data without a visible crash
CAS Compare-And-Swap Concurrency/atomics Atomic compare + conditional write
WEFI Wait-For-Interrupt Power/idle & timing tests Sleep until an interrupt arrives

Post-Silicon Reality: Bugs That Escape Pre-Silicon

Concurrency explosion: Cores + DMA/GPU/I/O + IRQs with rare interleaving’s & more actors = combinatorial schedules and races.
Memory-model edges: Fences/atomics under preemption/ISRs behave differently = preemption can change fence/atomic effects.
Coherency under contention: Invalidate/downgrade/writeback races across slices = state transitions collide under heavy load.
SW/HW gaps: Drivers, TLB shootdowns, PCle/CXL ordering quirks not modeled = OS/driver realities aren’t in clean models.
Observability limits: Shallow traces, sampling bias, non-determinism (“Heisenbugs”) = limited visibility hides root causes.

Pre-silicon plateau: CRIG/emulation/formal miss long-tail corners = tools stall on ultra-low-probability cases.

N o U bk w DN e

Impact: SDC, hangs/livelocks/deadlocks, performance cliffs = failures that matter only surface on silicon.

Micro-example: 4-core CAS + contending stores to a shared line; LLC back-pressure + IRQ = downgrade/writeback reorder = stale read ~1/10k
runs, tiny timing shifts flip the outcome.

Limits of Traditional Validation (CRIG, Directed,

Workloads)

Directed tests: precise & explainable, but narrow = don’t scale to long-tail races.

CRIG (constrained-random): broad exploration = constraints bias paths; rare interleaving's stall.
Seeds & repeatability: reruns flip schedules = non-determinism hides/ghosts failures.

Workload stress (apps/benchmarks): realistic SW/HW = low controllability; hard to isolate causes.
Coverage plateau: more cycles # new states = diminishing returns after early wins.

Debug burden: huge logs/counters = manual triage & reduction consume days.

Modeling gaps: ideal latencies, missing OS/driver effects = pre-silicon differs from board reality.

© N O U B W N

Test bloat: many near-duplicates = infra/compute cost rises while novelty drops.

Micro-example: CRIG with cache pressure hits misses but rare invalidate->downgrade->writeback race remains elusive - needs targeted, multi-
core tests.

GenAl’s Role in the Flow (Augment, Don’t Replace)

What is GenAl? Generative models (LLMs/code models) that create text/code/plans from prompts = here: test plans & summaries.
How it differs from ML: ML predicts/scores on structured data; GenAl produces candidate artifacts = they complement each other.
Stimulus ideation: prompt - test plan - ASM = LLM proposes diverse, targeted sequences from high-level goals.

Test mutation: tweak seeds/strides/fences = systematically explores variants humans/randoms might miss.

Log/trace summarization: condense 100Ks lines = surfaces epochs, anomalies, candidate causes fast.

Hypothesis drafting: “what likely happened & why” = starting point for engineers, not a verdict.

Validator sandwich: ISA/protocol lint - assemble = pre-silicon dry-run = post-silicon checkers = guards correctness & realism.

Human-in-the-loop: review/edit, gate promotions = sign-off remains human + formal/checkers.

O 0 N o U B W N E

Data handoff to ML: counters/telemetry - detect & cluster = LLM generates/annotates; ML ranks at scale.

10. Artifacts & repro: store prompt/plan/code/logs = audit trail for learning & reuse.

Important: GenAl augments CRIG/directed/formal; it does not replace sign-off methods.

LLM vs. Classical ML : When to Use Which

1. Use LLMs (generative) when the artifact is text/code
a) Test synthesis from goals = prompt = plan (JSON) - ASM.
b) Log/trace summarization = condense 100k+ lines to epochs & suspects.
c) Multi-core choreography = structured steps, fences, roles.
d) Spec grounding (RAG) = cite ISA/coherency rules to cut hallucinations.

2. Use Classical ML when data is numeric/structured
a) Anomaly detection on counters/telemetry = fast, scalable (IF/LOF/1-class SVM).
b) Clustering failure signatures = group by metrics/timelines (HDBSCAN/DBSCAN).
c) Ranking & triage = prioritize by novelty/impact (XGBoost/GBMs).
d) Drift/trend monitoring = catch regressions over time (PCA/stats).

3. Hybrid patterns (best practice)
a) LLM plan + ML scorer = generate variants, rank by novelty/risk.
b) LLM summaries + ML clustering = route issues to the right owners.
c) Validator sandwich = ISA/protocol lint > assemble = pre-silicon gate = checkers.

4. Quick decision rules
a) Text/code? = LLM (+ strict schema & validators).
b) Metrics/time-series? = ML.
c) Tight latency/edge? = ML or small on-prem LLM (7-13B, quantized).
d) Privacy/IP sensitive? = self-host LLM + classical ML; avoid external APlIs.

5. Evaluate with the right KPIs
a) LLM: compile/runnable rate, coverage lift, bug repro rate, summary accuracy.
b) ML: precision/recall on anomalies, cluster separability, triage time reduction.

Model Choice Playbook: On-Prem vs Managed,

Context, Code

Playbook = short decision guide (how to choose models consistently).
On-prem = you host the model (data stays inside)
Managed = provider hosts (cloud API)

1. Start with constraints
a) Privacy/IP: can data leave? = No: on-prem. Yes: managed.
b) Latency/throughput: sub-second vs batch = influences model size & hosting.

2. Match model to the job
a) Code/test generation: use code-tuned LLMs (better compile/runnable).
b) Long log summaries: use long-context LLMs (or chunk + retrieve).

3. Handle context correctly
a) Chunk + RAG over ISA/coherency/board docs; don’t cram giant prompts.

4. Size by KPI, not hype
a) Start small (7-13B) on-prem if private; scale to mid/large only if KPIs improve (coverage lift, runnable %, triage time, cost).

5. Guardrails (non-negotiable)
a) JSON/grammar constraints + validator sandwich (lint - assemble = pre-silicon gate - checkers) + human review.

6. Quick picks
a) Strict IP + code gen: on-prem 7-13B code-tuned + RAG + validators.
b) Huge logs fast (policy allows): managed long-context or mid/large on-prem.

Architecture & Guardrails for Safe Adoption

1. Grounding data layer : ISA/coherency specs, board configs, templates via RAG to keep outputs factual.

2. LLM orchestrator : prompt templates, few-shot, JSON/grammar-constrained decoding so plans are structured/parsable.

w

Validator sandwich (gate) : ISA/protocol lint - assemble/compile - fast sim/litmus - coherency/memory-model checkers block
illegal/unrealistic tests.

Execution harness : JTAG/UART loader, timeouts/watchdogs, perf counters & traces safe runs + rich telemetry.
Triage & insights : LLM summaries for logs + ML anomaly/clustering on counters faster, scalable debug.

Feedback loop : coverage deltas, failure labels, prompt reweights, human approval learn what works; keep humans in charge.

N oo U ok

Governance & security : on-prem by default, IP/PIl redaction, RBAC, audit logs, prompt/model registry & versioning compliance and
reproducibility.

o0

KPI gates : promote only if runnable%1, coverage/®, triage time,, cost/latency OK data-driven adoption.

9. Safeguards & rollout : shadow/canary, blue-green, quotas, offline mode/air-gap safe experimentation & instant rollback.

One-line flow: RAG = LLM plan (JSON) - Validators - DUT run - Logs/Counters - LLM+ML triage - Feedback/Promotion

Stimulus Generation Pipeline: Prompt - Plan =

ASM — Validators

Prompt (grounded) : goal + constraints; RAG injects ISA/coherency snippets Keeps generations factual and in-scope.

Plan (JSON, not prose) : LLM emits ops/params under JSON/grammar constraints Machine-checkable; easy to diff & reuse.
Static validators : schema, opcode legality, privilege, alignment, hazards Fail fast before any code runs.

ASM synthesis : fill templates, allocate regs, insert fences/loops Deterministic assembly from the plan.

Build & pre-silicon gate : assemble/link; fast sim/litmus; protocol/memory-model checks Blocks unrealistic/illegal tests.

Post-silicon run : loader, timeouts, counters/traces; persist seed/params Safe execution + rich telemetry.

N o U kA w N e

Promotion & archive : require new coverage/runnable%/repro value; store prompt/plan/ASM/logs Reproducible and auditable.

Example : 4-Core Downgrade/Writeback Race

Generate a 4-core workload that induces downg /writeback races on a shared e line.
Use CAS on Core@, contending stores on Corel, eviction pressure on Core2, and periodic preemption/interrupts on Core3.
Vary stride € {64,128}. Respect privilege=U, fences zllowed.

loop_cas:
1r.d.aq 2, (a@) # load-reserved old value
bne @, al, cas_fail # if *ptr != expected, fail immediately
sc.d.rl a2, (ae) # try to store desired
bnez loop_cas # if store failed (lost reservation), retry
1i 2 1 # success
ISA: LR/SC pairing & fence semantics (y done
. R . . cas_fail:
Memory model: ordering guarantees for atomics + interrupts. 1 .) Efilore (7o Siere sEEmRed
Platform: L2 present; line size=64B; legal address window=0x8000_600@ cas_done:

ret

loopl:
fence rw, rw
0451, sd t3, (al)
"ops": [addi al, al, STRIDE

{"core":@,"op":"CAS_LOOP","addr": s 3 80009}, 2 e
{"core":1,"op":"STORE_LOOP", "addr": "@x38000000@" , "pattern”:"STRIDE", "stride":[64,128],"iters":100000},
{"core":2,"op":"LLC_THRASH","region": "@x80081000. .06x8001000@" , "pressure":"high", "stride":[64,128])
{"core":3,"op":"YIELD_IRQ", "pericd_iters":5@@,"action":"IPI_CORE@"}
N loop2:
"timeouts_ms": 20000, 1d t4, o(a2)
| t4, 64(a2)
addi a2, a2, STRIDE

blt a2, a2_end, loop2

"safety": {"no_priv_escalation":true, "aligne

j loop2

Static validators (examples) :

a) Schema : (all required fields present)

b) ISA legality

c) Alignment : (64B stride on 64B line)

d) Hazards: (forward progress: CAS loop has retry exit; watchdog present).

Expected behavior (why this test exists)
a) Contention + IPl can reorder downgrade/writeback timing, occasionally exposing a stale read or unexpected latency spike - exactly the corner you
want to probe on silicon.

Experimental Setup & Hardware (RISC-V)

1. Board
VisionFive 2 (StarFive JH7110) — quad-core RV64 (SiFive U74-class), shared L2 = 2 MB, 64-byte cache lines, 4-8 GB LPDDR4, Linux-capable.

2. Memory & ISA
RV64GC, Sv39 paging, cacheable, aligned to line size.

3. Interrupts & 1/O
CLINT (MSIP/MTIMECMP) + PLIC for periodic interrupts; UART/JTAG for control.

4. Harness
UART/JTAG loader, watchdogs/timeouts, capture counters (LLC misses/invalidates, L2 writebacks) and logs/traces; auto-archiving.

5. Stimulus generation (LLM)
On-prem code-tuned (=7-13B) model; RAG over RISC-V unprivileged/privileged specs & memory model; JSON-schema outputs with opcode whitelist.

6. Validators (pre-silicon gate)
Schema/ISA legality, alignment/privilege, fences; coherency/memory-model checks.

7. Runplan
Param sweeps (STRIDE = {64,128}, ~1e5 iters), 12 seeds, ~50k runs total; KPIs tracked (runnable%, coverage lift, time-to-hypothesis).

LLM Choice & RISC-V Grounding: From Model

to Meaningful Tests

Which LLM ?
On-prem, code-tuned ~7-13B model (self-hosted, quantized) — optimized for code/test generation and privacy.

Why this model (selection basis) ?
a) Chosen by KPIs, not brand: compile/runnable %, coverage lift, time-to-hypothesis, latency/cost.
b) Small code model met KPls; bigger dosent move metrics for this task.

How to teach RISC-V (no full retrain) ?

a) RAG grounding with RISC-V ISA/memory-model excerpts + platform facts (line size, regions).
b) Constrained decoding to JSON schema + whitelisted opcode catalog.

c) Optional small LoRA on internal examples (plans - ASM style), not required.

Where RISC-V architecture came from ?
Open ISA: public RISC-V specs (unprivileged/privileged, memory model) + litmus tests; vendor TRMs for board specifics.

Behavior
a) Ungrounded: occasional illegal opcodes/privilege slips.
b) With grounding/constraints: compile ~98%, runnable ~95%, higher test diversity.

Do tests match expectations?
a) Yes—generated parameterized multi-core sequences that passed validators and exercised targeted coherency corners.

Benefit vs traditional flow
a) Faster test ideation with higher novelty per hour; integrates with CRIG; engineers spend time on triage, not hand-writing tests.
b) Sign-off unchanged: protocol checkers + human review remain the gate.

RAG-First Test Generation (No Retraining):

Grounded LLM for RISC-V

Model (how to use it)
a) Self-hosted, code-tuned small LLM (~7-13B); quantized; JSON/grammar-constrained decoding.
b) KPI focus : runnable%, coverage lift, latency.

Grounding (RAG) doc set 1 #Plan output

a) RISC-V unprivileged/privileged ISA, memory model, litmus notes. |
b) Board/TRM facts (line size, cacheability/shareability), harness API.

"meta": {"isa": "Rv64", "

"targets": [{"addr":

RAG flow (no retrain) 5 | "ops™: |

a) Chunk & index docs (x512-1024 tokens). : "core": @, "op": "CAS_LOOP", "addr

b) At request time, retrieve top-k (3—5) relevant snippets. "core": 1, "op": "STORE_LOOP", "addr":

c) Inject snippets into prompt as GROUNDING with short citations.

ip)

Prompt template (core pieces) HRCOILS RS 2 29000

a) SYSTEM: You generate RISC-V coherency stress plans (JSON only).

b) GROUNDING: (retrieved ISA/memory-model/TRM excerpts).

c) TASK: 4 cores; induce downgrade/writeback races; U-mode only; fences allowed.
d) SCHEMA: fields + opcode whitelist, legal address window, allowed STRIDE={64,128}.
e) CONSTRAINTS: no privileged ops; timeouts/watchdogs required.

After the LLM
a) Static validators > assemble/link - mini-sim/litmus gate - board run.
b) Promote only if runnable%“*, new coverage, useful repro; archive prompt/plan/logs.

Why RAG first
Adapts with spec changes; no heavy training; fewer hallucinations; auditable.

", "barrier": "FENCE RW RW", "iters": 100000},
, "stride": [64,128]

RAG-First Debug Acceleration (No Retraining):
Long Trace - Evidence-Backed Summary

Model (how to use it)
a) Self-hosted long-context LLM (or chunk + RAG if context is tight); JSON/grammar-constrained outputs with evidence line refs.

b) KPI focus: triage time {,, summary accuracy 4", ops latency <60s/run. ¥ Expected LN output

Grounding (RAG) doc set .
a) RISC-V memory model, coherency rules, interrupt/privilege notes. :r”"*id:i "rv64-poc-801237",
b) Board/TRM timing/IRQ paths, harness semantics, logging dictionary. SRl

"name": "workload",
Flow (logs = summary + clusters) "start": 8200,
a) Parse & segment logs into epochs (boot - workload - fail). "end®: 17858, N . : . -
. . summary": "L2 writebacks spike; invalidates precede CAS retry storms on hart@; IRQs on hart3 overlap retries."”,
b) Retrieve top-k spec/TRM snippets per epoch (RAG). "citations": [17102, 17115, 17638]
c) LLM summarize each epoch to JSON with line citations + confidence.
d) ML sidecar: e
A name": "failure",
- solation Forest on counters = anomaly scores. "start": 17851,
- HDBSCAN on features - failure clusters + labels. ‘end": 18010,

"summary": "Progress stalls on hart® after repeated LR/SC failures.”,
"citations™": [17872, 17904]

e) Human-in-loop reviews one-pager (summary + cluster + cited lines) = assigns owner.

Prompt template (core pieces) 1

a) SYSTEM: Summarize RISC-V failure logs with citations. Output JSON only. ‘anomalies®: [o R

b) GROUNDING: (retrieved memory-model/TRM/harness snippets). e P e, s R ey [P e
c) INPUT: epoch log chunk (+ counter slice). I

d) SCHEMA: fields: epochs[], anomalies[], hypotheses|], citations[]. “hypotheses™: [

"text": "Downgrade/writeback race under IRQ preemption impacts LR/SC progress on harte.",

Measured impact "confidence": 0.74,

a) Triage time (median): 6.5h > 2.4h. "evidence_lines": [17115, 17638, 17872],

b) stable clusters: 5_7; top_3 ~ 82% Of faIlS. related_specs": ["RV memory model (acq/rel)", "Interrupt/privilege interaction notes"]
c) Anomaly detection: precision = 0.86, recall # 0.78 (spot-checks). l,

d) Per-run latency: <60s (Chunked p|pel|ne)) "routing": {"cluster_id": "C-3", "owner_suggested": "Cache/Coherency"}

Why RAG first
Keeps summaries aligned to actual spec/board behavior; transparent & auditable; avoids heavy fine-tuning.

Results & Head-to-Head vs Traditional

1. KPlsummary
a) Coverage (unique interleavings, CRIG=100): LLM+Val 136 (+36%), Hybrid 145 (+45%)
b) Rare-race hits (/1k runs): Directed 1.2 - CRIG 3.4 - LLM+Val 6.1 - Hybrid 7.0
c) Runnable yield (generated tests): Raw LLM 72% - 95% with validators
d) Debug triage (median to first hypothesis): 6.5h - 2.4h (LLM summaries + ML clustering)
e) Per-run analysis latency (logs): <60s (chunked + RAG, on-prem)

Rare interleavings Medium High Highest
Coverage (CRIG=100) ~70 100 136 145
Runnable yield (gen’d N/A N/A 95% 95%
tests)

Debug triage time 6.5h (manual) 6.5h (manual) 2.4h 2.4h

2. Why this matters
a) More novel stress with less hand-authoring.
b) Fewer flakies (validator sandwich) = better bench utilization.
c) Faster, evidence-backed triage > engineers validate fixes sooner.

Lab PoC; metrics are measured/rounded. GenAl/ML augment existing flows; sign-off remains with protocol checkers + human review.

Key Takeaways & Next Steps

1. No retraining used: RAG + JSON constraints + validator sandwich on a self-hosted, code-tuned small LLM (~7-13B).
2. It worked: more coverage, 95% runnable, triage hours - minutes.

3. Retraining optional: add light LoRA only if KPIs stall; facts stay in RAG.

Use these without retraining (on-prem):
1. Test generation (single-GPU): Code Llama 13B Instruct, Qwen-Coder 7B, DeepSeek-Coder ~7B, StarCoder2 ~15B.

2. Long-log summaries: long-context self-hosted (e.g., Llama-3/70B Instruct) or do chunk + RAG.

	Slide 1: Applying Generative AI in Post-Silicon Validation: Real Use Cases and Technical Insights
	Slide 2: AGENDA
	Slide 3: Acronyms You’ll See in This Talk
	Slide 4: Post-Silicon Reality: Bugs That Escape Pre-Silicon
	Slide 5: Limits of Traditional Validation (CRIG, Directed, Workloads)
	Slide 6: GenAI’s Role in the Flow (Augment, Don’t Replace)
	Slide 7: LLM vs. Classical ML : When to Use Which
	Slide 8: Model Choice Playbook: On-Prem vs Managed, Context, Code
	Slide 9: Architecture & Guardrails for Safe Adoption
	Slide 10: Stimulus Generation Pipeline: Prompt → Plan → ASM → Validators
	Slide 11
	Slide 12: Experimental Setup & Hardware (RISC-V)
	Slide 13: LLM Choice & RISC-V Grounding: From Model to Meaningful Tests
	Slide 14: RAG-First Test Generation (No Retraining): Grounded LLM for RISC-V
	Slide 15: RAG-First Debug Acceleration (No Retraining): Long Trace → Evidence-Backed Summary
	Slide 16: Results & Head-to-Head vs Traditional
	Slide 17: Key Takeaways & Next Steps
	Slide 18: Q&A

