

Overview

- 1. The Verification Gap
- 2. AI Agents for DV
- 3. Lessons Learned Scaling AI Debug

70%

...of the design cycle is spent on verification.

It is the #1 bottleneck in chip design.

Verification is Only Getting Harder

- 1. **Shorter timelines:** Need to get to market faster
- 2. **More complex designs:** Chip design complexity is growing exponentially
- Never enough DV bandwidth: With thousands of tests running every night, DV teams struggle to keep up w/ finding the needle (chip-killing bug) in the haystack (hundreds of failing tests)

The Problem: It's a massive data analysis challenge, every single day.

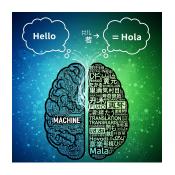
Why Bring AI into Verification?

Human Engineers: Excel at deep, creative analysis of a *single* complex problem.

ML Algorithms: Excel at finding subtle patterns across *thousands* of datasets simultaneously.

The Goal: Combine human expertise with AI's scale to find bugs faster.

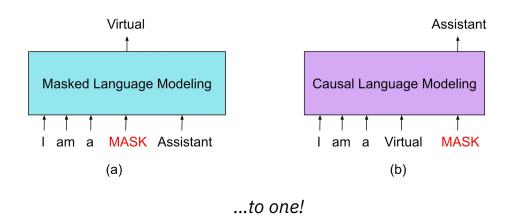
Classic ML: Limitations


Deep learning is powerful, but...

- 1. Doesn't generalize well* CPU vs. GPU vs. HBM vs. NoC...
- 2. Collecting data is hard IP is expensive and sensitive
- 3. Labeling data is hard requires highly skilled engineers
- 4. Constant distribution shift chip 1.0 vs 1.1 vs 2.0 ...

The Next Step: Foundation Models and GenAI

Can we formulate a task that is **easy to verify**, **easy to collect data for**, and is a **building block** for everything downstream we want to do?



many tasks...

The Next Step: Foundation Models and GenAI

Can we formulate a task that is **easy to verify**, **easy to collect data**, and is a **building block** for everything downstream we want to do?

Bronco AI

Reasoning Models & Agents

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

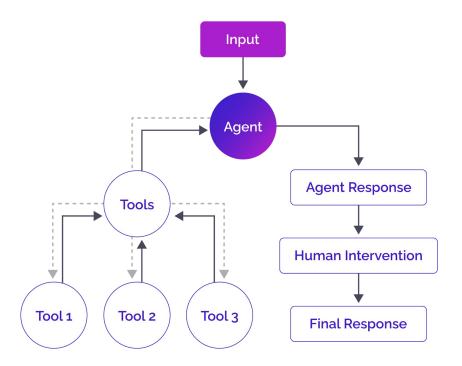
Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain-of-Thought Prompting

Model Input


Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Agents Generalize Where Models Can't

Deep learning is powerful, but...

agents take debug to the next level!

- 1. Doesn't generalize well* CPU vs. GPU vs. HBM vs. NoC...
- 2. Collecting data is hard IP is expensive and sensitive
- 3. Labeling data is hard requires highly skilled engineers
- 4. Constant distribution shift—chip v1 ≠ chip vN

Agents Generalize Where Models Can't

Agents work better because...

- 1. Strong ability to generalize trained on internet-scale code + problem solving
- 2. Steerable by <u>natural language</u> easy for users to steer
- 3. Learn <u>metadata</u>, not data don't overfit
- 4. Can handle and <u>forget</u> context addresses IP/security issues

Bronco Platform: Accelerate DV Flows End-to-End

Verification Planning

<u>Man-weeks</u> of verification planning done in minutes.

Testbench Bring-Up

10x faster bring-up of new UVM TBs with Bronco's specialized DV agents.

Simulation Debug

Failure-to-Fix in minutes on

100GB+ waveforms with

Bronco Agentic Debug.

Secure Your IP

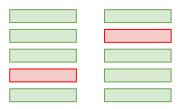
Deploy with complete security with **on-prem** and **bring-your-own-AI** options.

Ready on Day 1

Easy integration with customer EDA flows, and without custom AI training.

Self-Improving

AI-powered learning that transfers across tasks, bugs, and projects.


Bronco – AI Debug Agents at Scale

The moment a simulation fails, Bronco:

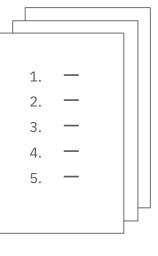
- 1. Decides how to investigate
- 2. Executes standard DV actions
- 3. Works until it finds the bug or hands off a ticket to a human

Inputs

Simulation Runs (Waves & Logs)

Project Context

- Paths to RTL, UVM, specs, docs etc.
- Input/Feedback


Bronco AI

Routine DV Work

- 1. Makes playbook for how to debug a given failure.
- 2. Extracts specifics from the project context.
- 3. Performs debug and remembers for next time.

Outputs

Root Causes & Tickets

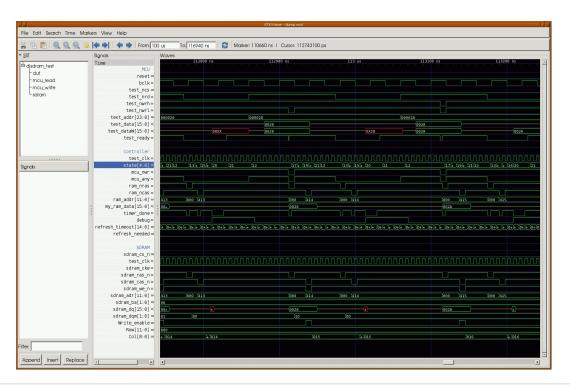
Real Results - Next Generation ASIC

New error signature on a subsystem-level UVM test

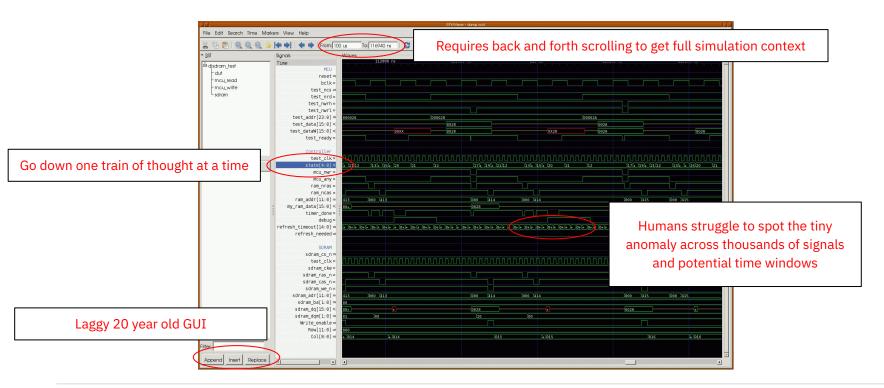
- After 30 minutes
 - Bronco indexed/adapted to new regression
 - Agent formed understanding of the design (200,000+ lines of RTL)
 - Common failure patterns understood

Real Results - Next Generation ASIC (cont.)

New error signature on a subsystem-level UVM test

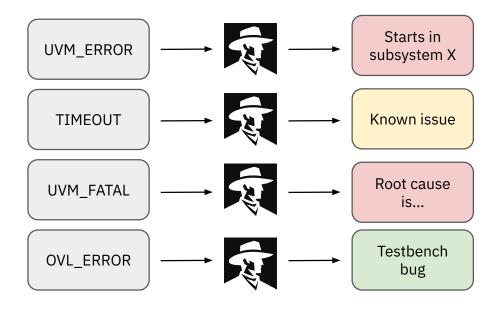

- After 15 minutes
 - Agent analyzed run log (100,000+ lines), and waves (~10GB FSDB)
 - Agent identified root cause nested under 4 levels of hierarchy
 - DV lead estimated they would have spent 4 hours on debug, new engineer may have spent 3 days

Bronco AI - Confidential 16

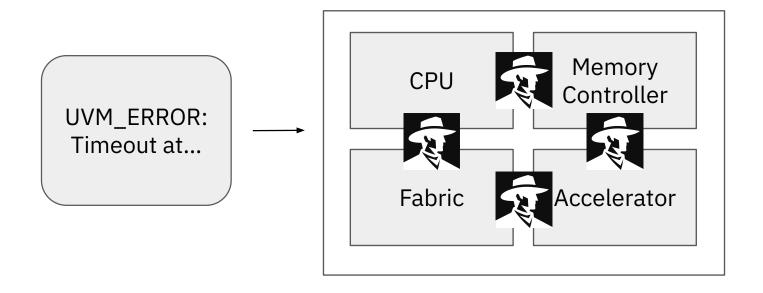

Lessons Learned

- 1. AI Agents require rethinking human actions.
- 2. AI Agents deliver value through scale.
- 3. Fast-time to value requires continuous learning.

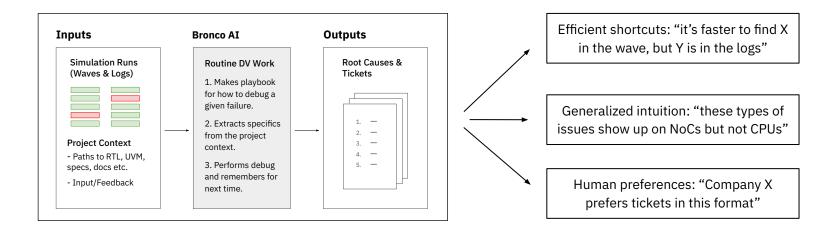
Reimagining Waveform Debug



Reimagining Waveform Debug


AI Agents Deliver Value Through Scale

Process many failures at once on each regression



AI Agents Deliver Value Through Scale

Check many things at once on each failure.

Building Systems that Learn

