Ultra-fast Al Inference at the Edge Frank Thiel CTO of Gigantor Technologies Silicon Catalyst Advisor **CEO** of Kolvenier Solutions

About Me

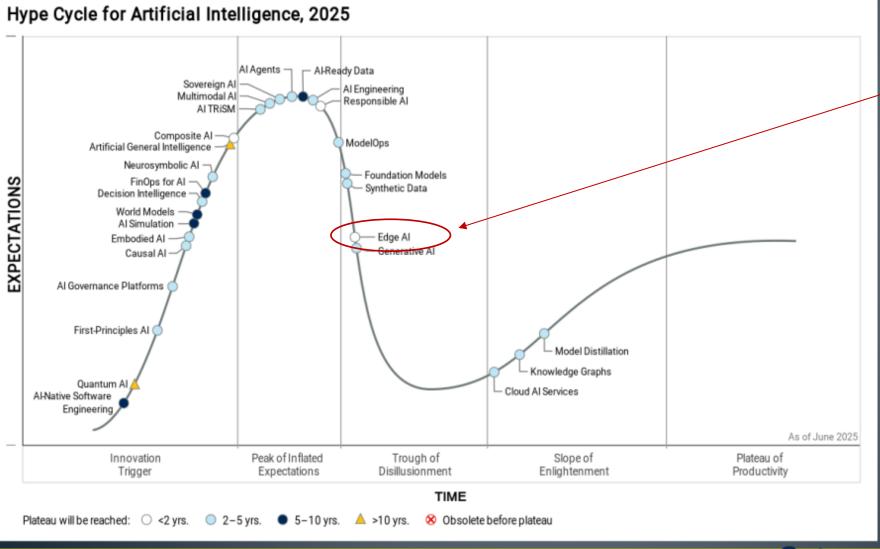
- Advisor for Silicon Catalyst
- CTO of Gigantor Technologies
 - High speed Al edge vision company
- CEO of Kolvenier Solutions
 - Specializing in guiding startups
- Over 4 decades in the semiconductor industry
 - Executive both as a GM and VP of R&D
 - Microsemi, Zarlink, Legerity, AMD, Tl, IBM
- Hold 18 patents and am a published author.
- Started my career as a design engineer at Texas Instruments

Business & Technology Consulting

Avisor → Member company

- Silicon Catalyst is the only incubator solely focused on semiconductors
- Being an advisor gives broad exposure to many innovative technologies and some of the most creative minds in the industry
- Like me, several advisors of moved into management roles with member companies

2025 Gartner Hype Cycle for Al



Edge Al reaching disillusionment – the precursor to productivity

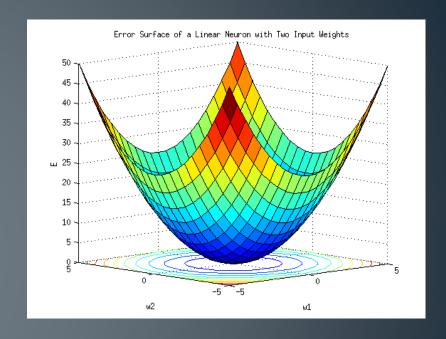
Al Training -> Al Inference

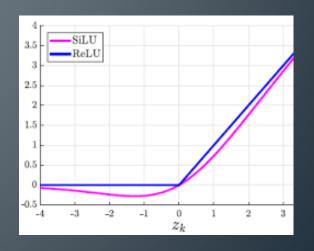
- Hyperscalers and Al players are spending billions of dollars on Al infrastructure/data centers
 - Amazon, Google, Microsoft and Meta spending more than \$300 billion in 2025
 - OpenAl and Softbank have announced plans for investments of \$500 billion over the next four years
- Training demand will be front-loaded into the next 2-5 years
- 80% of the demand now is for large-scale training facilities with only 20% on inference
- ullet By 2030/32 we expect to see the ratio reversed
- Training is a cost the ROI is from inference

https://www.alvarezandmarsal.com/insights/rethinking-ai-demand-part-1-ai-data-centers-are-experiencing-surge-training-demand-what# https://epoch.ai/blog/can-ai-scaling-continue-through-2030 https://fvivas.com/en/basic-guide-to-computer-vision-ai/#google_vignette

Inference vs Training

- Training typically requires full precision weights, biases, and models along with nuanced activation functions
 - FP32 weights and biases
 - Sigmoid Linear Unit (SiLU or Swish), Gaussian Error Linear Unit (GELU), etc.
 - Batch normalization
 - Iterative gradient descent and backpropagation runs
 - Power intensive!
- Inference can use quantification and simplification
 - Reduced precision (INT8, or even INT4 weights and biases)
 - Bind normalization into the weights and biases
 - Simpler (less linear) ReLu activation

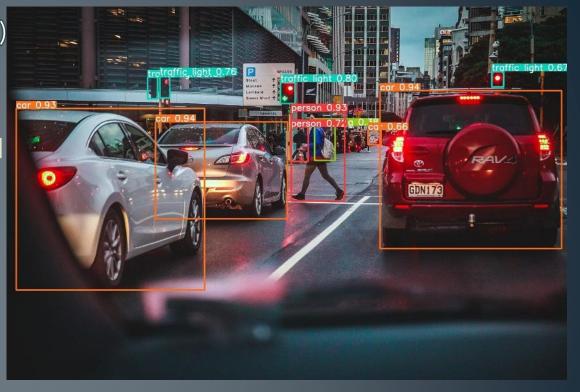




Vision Inference

Example: YOLO (You Only Look Once)

- Most popular multi-object tracking model today
- Anchored bounding boxes with "objectness" and class probabilities



- Faster inference speed and multiple scales/depthsof-field allow more objects to be tracked
 - More frames per second means better movement tracking
- Low power operation allows deployment in mobile devices

Convolutional Neural Networks (CNN)

- YOLO, ResNet and other popular vision models rely on CNNs
 - Different than Large Language Models like ChatGPT and Gemini
- Fundamental equation

$$o_{r,c,m} = b_m + \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{n=1}^{N} w_{i,j,n,m} \times a_{r+i-2,c+j-2,n}$$

 Requires billions of Multiply-Accumulate (MAC) operations and fast, tightly-coupled memory (HBM, SRAM, etc.)

VOLOQ Madal	GFLOPs (Billion FLOPs) per 640x640 frame	Estimated MAC Operations	AA - d - l Down-on- + / AA: :)
YOLOv8 Model	040x040 frame	(Billion MACs)	Model Parameters (Millions)
YOLOv8n (Nano)	8.7	≈ 4.3 5	3.2
YOLOv8s (Small)	28.6	≈14.3	11.2
YOLOv8m (Medium)	78.9	≈39.45	25.9
YOLOv8I (Large)	165.2	≈82.6	43.7
YOLOv8x (Extra Large)	257.8	≈128.9	68.2

Some edge inference hardware approaches

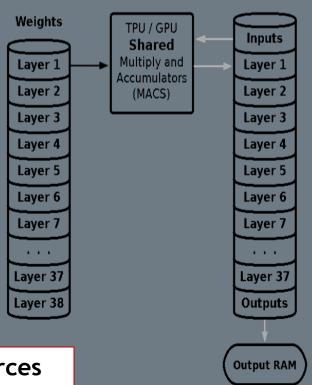
- Hailo -
 - Structure-Defined Dataflow with data pipeline for each task
- Groq
 - Introduced LPU in 2016, the first chip purpose-built for inference
- Mythic
 - Analog compute-in-memory purpose-built for Al inference
- NVIDIA
 - Single instruction, multiple threads (SIMT) added to GPUs
 - CUDA, Tensor cores
- EdgeCortix
 - Dynamic neural accelerator (DNA) engine, adding on-chip SRAM
- SiMa
 - MLA enhanced with hardware blocks to accelerate GenAl computations
- Gigantor
 - Fully deterministic hardware parallel pipeline for ultra-fast Al inference at the edge

Gigantor's Differentiators

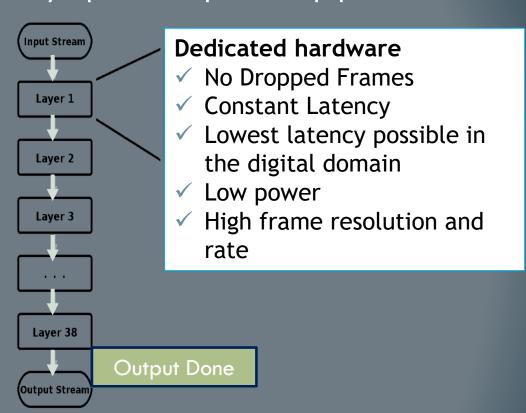
Features

GPU/TPU challenges

Von Neumann bottleneck



Fully optimized parallel pipeline



Shared hardware resources

- Inconsistent latency
- May drop frames
- × Higher power demands
- × Speed limited

https://www.electronicdesign.com/technologies/embedded/article/21156009/gsitechnology-breaking-the-von-neumann-bottleneck-a-key-to-powering-next-gen-ai-apps

Thank You

Frank Thiel

CTO of Gigantor Technologies
Silicon Catalyst Advisor
CEO of Kolvenier Solutions

Email me at frank@kolvenier.com

