


About Me

* Adpvisor for Silicon Catalyst

* CTO of Gigantor Technologies
* High speed Al edge vision company

* CEO of Kolvenier Solutions
* Specializing in guiding startups

* Over 4 decades in the semiconductor industry
* Executive both as a GM and VP of R&D
* Microsemi, Zarlink, Legerity, AMD, Tl, IBM

* Hold 18 patents and am a published author.

* Started my career as a design engineer at Texas Instruments
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Avisor > Member company

* Silicon Catalyst is the only incubator
solely focused on semiconductors

it's about what's next.®

* Being an advisor gives broad
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exposure to many innovative
technologies and some of the most

creative minds in the industry
m

i ity * Like me, several advisors of moved

info management roles with member
companies




2025 Gartner Hype Cycle for Al

Hype Cycle for Artificial Intelligence, 2025
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Al Training — Al Inference
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Hyperscalers and Al players are spending billions of dollars
on Al infrastructure /data centers

* Amazon, Google, Microsoft and Meta spending more than $300
billion in 2025

* OpenAl and Softbank have announced plans for investments of
$500 billion over the next four years

Training demand will be front-loaded into the next 2-5 years

80% of the demand now is for large-scale training facilities
with only 20% on inference

By 2030/32 we expect to see the ratio reversed

Training is a cost — the ROl is from inference

https:/ /www.alvarezandmarsal.com/insights/rethinking-ai-demand-part- 1 -ai-data-centers-are-experiencing-surge-training-demand-what#

https://epoch.ai/blog/can-ai-scaling-continue-through-2030

https://fvivas.com/en/basic-guide-to-computer-vision-ai/#google_vignette




Inference vs Training

of a Linear Meuron with Two Input Weights

* Training typically requires full precision weights, biases,
and models along with nuanced activation functions
* FP32 weights and biases

* Sigmoid Linear Unit (SiLU or Swish), Gaussian Error Linear Unit
(GELU), etc.

Batch normalization

lterative gradient descent and backpropagation runs

Power intensivel

* Inference can use quantification and simplification
* Reduced precision (INT8, or even INT4 weights and biases)
* Bind normalization into the weights and biases

* Simpler (less linear) RelLu activation

https: / /upload.wikimedia.org /wikipedia /commons /6 /6d /Error surface of a linear neuron
with two input weights.png




Vision Inference

Example: YOLO (You Only Look Once)

* Most popular multi-object tracking model today

* Anchored bounding boxes with “objectness” and
class probabilities

* Faster inference speed and multiple scales/depths-
of-field allow more objects to be tracked

* More frames per second means better movement
tracking

* Low power operation allows deployment in mobile
devices




Convolutional Neural Networks (CNN)

* YOLO, ResNet and other popular vision models rely on CNNs

* Different than Large Language Models like ChatGPT and Gemini

* Fundamental equation
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* Requires billions of Multiply-Accumulate (MAC) operations and fast, tightly-coupled
memory (HBM, SRAM, etc.)

GFLOPs (Billion FLOPs) per

Estimated MAC Operations

YOLOv8 Model 640x640 frame (Billion MACs) Model Parameters (Millions)
YOLOv8n (Nano) 8.7 =4.35 3.2
YOLOvS8s (Small) 28.6 ~14.3 11.2
YOLOvV8m (Medium) 78.9 =39.45 25.9
YOLOvS8I (Large) 165.2 ~82.6 43.7
YOLOvS8x (Extra Large) 257.8 ~128.9 68.2




Some edge inference hardware approaches

* Hailo -
* Structure-Defined Dataflow with data pipeline for each task

roq * Groq

* Introduced LPU in 2016, the first chip purpose-built for inference

MYTHIC " N

* Analog compute-in-memory purpose-built for Al inference

NVIDIA. * Single instruction, multiple threads (SIMT) added to GPUs
* CUDA, Tensor cores

E DGEC@RT'X * EdgeCortix

* Dynamic neural accelerator (DNA) engine, adding on-chip SRAM
* SiMa

* MLA enhanced with hardware blocks to accelerate GenAl computations

e Gigantor
* Fully deterministic hardware parallel pipeline for ultra-fast Al inference at
the edge




Gigantor’s Differentiators

GPU/TPU challenges

Von Neumann
bottleneck

Shared hardware resources
x Inconsistent latency

x May drop frames

x Higher power demands

x Speed limited

https:/ /www.electronicdesign.com/technologies/embedded /article /21156009 /gsi-
technology-breaking-the-von-neumann-bottleneck-a-key-to-powering-next-gen-ai-apps

Fully optimized parallel pipeline

Dedicated hardware

v No Dropped Frames

v Constant Latency

v Lowest latency possible in
the digital domain

v Low power

v High frame resolution and
rate
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