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Where do we start?

Computer Vision

Involves enabling 
machines to interpret 
and make decisions 
based on visual data

Natural Language 

Processing (NLP)

Focuses on the interaction 
between computers and 
human languages

Machine Learning

The study of computer 
algorithms that improve 
automatically through 
experience and data

Robotics

Deals with the design, 
construction, operation, and 
application of robots

Deep Learning
A subset of machine learning 
that uses neural networks with 
multiple layers to model and 
solve complex problems

Neural Networks

Computer systems modeled 
after the neural connections 
in the human brain

Cognitive Computing

Mimics human thought 
processes and augments 
human cognition

Expert Systems

Software systems that emulate 
the decision-making ability of a 
human expert in a particular 
domain

Knowledge Representation 

and Reasoning

Focuses on representing 
knowledge in a form that a 
computer system can utilize 
to solve complex tasks

AI

Our focus

Only a subset of AI

How does AI work?

How do I work 

with AI?

How do I use AI in

engineering? 
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How does

AI work?
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Ask anything

"Why couldn't the bicycle 

stand up by itself? It was 

two-tired."

Ask AI

Write a funny joke.
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How can a computer 

write a joke?
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The fundamental problem

Computers speak in numbers, not English.

Human language has 

nuance and context

[ 10445, 7846, 956, 279,   

   36086, 2559, 709 ]

Machine language has 

numbers and vectors

Natural Language 

Processing (NLP)
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Chopping up language

AI parses words into tokens.

15836,  71935,        4339,      1139,      11460, 13

Tokens

A token is a unit of 

text, like an entry in a 

dictionary, but it has 

no meaning.
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Embeddings

0     1       2      3      4      5      6      7      8      9    10

10

9

8

7
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3

2

1

0

A
g
e

Gender

An embedding is a 

token's address into 

'meaning space'.

adult womanman

grandfather

boy child girl

infant

boy (1,2) woman (9,7)

man (1,7) girl (9,2)

adult (5,7) infant (5,1)

child (5,2) grandfather (1,9)

AgeGender



C
o
p
y
ri
g

h
t 

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll 

R
ig

h
ts

 R
e
s
e
rv

e
d

9

Word relationships

king

queen

sad

happy

banana

Score Meaning Similarity

1 Same direction High king & queen

0 Unrelated
None king & banana

-1 Opposite direction Low happy & sad

Angle and direction 

between vectors 

encode similarity and 

relationships
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Attention to context

She rode the train.

She trained the dog.

She broke the record.

She broke the record player.

"Attention" means 

looking at a word's 

context in a sentence. 

(verb)

(noun)

(related)
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Meaning has many dimensions

She rode the train .

8100, 41761, 279, 5542,13Tokens:

[ … ][ … ][ … ] [ -1.7465770244598389,   

  1.24246084690094, 

  -4.810368537902832,   

  0.3165740668773651, 

  0.9620928764343262,

  … ]

[ 0.39886564016342163, 

  -0.4046991765499115, 

  -3.179293632507324, 

  0.20834633708000183, 

  1.0488201379776, 

    … ]

Embeddings:

(768 length vector)



C
o
p
y
ri
g

h
t 

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll 

R
ig

h
ts

 R
e
s
e
rv

e
d

12

LLM

(Transformer)

She rode the …

Embeddings

[ 0.39886564016342163, 

  -0.4046991765499115, 

  -3.179293632507324, 

  0.20834633708000183, 

  1.0488201379776, 

  1.414209246635437, 

  … ]

train       0.08003556728363037

 bus         0.07108145207166672

 bike        0.024848591536283493

 elevator  0.019790327176451683

 back       0.01585303619503975

Predicted probability

She rode the train

Large language models
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Write a funny joke.

LLM

Why

Write a 

funny 

joke.

Ollama (model runner)

Iteration 1

Achieving thought

How?

couldn't

LLM

Iteration 2

the

LLM

Iteration 3

LLM

bicycle

Iteration 4

LLM

…

Iteration 5 "Why 

couldn't 

the 

bicycle 

stand up 

by itself? 

It was 

two 

tired."

LLM

<eos>

…

End of stream

Iteration N

"Why couldn't the bicycle stand 

up by itself? It was two-tired."
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A "transformer" transforms our language into 

a new representation that captures meaning, 

context, and relationships.

Generative
Pre-trained  =  GPT
Transformer

See https://poloclub.github.io/transformer-explainer/
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train       0.08003556728363037

 bus         0.07108145207166672

 bike        0.024848591536283493

 elevator  0.019790327176451683

 back       0.01585303619503975

LLM

(Transformer)
She rode the train

Hallucinations

temperature smaller → more accurate

larger   → more creative

top k picks from top k choices

top p picks from at least p

She rode the back

"Hallucination" is when an output is 

valid but factually incorrect based 

on its training data or input context

(temp = 0.2)

(temp = 0.8)
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Example
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Working 

with AI
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Parameters are 

weights

More weights … 

→ more brain power

→ more memory

→ more GPUs

LLMs

Key factors 

of an LLM:

Parameters

Licensing

Tool support

GPUs



C
o
p
y
ri
g

h
t 

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll 

R
ig

h
ts

 R
e
s
e
rv

e
d

19

Chaining

A "chain" is a sequence of 

steps that process input data 

through components like 

prompts, models, and memories.

Chat Model (LLM)

Memory
Vector

Store

Embeddings

Tools

LangChain

Framework

An example chain of steps

LLM LLM
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Workflows and agents

Agent (Agentic)

Workflow

Human interaction

AI decides

An "agent" 

independently decides 

what it will do next.

LLM

LLM

LLM
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What can I help with?

Prompt

Similarity

search

Document stores (RAG)

M
a

t
c

h
e

s
Vectors store context and 

meaning so better than text

"RAG" refers to 

retrieval augmented 

generation.

Generate APB properties

Local 

Sources

0.728, 0.3298, …

Tokenize /

Vectorize

PDF

TXT
TXTTXT

OCR

Vector

Store

AMBA Spec

Combine

…

New 

Prompt

Query

LLM
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Prompting

Task – always start a task with a generate verb

Context – ask yourself 3 questions :
What's the user's background?

What does success look like?

What environment are you in?

Exemplars – give examples of good and bad templates

Persona – who do you want the AI to be?

Format – how does the result look like?

Tone – indicate the feeling – casual, formal, witty, etc.
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https://host + api-key

Connecting to AI

Public Internet

Script
VPS

IT Servers

Desktop

https://url + api-key
http://host:port

http://localhost:1234

Beware! Data is not private!

Models, DBs, Tools

Private and secure.

Private Intranet

http://

http://

http://

Chat

App

Slow

Fast

Fast
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Model Context Protocol (MCP)

https://url + api-key

RESTFUL API

GET

POST

PUT

DELETE

API

MCP

https://url + api-key

https://url + api-key

Resources

Tools

Prompt templates
https://url + api-key

MCP Server

AI queries MCP 

for services. 

No hardcoded APIs!
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AI for 

Engineering
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Use modes

RTL/HDL 

Generation
Generate synthesizable RTL code from 

high-level descriptions + specifications

Testbench 

Generation
Create verification environments, 

stimulus, and test vectors

SVA/Assertion 

Generation
Create SystemVerilog Assertions 

(SVA) to cover corner cases

Specification 

Summarization
Read long design specs and produce 

concise summaries or design outlines

Documentation / 

Commenting

Generate design documentation, 

comments, or explanations for existing 

RTL

Bug / Issue Detection Analyze RTL/testbench code to find 

bugs or inconsistencies

Performance / Timing 

Estimation

Predict timing paths or bottlenecks 

based on RTL patterns

Design Rule Checking Check RTL against coding standards 

or design rules

Test Coverage Analysis Evaluate coverage metrics and 

suggest missing tests

Debug Assistance Analyze simulation logs and highlight 

probable failure causes

Specification 

Consistency Checking

Compare design spec vs 

RTL/testbench to find gaps or 

contradictions

Generative AI

Analytical / Assistive AI
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Where do I begin?

Ask Chat

How do I install a local LLM?

How do I use it in docker?

Write a script using Ollama

How do I enable my GPU?

Add RAG to my script

How do I install an AI model?

Chat with AI to get 

started using AI.
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Install GPU 

drivers

Install a 

framework

Local LLM install

Install the

LLM model
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Experiment with LLMs

ID E
GO1

    1

GO2

G   1

Reset   1

 tart   1

 tart   0

I am a hardware engineer and I need to generate a finite state machine written in 

SystemVerilog. There are 3 states: IDLE, GO1, and GO2. The state machine 

transitions to IDLE on 'Reset' = 1. When the 'Start' = 1, the state machine 

transitions to GO1 and the output 'F' = 1. When in the GO1 state, the state machine 

transitions to GO2 and the output 'G' = 1. The defaults for 'F' and 'G' are 0. When in 

the GO2 state, the state machine transitions back to IDLE. Generate this state 

machine as a SystemVerilog module.
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Generative AI LLMs are already trained in 

hardware description languages.
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Look, UVM!
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Summarization
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Scripting a chat bot

Use framework

Specify LLM

Get prompt

Ask LLM

Print response
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Equipping your chat bot
RAG

Tools

Memory
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Agentic flow

A generative adversarial network 

(GAN) is where a generator is critiqued by 

a discriminator to make a better response.  
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An engineering example

Can we use AI to group 

common failure modes?

Log file triage
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AI limitations

LLM

LLM limitations:

• Bad at scale 

(too many log files)

• Bad at long noisy text

• Distracted by random,

test-specific values

• RAG helps retrieval, but ... 

messy raw data is messy 

retrieval

• Better at semantic than 

symbolic analysis

Solution

Pre-process with a script

• Filter random, test-specific values

• Extract error signatures

• Normalize into a compact form:

[FAIL] parity_mismatch in module A

[FAIL] addr_decode_error in module B

[FAIL] timeout waiting for handshake in module C

Cluster and categorize messages

• Use embeddings to group similar errors

• Use sentence level instead of word level

• Return signature groupings

Generate a report of results 

• Simple reporting script code

Summarize with an LLM

• Summarize the signature groupings
in the desired format

Logs
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Results
Results OK, but …

easier (and faster) 

with a regular script

Output

CSV
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EDA tools

`

o
p
e
n
a
i/g

p
t-4

o

EDA tools 

call LLMs 

to help 

with tasks

Siemens EDA Questa One SFV. Screenshots used by permission.
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AI or 

not AI?
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 What it's good at …  What it's bad at …

 Understanding language  Understanding context deeply

 Summarization  Common sense reasoning

 Generating content quickly from its training  Creativity and originality

 Automating repetitive tasks

"Chat, summarize AI"
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Recommendations with AI

 Avoid …  FYI …

 Blind trust in its outputs  More resources → better performance

 AI on non-GPUs & small amounts 

     of GPU memory

 Reasoning models mainly help with 

      math & coding

 Lack of human oversight
 Quantized models may give faster 

      results

 Non-private or insecure AI
 Use Vision Large Language Model 

      (VLM) for text + images

 Over-reliance on AI  LLMs are not great for parsing
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Practical uses of AI

 Task  How AI Can Help

 Automate code generation Generate RTL, testbenches, and assertions from specs.

 Chat-driven design assistant Convert design intents into RTL and testbenches via chat.

 Verification automation Summarize simulation results and flag anomalies.

 Design review and refactoring Detect issues and suggest improvements in HDL code.

 Continuous integration support Auto-comment or review on check-in.
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SoC Design & 
Verification

FPGA & Hardware 
Design

Embedded Software
& Arm

Python, AI & Machine Learning

» SystemVerilog » UVM » Formal
» SystemC  » TLM-2.0

» VHDL  » Verilog  » SystemVerilog  
» Tcl  » AMD

» Emb C/C++ » Emb Linux » Yocto » RTOS 
» Security » Android » Arm » Rust » Zephyr 

» Python » Edge AI » Deep Learning
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New Design and Verification courses

Advanced Formal Verification

➢ equips you to tackle complex verification challenges by taking full advantage of 

formal verification in your engineering projects.

➢ forms a complete learning path with Essential Formal Verification course, which 

gives you a solid, practical grounding in formal verification.

SystemVerilog for New Designers: Self-Paced course

➢ get project-ready for FPGA or ASIC design, including RTL synthesis, block-level 

test benches, and FPGA design flows.

➢ high-quality content developed by expert instructors - now in self-paced format.

IC Verification with Python and cocotb
➢ learn cocotb principles, constructing different aspects of a verification environment 

using cocotb and Verification strategies and tactics.
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Questions?

Any questions?
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