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Where do we start!?

Robotics

Deals with the design,
construction, operation, and
application of robots

Knowledge Representation
and Reasoning

Focuses on representing
knowledge in a form that a
computer system can utilize
to solve complex tasks

Expert Systems

Software systems that emulate
the decision-making ability of a
human expert in a particular
domain

Computer Vision

Involves enabling
machines to interpret
and make decisions
based on visual data

Deep Learning
A subset of machine learning
that uses neural networks with

multiple layers to model and

solve complex problems

Machine Learning

The study of computer
algorithms that improve
automatically through
experience and data

Neural Networks

Computer systems modeled
after the neural connections
in the human brain

Cognitive Computing

Mimics human thought
processes and augments
human cognition

Natural Language
Processing (NLP)

Focuses on the interaction
between computers and
human languages

Our focus

Only a subset of Al

How does Al work?

How do | work
with Al?

How do | use Al in
engineering?



When chat message
receiveq

ow does
| work!?



Ask Al

+ Write a funny joke. G

"Why couldn't the bicycle
stand up by itself? It was
two-tired.”



How can a computer
write a joke?

M



The fundamental problem

1010

Computers speak in numbers, not English.
1010 : g J

Natural Language
Processing (NLP)

Human language has NS A Machine language has
nuance and context : S numbers and vectors



Chopping up language

Al parses words into tokens.

15836, 71935, 4339, 1139, 11460, I3 A token is a unit of
- : - text, like an entry in a
dictionary, but it has

no meaning.

Tokens

/




Embeddings

Age

—_
o

SO =~ N WO & 00 O N 00 ©

o grandfather

man adult
o o

hild
boy ~ chi

woman

~ girl

9 10

Gender Age
boy (I1,2) woman (9,7)
man (I1,7) girl (9,2)
adult  (5,7) infant (5,1)

child (5,2) grandfather  (1,9)

An embedding is a
token's address into

'meaning space’.

/

8



Word relationships

Angle and direction
between vectors

happy @ encode similarity and

relationships

score | Meaning | iy

I Same direction High king & queen

sad 0 Unrelated None  king & banana

banana

-1 Opposite direction Low happy & sad



Attention to context

(noun)

She rode the train.

She trained the dog.
(verb)

She broke the record.

She broke the record player.

(related)

&
3
"Attention' means

looking at a word's
context in a sentence.

/




Meaning has many dimensions

She rode the train.

Tokens: 8100, 41761, 279, 5542,13

Embeddings: [0.39886564016342163, [...] [...T [...]1 [-1.7465770244598389,

-0.40469917654991 15, 1.24246084690094,
-3.179293632507324, -4.810368537902832,
0.20834633708000183, 0.3165740668773651,

1.0488201379776, 0.9620928764343262,
] ]

An. (768 length vector)
\ x. y



4 Large language models

She rode the...
|

Embeddings

[ 0.39886564016342163,
-0.40469917654991 15,
-3.179293632507324,
0.20834633708000183,
1.0488201379776,
1.414209246635437,

]

LLM
(Transformer)

Predicted probability ,JI

bus 0.07108145207166672
’ bike 0.024848591536283493

elevator 0.019790327176451683

back 0.01585303619503975

D 4
She rode the train



% Achieving thought

+ Write a funny joke. 6}

Ollama (model runner)

"Why couldn't the bicycle stand
up by itself? It was two-tired."

LLM LLM LLM LLM
Write a akels -t .'eey eeel
funny —> &sée Tesee Teeee Teeee
joke. - - - e
4 D 4 D 4 A 4
Why couldn't the bicycle

"Why
couldn't
the
bicycle
stand up
by itself?
It was
two
tired."

13



Generative
Pre~trained = GPT
Transformer

&

A "transformer" transforms our language into
a new representation that captures meaning,
context, and relationships.

A




Hallucinations

LLM
(Transformer) train  0.08003556728363037 ’ She rode the train
000000 bus  0.07108145207166672 ttemp = 0.2)
(I\—(:\—(I\-(:\—(:\—(:\ ’ bike 0.024848591536283493
[:' lu ‘: [.‘ ‘:‘ (. elevator 0.019790327176451683
c66000 bk 001595303619503575 1) She rode the back
(temp = 0.8)

@,
"Hallucination" is when an output is
valid but factually incorrect based

on its training data or input context

A




“ Example

€3 GPT4AIl Llama 3.1 8B Instruct 128k
Here are two simple sentences that use the word "cloud"” with different meanings:
1. The fluffy white cloud floated across the sky.

2. The company's profits were in the red, and they had to borrow money from a bank to
cover their expenses.

In this example, "cloud" refers to a collection of water vapor or gas in the atmosphere
(sentence 1), while it also means an amount owed that is not yet paid (sentence 2).
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% LLMs

Key factors
of an LLM:

Parameters
Licensing

Tool support

GPUs

J

Qs

Model

OpenlLLaMA 3.1/ 3.2
(Tool-enabled)

Mistral / Mixtral (Instruct
/ Tool)

Falcon (Tool / Instruct)

GPT-NeoX / GPT-J (Tool)

DeepSeek-LLM / V3 / R1

Gemma (1-3 series, Tool)

Grok (1, 2.5)

OpenAl GPT-4 (API/

Plugins)

OpenAl GPT-4-turbo
(Function Calling)

GPT-055 (20B / 120B)

Qwen (Tool-enabled
variants)

Parameters

8B -70B

7B, 8x78

7B, 40B, 1808

6B, 20B (NeoX), 6B (J)

7B, 678, 2368 dense;
6718 total (MoE, 378
active)

1B-27B

~314B (dense est),

details vary

1758+

1758+

208, 1208

3B, 7B, 14B, 728

License

OpenLLaMA Community

Apache 2.0

Apache 2.0

Apache 2.0

DeepSeek License

Gemma License (open-

weights)

Apache 2.0

Openal

Openal

Apache 2.0

Apache 2.0

Originator

Meta Al / OpenLLaMA

Mistral Al

TiI (UAE)

Eleutheral

DeepSeek (China)

Google DeepMind

*Al (Elon Musk / X)

Openal

Openal

Openal

Alibaba Cloud

Tool Support

Ves

Yes

Ves

Ves

Yes (native tool
reasoning)

Ves

Ves

Ves

Ves

Ves

Ves

Commercial Use

& ves

[ ves

Ves (via API)

Ves (via API)

[ vYes

Yes (with conditions)

GPU & RAM Requirements

T3 NVIDIA A100 40GE or RTX
3090 24GB; 32-64GE RAM

1= NVIDIA A100 40GE or RTX
3090 24GB; 32-64GE RAM

2= NVIDIA A100 40GE; 64—
128GE RAM

2= NVIDIA A100 40GE; 64—
128GE RAM

2= NVIDIA A100 40GE or RTX
3090 24GE; 64-128GE RAM

1= NVIDIA A100 80GE or RTX
4090 24GE; 32-64GE RAM

8= NVIDIA A100 40GE;
512GE RAM

5= NVIDIA A100 80GE;
400GB+ RAM

5= NVIDIA A100 80GE;
400GB+ RAM

1= NVIDIA A100 0GB
(1208); 1= RTX 4090 24GB
(20B); 32-64GB RAM

1= NVIDIA A100 40GE or RTX
3090 24GB; 32-64GE RAM

18




% Chaining
J LangChain

Framework
A "chain" is a sequence of

{10 steps that process input data
1010 c .
Embeddings i hifare ) [ through components like
== <> prompts, models, and memories.
N S
Vector Tools
Store Memory
B E B “;‘:::; B
Read File List Split File List Read Log File Check PASS/FAIL Extract Errors (Ollama) Collect All Errors Cluster Failure Modes Save Results

GET: http://localhost:11434/api... append (Ollama)
GET: http:/flocalhost:11434/api...




Workflows and agents

Workflow

B E B . . - LZ
Read File List Split File List Read Log File Check PASS/FAIL Extract Errors (Ollama) Collect All Errors Cluster Failure Modes Save Results
GET: hitp://localhost:11434/api append (Ollama)
GET: http://localhost:11434/api...

i Human interaction
Agent (Agentic)
'
Al decides

* ." L ‘l |g| AbAgent

v

Example Chat Chat Model* Metiory Taol
’ \
- ~Sa
s . Slmen " "
B S n "agen
- - = ~ == -
- s -~
o s - N e -

ik y ) independently decides

4 4
LLM @ ® N what it will do next.

Ollama Chat Model Conversation Get Weather1 Get News
Memory

&

20



“ Document stores (RAG) Q "RAG" refers to

retrieval augmented
What can | help with? @ generation.

@enerate APB properties 0

)

h (o]
- || BoR, @ Similarity

search
AMBA Spec l

>
@ @ 0.728, - 0 ey
L — LLM
Tokenize / u
Local Vectorize Vector New
Sources Store Prompt

ZAY Vectors store context and
meaning so better than text 21



 Prompting

</ Task — always start a task with a generate verb

What's the user's background?
Context — ask yourself 3 questions :  What does success look like?

What environment are you in?

Exemplars — give examples of good and bad templates

Persona — who do you want the Al to be!

noooo
nooon

Format — how does the result look like?

UDHHUDUUU

Tone — indicate the feeling — casual, formal, witty, etc.

22



+2 5 Private Intranet
<4
Con neCtI ng to AI ' VPS Models, DBs, Tools
ScrIPt Go gle CIOUd OpenLLaMA 3.1/ 3.2 AN

Public Internet

http://

1 aws (Tool-enabled)
p_. ,;\ - @% ~— Mistral / Mixtral (Instruct
4 https://host + api-key 3 /Tool)
Ope nAI L ::’.: \j % D Falcon (Tool / Instruct)

GPT-NeoX / GPT-J (Tool)

A

App

IT Servers Deepseek LLM / V3 / Rt heepsll

\

- Gemma (1-3 series, Tool) ':
J http://host:port S—
N
. Grok {1, 2.5) 12
OpenAl GPT-4 (API /
Plugins)
OpenAl GPT-4-turbo
AN

(Function Calling)

Desktop htepil

GPT-OSS (208 / 1208) -

http://localhost: 1234 O o
Qwen (Tool-enabled «/»

variants)

Private and secure. HM'

Beware! Data is not private!



“ Model Context Protocol (MCP)

GET
API POST

PUT
A\

DELETE
‘©* t | https://url + api-key >
j RESTFUL API

il

MCP
‘U’ MCP Server a | o
+ | https:/lurl + api-key )
» Tools - ( -
E\\K} ¢ | https://url + api-key ) W‘ docker;
. Resources
L Al queries MCP " —| ‘
* | https:/lurl + api-key )

No hardcoded APIs!

24



When chat message
receiveq

Al for
Engineerin



Use modes

Generative Al

RTL/HDL
Generation

Testbench
Generation

SVA/Assertion
Generation

Specification
Summarization

Documentation /
Commenting

Generate synthesizable RTL code from
high-level descriptions + specifications

Create verification environments,
stimulus, and test vectors

Create SystemVerilog Assertions
(SVA) to cover corner cases

Read long design specs and produce
concise summaries or design outlines

Generate design documentation,
comments, or explanations for existing
RTL

Analytical / Assistive Al

Bug / Issue Detection

Performance / Timing

Estimation

Design Rule Checking

Test Coverage Analysis

Debug Assistance

Specification
Consistency Checking

Analyze RTL/testbench code to find
bugs or inconsistencies

Predict timing paths or bottlenecks
based on RTL patterns

Check RTL against coding standards
or design rules

Evaluate coverage metrics and
suggest missing tests

Analyze simulation logs and highlight
probable failure causes

Compare design spec vs
RTL/testbench to find gaps or
contradictions

26



Where do | begin?

Ask Chat
+ How do | install a local LLM? 0
+ How do | use it in docker? 0
What's on the agenda today? . . .
+ Write a script using Ollama 0
+ | want to use Al on my local machine. Where do | begin? ) o
+ How do | enable my GPU? (@)
:@2 + Add RAG to my script a

=

Chat with Al to get
started using Al. + How do | install an Al model? G

o

27



Local LLM install

« © R m——— ey @ & a =
NVIDIA. > Main Menu Shop  Drivers  Support Q& @ 1 :I:IQ
. OC_JC 0
Drivers - C LI
OCJC_n

B | & Mstudio-local Alonyourco X | + Install a

<« [¢] O B Imstudio.ai

er Updates Bt B imstdo mods Docs  workuse framework
I n Stal I G P U Ic gamers and creators. Keep your Gl

drivers

B W studio

Local Al, on your computer.

GeForce Game Ready Driver NVIDIA Studio Driver
Best for: Gamers Best for: Creatives Run local Al models like gpt-oss, n, Gemma, De k and
& F Ol x|+ “ - 0
€ J 8 cnamacom @ o @ o0 ¢
M Models GitHub Discord Docs  Cloud Sign in

Install the S9)

88 Mission Control GGUF
Moc
odesea v (D) s v betralaifmagi LLM model
| mistralai/magistral
Runtime & 15K 1r 12
|
- 0 days ago

Hardware

Seed Oss 368 )
LSl EE Tl Reasoning model that supports image input and tools calling. By MistralAl.

Capabilities: ( oning |

— Chat & build with
open models

¥ Qwen3 48 Thinking 2507 &

© Model Information




 Experiment with LLMs

Reset = 1

Start=0

IDLE \

Start = 1

{.’31

| am a hardware engineer and | need to generate a finite state machine written in
SystemVerilog. There are 3 states: IDLE, GO1, and GO2. The state machine
transitions to IDLE on 'Reset' = 1. When the 'Start' = 1, the state machine
transitions to GO1 and the output 'F' = 1. When in the GO1 state, the state machine
transitions to GO2 and the output 'G' = 1. The defaults for 'F' and 'G' are 0. When in
the GO2 state, the state machine transitions back to IDLE. Generate this state

machine as a SystemVerilog module.
@ O Turbo gpt-oss:20b o

U Thought for 91.4 seconds

Below is a compact, synthesizable SystemVerilog implementation of the requested FSM.
It uses a two-bit enumerated state type, a synchronous state register, and combinational logic for

the next state and the two outputs F and G.

29



% Generative Al

D Copy

R R RO AR K R RO K O R KRR R K O B R HORROK o B K ROK  R

*

#

*

*

#

B e et L L]

Module: simple fsm

Purpose: 3-state FSM (IDLE - GOl + GO2 - IDLE)

Inputs:
clk : Clock (positive-edge synchronous)
reset : Asynchronous active-high reset

start : Pulse that moves the FSM out of IDLE

Outputs:
F : 1 when the F5M is in state GO1
G : 1 when the FSM is in state GO2

module simple_fsm (

)

input logic clk, /I Clock
input logic reset, // Asynchronous active-high reset
input logic start, // Start pulse

output logic F, // Output asserted in GO1
output logic G // Output asserted in GOZ
J¥ ..

* State encoding

typedef enum logic [1:8] {

IDLE = 2'bee,

GOl = 2'be1,

G02 = 2'bile
} state_t;

* Synchronous state register (reset is asynchronous)

always_ff @(posedge clk or posedge reset) begin
if (reset)
state <= IDLE;
else
state <= next state;

end

* MNext-state logic (combinational)

always_comb begin
next state = state;
case (state)
IDLE: begin
if (start)
next_state = GO1; // Start -> GO1
end

GO1: next_state = GO2; [/ GOl -> G602

GO2: next_state = IDLE; [/ GO2 -> IDLE
default: next_state = IDLE; // Safety
endcase

end

// Return to IDLE on reset

// Update state on clock edge

// Default: hold current state

LLMs are already trained in
hardware description languages.

* Qutput logic (combinational)

always_comb begin
F =1'b8; // Default
G =1'b8; // Default
case (state)
GO1: F = 1°b1;
GO2: G = 1'b1;
default: ;

endcase

// F asserted in GO1
/f G asserted in GO2
// IDLE - both outputs remain &

end

endmodule

]

How it works

1. Reset [ reset=1 ) forces the FSM to IDLE .

2. While in IDLE, a high start pulse moves the FSM to GO1and sets F=1.

3. In GO1, the FSM automatically goes to GO2 on the next clock and sets =1 .
4. In GO2, it goes back to IDLE on the next clock.

5. Both F and G default to 0 in all other cases.

The module is fully synthesizable, uses only standard constructs, and can be instantiated in any

SystemVerilog design.




4 Look, UYM!

1. Package — common types

systemverilog
2. Environment - agent, driver & monitor
// file: fsm_pkg.sv
package fsm_pkg;
import uvm_pkg::*;
“include "uvm_macros.svh"

3. Scoreboard

. . , 4. Environment - glue all the pieces together
// Sequence item that the driver will push into the DUT

class fsm_seq_item extends uvm_sequence_item;

rand bit start; // stimulus to the DUT 5, TeSt
bit F_exp; // expected value of output F
bit G_exp; // expected value of output G

6. Top-level testbench (instantiates DUT and UVM)

“uvm_object_utils(fsm_seq_item)
: : : How it works
function new(string name = "fsm_seq_item");
super.new(name);
endfunction 1. Test ( fsm_test ) creates the environment and starts a sequence that toggles s
endclass : fsm_seq_item
2. The driver applies start to the DUT, waits for the next clock edge, records wh
// Sequence - just a simple generator
class fsm_sequence extends uvm_sequence #(fsm_seq_item);

“uvm_object_utils(fsm_sequence) 3. The monitor simply raises an event whenever F or G changes — in this simple c:

expected values back to the scoreboard via add_expected() .

function new(string name = "fsm_sequence™);
super.new(name);

31



+! . 5
4+ Summarization

a1 a1 a1 a1
D ' spi_clgenw D ' spi_definesw D ' spi_shiftw D ' spi_top.w

You are an expert hardware engineer. Analyze the spi_clgen, spi_defines,
spi_shift, and spi_top modules. Create a list of properties describing the
functionality of the spi_top module.

Below is a concise “properties” list that captures what the spi_top wrapper brings together, based on the public interfaces and
typical design intent of an SPI controller implemented with the spi_defines , spi_shift ,and spi_clgen sub-modules.

Property Description
Wishbone-compliant wb_clk_ i, wb_rst_i, wb_adr_i, wb_dat_i, wb_sel i, wb_we_i, wb_stb_i , wb_cyc_i are the standard
interface Wishbone signals. The module returns wb_dat_o , wb_ack_o , wb_err_o ,and wb_int_o . This allows the controller to

be addressed, read from, and written to by any wishbone master (CPU, DMA, etc.).

SP1 1/0 pins External SPI pins are exposed as: ss_pad_o (slave-select), sclk_pad_o (serial clock), mosi_pad_o (master-out-to-slave),
and miso_pad_i (master-in-from-slave). These correspond to the physical pins on an FPGA or ASIC.

Parameterised clock The module has a parameter Tp = 1; . While not used directly in the snippet, it is typically leveraged by timing constraints
period or internal calculations for generating the SPI bit-rate.

e ' .t s " . - ' st ~—aror + ’ \ L ' -



Scripting a chat bot

E
impgrt ollama Use framework

# Choose your model
mode1_name = "1lama3" # change if you have another ollama model Specify LLM

print("== simple ollama chatbot =—=")
print("Type 'quit’' to exit.\n")

while True:
user_input = input("You: ")
if user_input.lower() == "quit":
break

Get prompt

# Generate response from Ollama

response = ollama.generate(
mode1=model1_name, Ask LLM
prompt=user_input, '
options={"temperature”: 0.7, "max_tokens":

print("Bot:", response["response"]) Print response

= -




Equipping your chat bot
RAG

SPLIT DOCUMENTS
RecursiveCharacterTexts

text_splitter
0
docs = text_splitter.split_documents(do

#
print(f'g split into {len(docs)} chunks de

f search_docs(query: str):
"""search the local knowledge
ga_chain = RetrievalQA.from_c

1TTm=11m,
retriever=retriever,
return_source_documents=1
chain_type_kwargs={"outpl

r memory

)

EMBEDDINGS & VECTORSTORE
01TamaEmbeddings (mode1=emb:
"faiss_index"

MEMORY
def load_memory(path):

sources
ocuments™]]
return T "{result['result’']}\

[

Tool(
name="KnowledgeBasesearch
func=search_docs,
description="Use this to

def =a [doc.metadata.get(

previous_messages = load_memory(memory_j. . 1s =
memory = ConversationBuffermMemory(memor
e)

memory . chat_memory.messages

Qe_memory(path, messages) :

previous_I

result = qa_chain.invoke(quer)

agent = initialize_agent(
tools,
1Tm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
memory=memory,
handle_parsing_errors=True,

verbose=True

INTERFACE LOOP
print("@ Ready! Ask something (type 'exit’' to quit):™)

while True:
query = input("You: ")
if query.lower() in ["exit", "quit"]:
print("& Exiting. Saving memory...")
save_memory(memory_path, memory.chat_memory.messages)
break

response = agent.invoke(query)
print("AI:", response)
save_memory(memory_path, memory.chat_memory.messages)




Agentic flow

# -—-— Agentic Flow —-—-
def agentic_flow(prompt):
" print(f"\nPrompt: {prompt}\n")

# Step 1: Generate initial response
response = 11m_generate(prompt)

print(f"Initial Response: {response}\n"

# Step 2: critique the response
critique = llm_critique(response)
print(f"critique: {critique}\n™)

# Step 3: Generate refined response

return refined_response

# --—- Main program ---
if __name__ == "__main__":

prompt_text = input(“"Enter your prompt
final_output = agentic_flow(prompt_tex

refined_response = 1Im_refine(prompt, cj§
print(f"Refined Response: {refined_respQ " Universal

Enter your prompt: Write a funny joke
Prompt: Write a funny joke

Initial Response: | asked the librarian if the library had books on paranoia. She whispered, “They're right
behind you.”

Critique: Critique of the response

1. Clarity

Refined Response: New joke

Aspect Asses
b 1 ab
Very ¢ -
Language She leaned in and whispere
guag ambig
. Seam .
Narrative flow Why this one works better
Tone Light, Element Why it's an improvement
The request for a “book on reverse psychology” immediately signals that the answer
Potential NG Clear setup
orentia Gl will be a subversion
confusion clear,
Tighter The librarian’s reply is a literal echo of reverse-psychology: by telling the person to
punchline stay away, she nudges them toward the book.

Verdict: The response is cr

Visual h The image of a librarian whispering “Just stay away from it”" in a library is vivid and

isual humor
unexpected

2. Completeness nexpecte

Anyone familiar with the phrase “reverse psychology” (or the idea of a paradoxical

AT

A generative adversarial network
(GAN) is where a generator is critiqued by
a discriminator to make a better response.

35



An engineering example

Log file triage

T UMM LU @ USU. GV LSS L LU i S . Wo_Spl_ 30 | N_Wo_Spi_ 30| WELELVEU LI @H3EULLIUN. A u@via. s 1A uaia. Sus
# UVM_ERROR verileog src/uvm-1.lc/src/seq/uvm_sequencer base.svh(1236) @ 7896: uvm test top.m_env.m wb_agent.m wb_seqr [SEQFINERR] Parent sequence
‘uvm_test_top.m_env.m_v_sequencer.vseq.dut_config’' should not finish before locks from itself and descedent sequences are removed. The lock held by the child sequence
‘uvm_test_top.m_env.m_v_sequencer.vseq.dut_config’' is being removed.

UVM_INFO @ 7896: uvm_test_top.m_env.m_wb_agent.m wb_drv [WB_DRIVER] Performing a RX ...

UVM_INFO @ 7115: uvm_test_top.m_env.m_wb_agent.m wb_mon [wb_monitor] Detected a WB transaction ...

UVM_INFO @ 7126: uvm_test top.m_env.m_wb_agent.m wb_drv [WB DRIVER] wb_read task: addr = 80000084, data = BOOEEOGO

UVM_INFO @ 7127: uvm_test_top.m_env.m_wb_agent.m_wb_seqr@@vseq.wb_read_rx_regs.wb_read [wb_read] Generated sequence:

UVM_INFO @ 7127: uvm_test_top.m_env.m_wb_agent.m wb_drv [WB_DRIVER] Performing a RX ...

UVM_INFO @ 7135: uvm_test_top.m_env.m_wb_agent.m wb_mon [wb_monitor] Sending transaction to the scoreboard

Mame Type Size Value
uvm_sequence_item wb_trans - @1285
addr integral 5 "h4
data integral 32 ‘h@
kind trans_t 32 RX

UVM_ERROR @ 7135: uvm_test_top.m_env.m_wb_spi_sb [wb_spi_sb] SPI error callback. Error selecting the bit to twiddlel"”
UVM_INFO @ 7145: uvm_test_top.m_env.m_wb_agent.m wb_mon [wb_monitor] Detected a WB transaction ...

UVM_INFO @ 7156: uvm_test_top.m_env.m_wb_agent.m wb_drv [WB_DRIVER] wb_read task: addr - 00000008, data - DEOBE5Ge
UVM_INFO @ 7157: uvm_test_top.m_env.m_wb_agent.m wb_seqr@@vseq.wb_read_rx_regs.wb_read [wub_read] Generated sequence:
UVM_INFO @ 7157: uvm_test top.m_env.m_wb_agent.m wb_drv [WB _DRIVER] Performing a RX ...

UVM_INFO @ 7165: uvm_test top.m_env.m_wb_agent.m wb_mon [wb_moniter] Sending transaction to the scoreboard

uvm_sequence_item wb_trans - @1315
addr integral 5 "he
data integral 32 "h5@e

UVM_ERROR @ 7165: uvm_test_top.m_env.m_wb_spi_sb [wb_spi_sb] WB write to an invalid address! Address = 16647

UVM_INFO @ 7175: uvm_test top.m_env.m_wb_agent.m_wb_mon [wb_monitor] Detected a WB transaction ... mm f .I m d 7
UVM INFO @ 7186: uvm test top.m env.m wb agent.m wb drv [WB DRIVER] wb read task: addr = 0@0008Bc, data = DEOABELRE Co on a—l u re o es .

w2 Can we use Al to group

HoH M H M H HH W HH R

36



“+ Al limitations | Solution

; - ‘r Pre-process with a script ﬂ
LLM Iimitations: o * Filter random, test-specific values
» Extract error signatures
y Bad at scale * Normalize into a compact form:

(too many log files)

parity mismatch in module A

addr_decode_error in module B

C Bad a.t |Ong nOiS)’ tEXt timeout waiting for handshake in module C
. e
» Distracted by random, Cluster and categorize messages g
test-s pecific values » Use embeddings to group similar errors
* Use sentence level instead of word level
« RAG helps retrieval, but ... * Return signature groupings
[ MEeSSy raw data is messy ] ]
. Summarize with an LLM &
o retrieval iy

Summarize the signature groupings

r . in the desired format
— e Better at semantic than |'

{ ( { ‘ symbolic analysis / Generate a report of results

+ Simple reporting script code
37




0—

Oc—=

—1 Results OK, but ...
easier (and faster)

def export_report(clustered, summaries, out_csv="failure_report.csv’ c }] I c
): ’ ’ with a regular SCI"IPt
rows = []
for Tabel, sigs in clustered.items(): o
summary = summaries.get(label, "uncategorized") utput
rows .append({
"cluster": label [cluster_signatures] device = cuda
: N | lcluster_signatures]device = CUO3
"Summar‘y": summary, tried eps=0.200 -> clusters=4, labels_set={np.int64{0), np.int54(1), np.int64{2), np.int64{3)}
:Num_F§|l'l 1 Hreﬁ" . “-|¢ngs'| 95) ;L tried eps=0.300 -> clusters=2, labels_set={np.int64{0), np.int64{1)}
Examp les " ’ -Jo1 n(set(s1 gs [ ) 3] )) tried eps=0.400 -= clusters=2, labels_set={np.int64({0), np.int64{1)}
df = pd .DataFrame (rows) tried eps=0.500 -> clusters=1, labels_set={np.int64{0)}
df.to_csv(out_csv, index=False) tried eps=0.600 -> clusters=1, labels_set={np.inted(0)}
return df Chosen clusters: 4 (eps=0.2
. Cluster ... Examples
if _name__ - - - e b <ni
'Iogs_d'l r=" ./workf'l 0w/'| og_parsi ng" 0 0 .. UVM_ERROR @ :uvm_test_top.m_env.m_wb_spi...
sigs = collect_signatures_from_logs(logs_dir) 1 1 .. UVM_ERROR verilog_src/uvm- . c/srciseg..
clustered = cluster_signatures(sigs) 2 2 .. UVM_ERROR:  UVM_FATAL : LUV
summaries = summarize_clusters(clustered) _ i T .
3 3 .. UVM_ERROR @ : uvmn_test_fop.m_env.m

report = export_report(clustered, summaries)

print(report)

[4 rows x 4 columns]

CSV
Cluster Num_Failures Examples
0 70 UVM_ERROR @ <NUM:=: uvm_test_top.m_env.m_whb_spi_sb [wh_spi_sb] WB write to an invalid address! Address = <NUM?>
1 20 UVM_ERROR verilog_src/uvm-<NUM:>. <MUM:=c/src/seq/uvm_sequencer_base.svh{<NUM:>) @ <NUM>: uvm_test_top.m_env.m_w
2 60 UVM_ERROR: <NUM:; UVM_FATAL: <NUM:; UVM_WARNING: <NUM:
3 10 UVM_ERROR @ <NUM:=: uvm_test_top.m_env.m_whb_spi_sb [wh_spi_sh] 3Pl error callback. Error selecting the bit to twiddle!" 38



EDA tools

<transfer_in_progress_count_decrement>
<transfer_in_progress_count_decrement>: When tip is high and pos_edge is detected, the counter
cnt should decrement by 1.

DUT selection mode:

Top Module (Entire File)

Create sample property 4, Generate Property

0 % sequence decrement condition;
0000 tip && pos edge;
EDA I endsequence
tools
call LLMs =P
rst) decrement condition |-> (cnt ==

property cnt decrement property;

ST

endproperty

to help
with tasks

cnt decrement assert: cnt decrement property);

( SYNTAX CORRECT) ( NO HOLDING CHECK )

Show Alternatives Check Show Warnings Add To Checker File




When chat message
receiveq

Al or
not Al?



¢¢

+ "Chat, summarize Al"

What it's good at ... A What it's bad at ...

E2 Understanding language A, Understanding context deeply
2 Summarization A. Common sense reasoning

&4 Generating content quickly from its training 4. Creativity and originality

&4 Automating repetitive tasks
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* Recommendations with Al

X Avoid ...

€ Blind trust in its outputs

X Al on non-GPUs & small amounts
of GPU memory

X Lack of human oversight

X Non-private or insecure Al

X Over-reliance on Al

a3 ry...

¥ More resources — better performance

Zi Reasoning models mainly help with
math & coding

%" Quantized models may give faster

results

#4 Use Vision Large Language Model
(VLM) for text + images

= LLMs are not great for parsing
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% Practical uses of Al

Task
& Automate code generation
Chat-driven design assistant
f& Verification automation
Q, Design review and refactoring

&) Continuous integration support

. How Al Can Help

Generate RTL, testbenches, and assertions from specs.

Convert design intents into RTL and testbenches via chat.

Summarize simulation results and flag anomalies.

Detect issues and suggestimprovements in HDL code.

Auto-comment or review on check-in.
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4 New Design and Verification courses

Advanced Formal Verification

» equips you to tackle complex verification challenges by taking full advantage of
formal verification in your engineering projects.

» forms a complete learning path with Essential Formal Verification course, which
gives you a solid, practical grounding in formal verification.

SystemVerilog for New Designers: Self-Paced course

» get project-ready for FPGA or ASIC design, including RTL synthesis, block-level
test benches, and FPGA design flows.

> high-quality content developed by expert instructors - now in self-paced format.

IC Verification with Python and cocotb

> learn cocotb principles, constructing different aspects of a verification environment
using cocotb and Verification strategies and tactics.
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Questions?

+ Any questions?
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