
Delivering KnowHow www.doulos.com

Beginners Guide to Using AI

for Hardware Engineers

Presented by Doug Smith

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

2

Where do we start?

Computer Vision

Involves enabling
machines to interpret
and make decisions
based on visual data

Natural Language

Processing (NLP)

Focuses on the interaction
between computers and
human languages

Machine Learning

The study of computer
algorithms that improve
automatically through
experience and data

Robotics

Deals with the design,
construction, operation, and
application of robots

Deep Learning
A subset of machine learning
that uses neural networks with
multiple layers to model and
solve complex problems

Neural Networks

Computer systems modeled
after the neural connections
in the human brain

Cognitive Computing

Mimics human thought
processes and augments
human cognition

Expert Systems

Software systems that emulate
the decision-making ability of a
human expert in a particular
domain

Knowledge Representation

and Reasoning

Focuses on representing
knowledge in a form that a
computer system can utilize
to solve complex tasks

AI

Our focus

Only a subset of AI

How does AI work?

How do I work

with AI?

How do I use AI in

engineering?

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

3

How does

AI work?

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

4

Ask anything

"Why couldn't the bicycle

stand up by itself? It was

two-tired."

Ask AI

Write a funny joke.

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

5

How can a computer

write a joke?

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

6

The fundamental problem

Computers speak in numbers, not English.

Human language has

nuance and context

[10445, 7846, 956, 279,

 36086, 2559, 709]

Machine language has

numbers and vectors

Natural Language

Processing (NLP)

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

7

Chopping up language

AI parses words into tokens.

15836, 71935, 4339, 1139, 11460, 13

Tokens

A token is a unit of

text, like an entry in a

dictionary, but it has

no meaning.

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

8

Embeddings

0 1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

0

A
g
e

Gender

An embedding is a

token's address into

'meaning space'.

adult womanman

grandfather

boy child girl

infant

boy (1,2) woman (9,7)

man (1,7) girl (9,2)

adult (5,7) infant (5,1)

child (5,2) grandfather (1,9)

AgeGender

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

9

Word relationships

king

queen

sad

happy

banana

Score Meaning Similarity

1 Same direction High king & queen

0 Unrelated
None king & banana

-1 Opposite direction Low happy & sad

Angle and direction

between vectors

encode similarity and

relationships

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

10

Attention to context

She rode the train.

She trained the dog.

She broke the record.

She broke the record player.

"Attention" means

looking at a word's

context in a sentence.

(verb)

(noun)

(related)

C
o
p
y
ri
g
h
t
©
 2
0
2
5
 D
o
u
lo
s
 –
 A
ll
R
ig
h
ts
 R
e
s
e
rv
e
d

11

Meaning has many dimensions

She rode the train .

8100, 41761, 279, 5542,13Tokens:

[…][…][…] [-1.7465770244598389,

 1.24246084690094,

 -4.810368537902832,

 0.3165740668773651,

 0.9620928764343262,

 …]

[0.39886564016342163,

 -0.4046991765499115,

 -3.179293632507324,

 0.20834633708000183,

 1.0488201379776,

 …]

Embeddings:

(768 length vector)

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

12

LLM

(Transformer)

She rode the …

Embeddings

[0.39886564016342163,

 -0.4046991765499115,

 -3.179293632507324,

 0.20834633708000183,

 1.0488201379776,

 1.414209246635437,

 …]

train 0.08003556728363037

 bus 0.07108145207166672

 bike 0.024848591536283493

 elevator 0.019790327176451683

 back 0.01585303619503975

Predicted probability

She rode the train

Large language models

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

13

Write a funny joke.

LLM

Why

Write a

funny

joke.

Ollama (model runner)

Iteration 1

Achieving thought

How?

couldn't

LLM

Iteration 2

the

LLM

Iteration 3

LLM

bicycle

Iteration 4

LLM

…

Iteration 5 "Why

couldn't

the

bicycle

stand up

by itself?

It was

two

tired."

LLM

<eos>

…

End of stream

Iteration N

"Why couldn't the bicycle stand

up by itself? It was two-tired."

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

14

A "transformer" transforms our language into

a new representation that captures meaning,

context, and relationships.

Generative
Pre-trained = GPT
Transformer

See https://poloclub.github.io/transformer-explainer/

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

15

train 0.08003556728363037

 bus 0.07108145207166672

 bike 0.024848591536283493

 elevator 0.019790327176451683

 back 0.01585303619503975

LLM

(Transformer)
She rode the train

Hallucinations

temperature smaller → more accurate

larger → more creative

top k picks from top k choices

top p picks from at least p

She rode the back

"Hallucination" is when an output is

valid but factually incorrect based

on its training data or input context

(temp = 0.2)

(temp = 0.8)

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

16

Example

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

17

Working

with AI

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

18

Parameters are

weights

More weights …

→ more brain power

→ more memory

→ more GPUs

LLMs

Key factors

of an LLM:

Parameters

Licensing

Tool support

GPUs

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

19

Chaining

A "chain" is a sequence of

steps that process input data

through components like

prompts, models, and memories.

Chat Model (LLM)

Memory
Vector

Store

Embeddings

Tools

LangChain

Framework

An example chain of steps

LLM LLM

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

20

Workflows and agents

Agent (Agentic)

Workflow

Human interaction

AI decides

An "agent"

independently decides

what it will do next.

LLM

LLM

LLM

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

21

What can I help with?

Prompt

Similarity

search

Document stores (RAG)

M
a

t
c

h
e

s
Vectors store context and

meaning so better than text

"RAG" refers to

retrieval augmented

generation.

Generate APB properties

Local

Sources

0.728, 0.3298, …

Tokenize /

Vectorize

PDF

TXT
TXTTXT

OCR

Vector

Store

AMBA Spec

Combine

…

New

Prompt

Query

LLM

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

22

Prompting

Task – always start a task with a generate verb

Context – ask yourself 3 questions :
What's the user's background?

What does success look like?

What environment are you in?

Exemplars – give examples of good and bad templates

Persona – who do you want the AI to be?

Format – how does the result look like?

Tone – indicate the feeling – casual, formal, witty, etc.

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

23

https://host + api-key

Connecting to AI

Public Internet

Script
VPS

IT Servers

Desktop

https://url + api-key
http://host:port

http://localhost:1234

Beware! Data is not private!

Models, DBs, Tools

Private and secure.

Private Intranet

http://

http://

http://

Chat

App

Slow

Fast

Fast

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

24

Model Context Protocol (MCP)

https://url + api-key

RESTFUL API

GET

POST

PUT

DELETE

API

MCP

https://url + api-key

https://url + api-key

Resources

Tools

Prompt templates
https://url + api-key

MCP Server

AI queries MCP

for services.

No hardcoded APIs!

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

25

AI for

Engineering

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

26

Use modes

RTL/HDL

Generation
Generate synthesizable RTL code from

high-level descriptions + specifications

Testbench

Generation
Create verification environments,

stimulus, and test vectors

SVA/Assertion

Generation
Create SystemVerilog Assertions

(SVA) to cover corner cases

Specification

Summarization
Read long design specs and produce

concise summaries or design outlines

Documentation /

Commenting

Generate design documentation,

comments, or explanations for existing

RTL

Bug / Issue Detection Analyze RTL/testbench code to find

bugs or inconsistencies

Performance / Timing

Estimation

Predict timing paths or bottlenecks

based on RTL patterns

Design Rule Checking Check RTL against coding standards

or design rules

Test Coverage Analysis Evaluate coverage metrics and

suggest missing tests

Debug Assistance Analyze simulation logs and highlight

probable failure causes

Specification

Consistency Checking

Compare design spec vs

RTL/testbench to find gaps or

contradictions

Generative AI

Analytical / Assistive AI

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

27

Where do I begin?

Ask Chat

How do I install a local LLM?

How do I use it in docker?

Write a script using Ollama

How do I enable my GPU?

Add RAG to my script

How do I install an AI model?

Chat with AI to get

started using AI.

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

28

Install GPU

drivers

Install a

framework

Local LLM install

Install the

LLM model

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

29

Experiment with LLMs

ID E
GO1

 1

GO2

G 1

Reset 1

 tart 1

 tart 0

I am a hardware engineer and I need to generate a finite state machine written in

SystemVerilog. There are 3 states: IDLE, GO1, and GO2. The state machine

transitions to IDLE on 'Reset' = 1. When the 'Start' = 1, the state machine

transitions to GO1 and the output 'F' = 1. When in the GO1 state, the state machine

transitions to GO2 and the output 'G' = 1. The defaults for 'F' and 'G' are 0. When in

the GO2 state, the state machine transitions back to IDLE. Generate this state

machine as a SystemVerilog module.

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

30

Generative AI LLMs are already trained in

hardware description languages.

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

31

Look, UVM!

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

32

Summarization

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

33

Scripting a chat bot

Use framework

Specify LLM

Get prompt

Ask LLM

Print response

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

34

Equipping your chat bot
RAG

Tools

Memory

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

35

Agentic flow

A generative adversarial network

(GAN) is where a generator is critiqued by

a discriminator to make a better response.

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

36

An engineering example

Can we use AI to group

common failure modes?

Log file triage

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

37

AI limitations

LLM

LLM limitations:

• Bad at scale

(too many log files)

• Bad at long noisy text

• Distracted by random,

test-specific values

• RAG helps retrieval, but ...

messy raw data is messy

retrieval

• Better at semantic than

symbolic analysis

Solution

Pre-process with a script

• Filter random, test-specific values

• Extract error signatures

• Normalize into a compact form:

[FAIL] parity_mismatch in module A

[FAIL] addr_decode_error in module B

[FAIL] timeout waiting for handshake in module C

Cluster and categorize messages

• Use embeddings to group similar errors

• Use sentence level instead of word level

• Return signature groupings

Generate a report of results

• Simple reporting script code

Summarize with an LLM

• Summarize the signature groupings
in the desired format

Logs

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

38

Results
Results OK, but …

easier (and faster)

with a regular script

Output

CSV

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

39

EDA tools

`

o
p
e
n
a
i/g

p
t-4

o

EDA tools

call LLMs

to help

with tasks

Siemens EDA Questa One SFV. Screenshots used by permission.

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

40

AI or

not AI?

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

41

 What it's good at … What it's bad at …

 Understanding language Understanding context deeply

 Summarization Common sense reasoning

 Generating content quickly from its training Creativity and originality

 Automating repetitive tasks

"Chat, summarize AI"

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

42

Recommendations with AI

 Avoid … FYI …

 Blind trust in its outputs More resources → better performance

 AI on non-GPUs & small amounts

 of GPU memory

 Reasoning models mainly help with

 math & coding

 Lack of human oversight
 Quantized models may give faster

 results

 Non-private or insecure AI
 Use Vision Large Language Model

 (VLM) for text + images

 Over-reliance on AI LLMs are not great for parsing

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

43

Practical uses of AI

 Task How AI Can Help

 Automate code generation Generate RTL, testbenches, and assertions from specs.

 Chat-driven design assistant Convert design intents into RTL and testbenches via chat.

 Verification automation Summarize simulation results and flag anomalies.

 Design review and refactoring Detect issues and suggest improvements in HDL code.

 Continuous integration support Auto-comment or review on check-in.

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

44

References

1. https://poloclub.github.io/transformer-explainer/

2. Vaswani, Ashish; Noam M. Shazeer; et ali. “Attention is All you Need.” Neural Information Processing

Systems, 2017.

3. Kumar, Aman and Deepak Narayan Gadde. Generative AI Augmented Induction-based Formal

Verification. 37th IEEE International System-on-Chip Conference, Sep. 16-19, Dresden Germany, 2024.

4. Truong, Andy; Daniel Helström; Harry Duque; and Lars Viklund. "Clustering and Classification of UVM

Test Failures Using Machine Learning Techniques." DVCon Europe, 2018.

5. Ismail, K.A.; Ghany, M.A.A.E. Survey on Machine Learning Algorithms Enhancing the Functional

Verification Process. Electronics 2021, 10, 2688. https://doi.org/10.3390/electronics10212688

6. Thakur, Shailja; Baleegh Ahmad; et ali. "Benchmarking Large Language Models for Automated Verilog

RTL Code Generation." https://arxiv.org/abs/2212.11140. 2022.

https://poloclub.github.io/transformer-explainer/
https://poloclub.github.io/transformer-explainer/
https://poloclub.github.io/transformer-explainer/
https://poloclub.github.io/transformer-explainer/
https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/2407.18965
https://arxiv.org/pdf/2407.18965
https://arxiv.org/pdf/2407.18965
https://arxiv.org/pdf/2407.18965
https://dvcon-proceedings.org/document/clustering-and-classification-of-uvm-test-failures-using-machine-learning-techniques/
https://dvcon-proceedings.org/document/clustering-and-classification-of-uvm-test-failures-using-machine-learning-techniques/
https://www.mdpi.com/2079-9292/10/21/2688/pdf?version=1635942087
https://www.mdpi.com/2079-9292/10/21/2688/pdf?version=1635942087
https://doi.org/10.3390/electronics10212688
https://arxiv.org/pdf/2212.11140
https://arxiv.org/pdf/2212.11140
https://arxiv.org/abs/2212.11140

45C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

SoC Design &
Verification

FPGA & Hardware
Design

Embedded Software
& Arm

Python, AI & Machine Learning

» SystemVerilog » UVM » Formal
» SystemC » TLM-2.0

» VHDL » Verilog » SystemVerilog
» Tcl » AMD

» Emb C/C++ » Emb Linux » Yocto » RTOS
» Security » Android » Arm » Rust » Zephyr

» Python » Edge AI » Deep Learning

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

46

New Design and Verification courses

Advanced Formal Verification

➢ equips you to tackle complex verification challenges by taking full advantage of

formal verification in your engineering projects.

➢ forms a complete learning path with Essential Formal Verification course, which

gives you a solid, practical grounding in formal verification.

SystemVerilog for New Designers: Self-Paced course

➢ get project-ready for FPGA or ASIC design, including RTL synthesis, block-level

test benches, and FPGA design flows.

➢ high-quality content developed by expert instructors - now in self-paced format.

IC Verification with Python and cocotb
➢ learn cocotb principles, constructing different aspects of a verification environment

using cocotb and Verification strategies and tactics.

C
o
p
y
ri
g

h
t

©
 2

0
2
5
 D

o
u
lo

s
 –

 A
ll

R
ig

h
ts

 R
e
s
e
rv

e
d

47

Questions?

Any questions?

	Slide 1
	Slide 2: Where do we start?
	Slide 3
	Slide 4: Ask AI
	Slide 5
	Slide 6: The fundamental problem
	Slide 7: Chopping up language
	Slide 8: Embeddings
	Slide 9: Word relationships
	Slide 10: Attention to context
	Slide 11: Meaning has many dimensions
	Slide 12: Large language models
	Slide 13: Achieving thought
	Slide 14
	Slide 15: Hallucinations
	Slide 16: Example
	Slide 17
	Slide 18: LLMs
	Slide 19: Chaining
	Slide 20: Workflows and agents
	Slide 21: Document stores (RAG)
	Slide 22: Prompting
	Slide 23: Connecting to AI
	Slide 24: Model Context Protocol (MCP)
	Slide 25
	Slide 26: Use modes
	Slide 27: Where do I begin?
	Slide 28: Local LLM install
	Slide 29: Experiment with LLMs
	Slide 30: Generative AI
	Slide 31: Look, UVM!
	Slide 32: Summarization
	Slide 33: Scripting a chat bot
	Slide 34: Equipping your chat bot
	Slide 35: Agentic flow
	Slide 36: An engineering example
	Slide 37: AI limitations
	Slide 38: Results
	Slide 39: EDA tools
	Slide 40
	Slide 41: "Chat, summarize AI"
	Slide 42: Recommendations with AI
	Slide 43: Practical uses of AI
	Slide 44: References
	Slide 45
	Slide 46: New Design and Verification courses
	Slide 47: Questions?

