A
I 0\ KnowHQw
DOULOS TUTORIAL

Practlcal Asyn
SystemVerilog £

(4
O
)

e ,'“cer Doug Smith
S Fngineer / Instructor

N \v -
Asynchronous Assertions | [.\

DOULOS
module Counter (inputFClock,IReset,IEnable, initial begin ‘
Load, UpDn, input [7:0 ata, output [7:0] Q) ... Reset = 1;
always @ (posedge Reset or posedge Clock) initial forever
if (Reset) Clock = #5 ~Clock; #
Q <= 0;
else
if (Enable)
if (Load) f
O <= Data; Reset ___
else
/
if (UpDn) Q__ e X7)X o
Q<=0 + 1;
else J?
Q<=Q -1; .
endmodule assert property (@ (posedge Reset) Q == 0);

(" il this work? J ™ ,

Copyright © 2025 Doulos. All Rights Reserved

SystemVerilog Scheduler

From previous time slot

A\ 4

Preponed]

Active]

r—

Inactivej
N —

Reactive

) — e

Re-inactive

\—e

[Postponed]

(Assertion sample values J

¥ MODULE and
INTERFACE code
schedules events here

[Assertions evaluated]

PROGRAM code
schedules events here

.

To next time slot

N

DOULOS

B, 9

Difficulty with Async Checking N

DOULOS

assert property (@ (posedge Reset) Q == 0); 0 Qprev
Previous Preponed]
time slot otve) initial begin initial forever Qprev
, ... Reset = 1; Clock = #5 ~Clock;
¢ Inactive:]
1 0
NBA © | always @ (posedge Reset ...)
g g if (Reset) Q <= 0;
% Observed]
g Reactive “| 1 0
|Re-inactive (RTL not updated yet!)
N (
° " Re-NBA |

Postponed]

Next time slot 4

Difficulty with Async Checking N

DOULOS

0 Qprev
Previous Preponed]
time slot rotve) initial begin always @ (posedge Reset) 1 Qprev
) ... Reset = 1; assert (Q == 0),
¢ Inactive:]
NBA .) always @ (posedge Reset 0
3) if (Reset) Q <= 0;
% _____________________ Observed] __
S -
2 Reactive _ | 0
Re-inactive (RTL not updated yet!)
S (
° " Re-NBA

Postponed]
Next time slot 5

Difficulty with Async Checking SN

DOULOS

Previous Preponed]

I
=

) ... Reset

r—
Inactive :]

NBA | always @(posedge Reset ...) 1 0
g if (Reset) Q <= 0;

Observed]

~—

Reactive _ | 1 0
| Re-inactive | [Checking needs delayed /

)
| Re-NBA

Copyright © 2025 Doulos. All Rights Reserved

Postponed]

Next time slot 6

Copyright © 2025 Doulos. All Rights Reserved

Requirements for Async Assertions [.\

DOULOS

Portable across simulators

Deterministic

Thorough — checks in both directions

In other words, practical asynchronous assertions

See DVCon 2010 paper for other solutions:

“Asynchronous Behaviors Meet Their Match with SystemVerilog Assertions”

https://www.doulos.com/knowhow/systemverilog/asynchronous-behaviors-meet-their-match-with-systemverilog-assertions/

O KnowHQw

DOULOS TUTORIAL Delivering KnowHow www.doulos.com

.

Synchronous, oversampling, or fast clock N

DOULOS

FAST CLK |
CLK
POR - Z e

~

SYS_READY -

default clocking cb @ (posedge CLOCK); endclocking |

OR default clocking cb @ (posedge FAST CLK); endclocking |

assert property ($rose(POR) |-> ##[0:$] SYS READY); |
(What about glitches?)

Copyright © 2025 Doulos. All Rights Reserved

Event based methods 4 [Q\

DOULOS

POR . Z P

SYS_READY -

bit cover por = 0;
cover property (@ (posedge POR) 1) cover por

1;

Then ...

assert property (@(posedge SYS READY) cover por);

(" What if SYS_READY never occurs?)

Copyright © 2025 Doulos. All Rights Reserved

10

Copyright © 2025 Doulos. All Rights Reserved

Pros and Cons

Oversampling
Pro — works with any verification flow (sim, emulation, formal, prototyping)

Con — glitchy RTL behavior may go undetected

Coverage
Pro — easy to write sophisticated scenarios

Con — overlapping events undetected or event never occurs

[Solution? Delay assertion checking ...]

B, 9

N

DOULOS

11

DOULOS TUTORIAL palivering KnowHow isssaidoilbssai

Cause and -
Effect

Copyright © 2025 Doulos. All Rights Reserved

POR

SYS READY

assert property

_ A

DOULOS

(@ (posedge POR) 1 |-> (@ (posedge SYS READY) 1);

® This is a weak property

®* Make it strong

assert property

(@ (posedge POR)

1

| -> @ (posedge SYS READY) s eventually(l));

13

Copyright © 2025 Doulos. All Rights Reserved

Coverage Alternative

B, 9

oA

DOULOS

POR

SYS READY

bit coverage[string];
cover property (((posedge POR)
cover property ((¢ (posedge SYS READY)

1)
1)

coverage ["POR"] ++;
coverage ["SYS READY"]++;

final begin

if (coverage|["POR"]) begin
assert (coverage["SYS READY"]
Serror () ;
end
end

coverage [*]

o o

)

) else

[

coverage ["POR"]

Expect a cause for
each effect

14

V

O
&
)

Async signal causes RTL updates

%0

Copyright © 2025 Doulos. All Rights Reserved

clk |
reseti . ﬁ i
q__ 2 0_
$oae
assert property ((@ (posedge reset) g ==) s *

(Inputs from Preponed)

Preponed

Inactive

NBA

. 4

DOULOS

reset ==
q J——

reset = 1

RTL

q<=0

Observed

q::

_[Nee:d to sample here!]

15

B, 9

Program blocks 4 [;\

DOULOS
clk
reset . Z o
q 2 ; 0
(1 reset==0
[Inputs from Observed) _Preponed | __
program async_asserts;) I X
. initial Active reset = 1
: forever ‘ ! J
¢ d (posedge reset) .)
S assert (g ==) ; NBA) q<=0
E: endprogram . ‘
; Observed | ¢ ==
o [Scheduled in Reactive] | Reactive

16

Copyright © 2025 Doulos. All Rights Reserved

Sequence event

clk

\o\

reset .

-
~

—~—
-

sequence seq reset event;
@ (posedge reset) 1;
endsequence

always
@ (seq_reset event) assert (q ==) ;

(Sequence end point in Observed)

N

DOULOS
Preponed ref?t -
L | J q==
Active reset = 1
:
NBA q<=0
Observed q==

17

Copyright © 2025 Doulos. All Rights Reserved

.

Procedural concurrent assertions [.\

DOULOS
clk
reset . o |
(Procedural concurrent assertions mature in Observed) . .' '2 r 5 '
always @ (posedge reset)
assert property (1) , Preponed reset ==
assert (g ==) ; (\ I q==
| assert() executes in Observed) Active | reset =1
OR :
NBA q<=0
always comb !
assert property ((@ (posedge reset) 1) () L
assert (g ==) g | Observed | ©

18

-

’..ll!"' -
A timing delay Lo\

DOULOS
clk
Z I
reset . I
! \/
q - 2 e 0
assign #l1 delayed reset = reset;
assert property ((@ (posedge delayed reset) g == 0);
¢ - #
2 Preponed reft Preponed q== reset ==
& | q== : Preploned q==
2 Ac’ilve reset =1 Ac’ilve Active reset = 1
b I
g <=0
£ NBA q NBA NBA q<=0
3 I
g Observed q==
8

assign #lstep delayed reset = reset;

assert property ((@ (posedge delayed reset) == 0);

Postponed q==

Copyright © 2025 Doulos. All Rights Reserved

assert property

POR

SYS READY

SYSGOOD/ / / / / /)<

N

DOULOS

(

Multiclocked property)

(@ (posedge POR) 1 |-> (@ (posedge SYS READY)

| -> @ (posedge SYS GOOD) s _eventually(1l));

s_eventually (

1)

Preponed

Active

NBA

POR =1

Preponed

Active

NBA

SYS_READY = 1

Preponed

Active

SYS GOOD = ...

NBA

20

Copyright © 2025 Doulos. All Rights Reserved

Overlapping behavior y Lo\

DOULOS

POR

SYS_ READY

SYSGOOD/ / / / / /)@{,

always comb
assert property (((posedge POR) 1 |-> (@ (posedge SYS READY) s eventually (1))

assert (SYS GOOD == ...);
[assert() executes in Observed)
Preponed Preponed
| |
: B : SYS_READY = 1
ACtI'Ve POR =1 ACtI'Ve SYS_GOOD = ...
NBA NBA
|
|[Observed | svs GOOD ==

21

O
&
)
%0

o
o)
>
c
o)
(2]
Q

14
(2]

@

<

o

14

<
B

o
>
o}

(@]

Te]

I

o

N

©

=
<

2
<
s
a
o}

O

™

Async timing window

POR 5 — j? ;
sysrepoy [%
property prop check timing;

realtime start;
realtime finish;
@ (posedge POR) (1, start = Srealtime)
@ (posedge SYS READY) (1, finish = $realtime)
(fEinish - start) == timing window;

endproperty

assert property (prop check timing);

| —>

##0

B, 9

oA

DOULOS

22

O KnowHQw

DOULOS TUTORIAL Delivering KnowHow www.doulos.com

The Effect
its Cause

&
e§$

©
o
>
>
(]
n
O]
4
n
2
<
°
4
<
%
ke
>
@]
a
e}
AN
o
AN
©
b
C
o
2
>
Q.
o
(@)

Q\

&
xS

Async event caused by another event

B, 9

SYS READY

bit cov_por;
cover property (((posedge POR) 1) cov por = 1;
assert property (((posedge SYS READY) cov por);

OR sequence seq past por;

@ (posedge POR) 1 ##1 @ (posedge SYS READY) 1;

endsequence

assert property (((posedge SYS READY) seq past por.triggered);

(Not as portable)

oA

DOULOS

24

Copyright © 2025 Doulos. All Rights Reserved

Overlapping effect-cause

POR |

SYS READY .

sequence seq past s
@ (posedge POR) 1 [##0

endsequence

assert property ((@ (posedge SYS READY) seq past por.triggered);

. 4

~o —PFo

@ (posedge SYS READY) 1;

(Avoid - inconsistent support across tools)

DOULOS

25

©
o
>
>
(]
n
O]
4
n
2
<
°
4
<
%
ke
>
@]
a
e}
AN
o
AN
©
b
C
o
2
>
Q.
o
(@)

RTL updated by async event

clk

reset .

q 2

—~
-

(D:_FO\

bit cov_reset;
always @ (posedge reset) cov reset =

always comb
assert property (@(g) 1)
assert (cov_reset)
cov_reset = 0;
else $error (..);

1;

B, 9

N

DOULOS

26

o
o)
>
c
o)
(2]
Q

14
(2]

@

<

o

14

<
B

o
>
o}

(@]

Te]

I

o

N

©

=
<

2
<
s
a
o}

O

.

Multiple causes for a sequence of events

SYS READY

SYS_GOOD

POR | | e J .
MEM READY | . <\/,L2\
: : : : // :

\O\
"y

bit cov_por, cov_mem ready,
cover property (@ (posedge
cover property (@ (posedge
cover property (@ (posedge

assert property (@ (posedge

cov_sys ready;

POR) l) cov por = 1;
MEM READY) 1) cov_mem ready = 1;
SYS READY) 1) cov_sys ready

I
[

SYS GOOD) cov_por &é&
cov_mem ready &é&
cov_sys ready);

N

DOULOS

27

Q
2
<

%0

o
o)
>
c
o)
(2]
Q

14
(2]

@

<

o

14

<
B

o
>
o}

(@]

Te]

I

o

N

©

=
<

2
<
s
a
o}

O

ke

.\O

Async timing window effect-and-cause

R T
L et
SYS_READY . . L——f

bit cov _por;

realtime start;

cover property (@ (posedge POR) 1) begin
cov_por = 1;
start = Srealtime;

end

assert property (@(posedge SYS READY) cov por &&
(($realtime - start) <= timing window));

B, 9

N

DOULOS

28

O KnowHQw

DOULOS TUTORIAL Delivering KnowHow www.doulos.com

ed

Copyright © 2025 Doulos. All Rights Reserv

Asynchronous communication

Common types:
Clock domain crossing
Interface handshaking

Solution: multi-clocked sequences

. 4

DOULOS

30

Copyright © 2025 Doulos. All Rights Reserved

Clock domain crossing

-

Ty .
PO

DOULOS

sequence flag; !'line ##1 line[*6] ##1 'line; endsequence
sequence irqg; $fell(nIRQ); endsequence

C unclocked)

line_ ck [1]1

s

s

s

s

yuuuuy

cpu_ck

line 1?/—.—.—.—.—.—.\—T/
>t

|
##1

nIRQ

/

Csampling for $fell

assert property
(@ (posedge line ck

) flag

P

n

(clock handover)

/

##

1l @ (posedge cpu ck) irqg);

31

Copyright © 2025 Doulos. All Rights Reserved

Asynchronous protocol - UART

clk, reset

VY

System i/f

|

start
bit «+—— 8 data bits

Serial (UART) E_
protocol: :

cts

> rts = Tx

Module

UART

» data)

»cts

rts ~ Rx

data)

previous frame's
stop bit, or idle line

A

frame (11 bit times)

_v -

DOULOS

32

2 \"v -
Async transfer with sampling | [.\

DOULOS

sequence handshake;

@ (posedge rts) 1 |##1
@ (posedge cts) 1; -
endsequence ,/}W’X

" \ sample_clk
cts ‘Hr (clock handover >
\

= S%p N

assert property (handshake ||=>|check trans);

sequence check trans;

logic [7:0] tr; // Local variable

@ (posedge sample clk) 1 ##1 // Skip start bit
(1, tr[0] = data) ##1 (1, tr[l] = data) ##1
(1, tr[2] = data) ##1 (1, tr[3] = data) ##1
(1, tr[4] = data) ##1 (1, tr[5] = data) ##1
(1, tr[6] = data) ##1 (1, tr[7] = data) ##1
data === “tr ##1 // Check parity
data === 1; // Check stop bit

endsequence

33

Copyright © 2025 Doulos. All Rights Reserved

Simplified SCSI I/O

Module
SCSI

FSM

sreg_t state
data_t datareg

bsy
sel
atn

c/d
i/o
msg

req
ack

> Arbitration

> Instructions

databus

DOULOS

34

Copyright © 2025 Doulos. All Rights Reserved

SCSI protocol

BSY
SEL
ATN

C/D
/0O

MSG

REQ
ACK

Data(7-0,P)

(Arbitration handshake >

.

PN

< N\
\
\
i \
Info transfer handshake
/ P J P, P
_ _ /\

A X A

N

DOULOS

35

Copyright © 2025 Doulos. All Rights Reserved

Handshaking assertion [.\

DOULOS

sequence data cmd;
lcd && 10 && 'msg;

endsequence \\\\\\\

property check data;

R

data t txdata; // Local variable

@(Poseéff/fiklt:;4:RTLSmﬂdS)
v

(state"== TX, txdata = datareg)||=

databus

@ (posedge REQ) data cmd |##1

(clock handover)

@ (posedge ACK) databus == txdata;
endproperty

assert property (check data);
36

O KnowHQw

DOULOS TUTORIAL Delivering KnowHow www.doulos.com

Copyright © 2025 Doulos. All Rights Reserved

Cause and effect scenarios

(1) Async signal causes another async event

(2) Async signal causes RTL updates

(3) Async event causes async event with updates

(4) Async timing window

_ A

DOULOS

.
SYS_READY wi .
clk |
reset . j' 1 1
q___ 2 R 0
SYS_READY A ,e'\
SYS_GOOD %
PR {—
. Tns?
SYS_READY i

38

Copyright © 2025 Doulos. All Rights Reserved

The effect and the cause scenarios

(5) Async event caused by another event

(6) RTL updated by async event

(7) Multiple causes for a sequence of events

(8) Async timing window effect-and-cause

N

DOULOS

SYS_READY [L

clk

reset .

—I . .
MEM_READY | | |
SYS_READY - | | \
SYS_GOOD - : : ‘

PR

SYs READY © . —

39

Recommendations

Asynchronous bus protocols
Use multi-clocked properties (usually straightforward)

Asynchronous controls
Oversampling generally good enough
Coverage approach works in most cases (plus bonus of functional coverage)
Other scenarios, find a way to delay the checker’s sampling

Copyright © 2025 Doulos. All Rights Reserved

A

Lo\

DOULOS

40

A

lo\

DOULOS Delivering KnowHow www.doulos.com
SoC Design & » SystemVerilog » UVM » Formal
Verification » SystemC » TLM-2.0

FPGA & Hardware » VHDL » Verilog » SystemVerilog

Design » Tcl » AMD

Embedded Software » Emb C/C++ » Emb Linux » Yocto » RTOS
& Arm » Security » Android » Arm » Rust » Zephyr

Python, Al & Machine Learning » Python » Edge Al » Deep Learning

&

LEARNING

Examples available at: https. //edaplayground com/x/qB72

SystemVerllog ' UVM @ g ‘

SECURE
EMBEDDED

Copyright © 2025 Doulos. All Rights Reserved

New Design and Verification courses
DOULOS

Advanced Formal Verification

» equips you to tackle complex verification challenges by taking full advantage of
formal verification in your engineering projects.

» forms a complete learning path with Essential Formal Verification course, which
gives you a solid, practical grounding in formal verification.

SystemVerilog for New Designers: Self-Paced course

» get project-ready for FPGA or ASIC design, including RTL synthesis, block-level
test benches, and FPGA design flows.

» high-quality content developed by expert instructors - now in self-paced format.

IC Verification with Python and cocotb

» learn cocotb principles, constructing different aspects of a verification environment
using cocotb and Verification strategies and tactics.

42

O KnowHQw

DOULOS TUTORIAL Delivering KnowHow www.doulos.com

	Slide 1
	Slide 2: Asynchronous Assertions
	Slide 3: SystemVerilog Scheduler
	Slide 4: Difficulty with Async Checking
	Slide 5: Difficulty with Async Checking
	Slide 6: Difficulty with Async Checking
	Slide 7: Requirements for Async Assertions
	Slide 8: Common Methods for Asynchronous Checking
	Slide 9: Synchronous, oversampling, or fast clock
	Slide 10: Event based methods
	Slide 11: Pros and Cons
	Slide 12: Cause and Effect
	Slide 13: Async signal causes another async event
	Slide 14: Coverage Alternative
	Slide 15: Async signal causes RTL updates
	Slide 16: Program blocks
	Slide 17: Sequence event
	Slide 18: Procedural concurrent assertions
	Slide 19: A timing delay
	Slide 20: Async event causes async event with updates
	Slide 21: Overlapping behavior
	Slide 22: Async timing window
	Slide 23: The Effect and its Cause
	Slide 24: Async event caused by another event
	Slide 25: Overlapping effect-cause
	Slide 26: RTL updated by async event
	Slide 27: Multiple causes for a sequence of events
	Slide 28: Async timing window effect-and-cause
	Slide 29: Asynchronous Communication
	Slide 30: Asynchronous communication
	Slide 31: Clock domain crossing
	Slide 32: Asynchronous protocol - UART
	Slide 33: Async transfer with sampling
	Slide 34: Simplified SCSI I/O
	Slide 35: SCSI protocol
	Slide 36: Handshaking assertion
	Slide 37: Summary
	Slide 38: Cause and effect scenarios
	Slide 39: The effect and the cause scenarios
	Slide 40: Recommendations
	Slide 41
	Slide 42: New Design and Verification courses
	Slide 43: Questions?

