
C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

1

Practical Asynchronous 

SystemVerilog Assertions

Presenter: Doug Smith
Engineer / Instructor



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

2

Asynchronous Assertions

module Counter ( input Clock, Reset, Enable, 

Load, UpDn, input [7:0] Data, output [7:0] Q );

always @( posedge Reset or posedge Clock )

   if ( Reset )

 Q <= 0;

   else

 if ( Enable )

    if ( Load )

       Q <= Data;

    else

       if ( UpDn )

   Q <= Q + 1;

       else

   Q <= Q – 1;

endmodule

initial begin

   ... Reset = 1;

initial forever

   Clock = #5 ~Clock;

Reset

6 07 2Q

?

assert property ( @(posedge Reset) Q == 0 ); 

Will this work?



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

3

SystemVerilog Scheduler

Inactive

NBA

Active

Re-NBA

Preponed

Observed

Re-inactive

Reactive

PROGRAM code 

schedules events here

MODULE and 

INTERFACE code 

schedules events here

=

#0
<=

$strobe,

$monitor

<= #N

#N ...

=

#0
#N ...

<=

From previous time slot

To next time slot

Assertion sample values

Assertions evaluated

Postponed

<=



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

4

Inactive

NBA

Active

Re-NBA

Preponed

Observed

Re-inactive

Reactive

=

#0
<=

$strobe,

$monitor

=

#0

<=

Previous 

time slot

Next time slot

Postponed

<=

Reset Q

0 Qprev

1 Qprev

1 0

1 0

Difficulty with Async Checking

initial begin

   ... Reset = 1;
initial forever

   Clock = #5 ~Clock;

always @( posedge Reset ...)

   if ( Reset ) Q <= 0; ...

assert property ( @(posedge Reset) Q == 0 ); 

RTL not updated yet!



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

5

Inactive

NBA

Active

Re-NBA

Preponed

Observed

Re-inactive

Reactive

=

#0
<=

$strobe,

$monitor

=

#0

<=

Previous 

time slot

Next time slot

Postponed

<=

always @(posedge Reset) 

   assert ( Q == 0 ); 

Reset Q

0 Qprev

1 Qprev

1 0

1 0

Difficulty with Async Checking

initial begin

   ... Reset = 1;

always @( posedge Reset ...)

   if ( Reset ) Q <= 0; ...

RTL not updated yet!



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

6

Inactive

NBA

Active

Re-NBA

Preponed

Observed

Re-inactive

Reactive

=

#0
<=

$strobe,

$monitor

=

#0

<=

Previous 

time slot

Next time slot

Postponed

<=

Reset Q

0 Qprev

1 Qprev

1 0

1 0

Difficulty with Async Checking

initial begin

   ... Reset = 1;

always @( posedge Reset ...)

   if ( Reset ) Q <= 0; ...

Checking needs delayed



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

7

Requirements for Async Assertions

Portable across simulators

Deterministic

Thorough – checks in both directions

In other words, practical asynchronous assertions

See DVCon 2010 paper for other solutions:

“Asynchronous Behaviors Meet Their Match with SystemVerilog Assertions”

https://www.doulos.com/knowhow/systemverilog/asynchronous-behaviors-meet-their-match-with-systemverilog-assertions/

   

         

 

 

   

         

 

 



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

8

Common Methods 

for Asynchronous Checking



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

9

default clocking cb @(posedge FAST_CLK); endclocking

Synchronous, oversampling, or fast clock

        

   

   

         

 

 

assert property ( $rose(POR) |-> ##[0:$] SYS_READY );

default clocking cb @(posedge CLOCK); endclocking

What about glitches?

OR



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

10

Event based methods

        

   

   

         

 

 

bit cover_por = 0;

cover property ( @(posedge POR) 1 ) cover_por = 1;

assert property ( @(posedge SYS_READY) cover_por );

Then …

What if SYS_READY never occurs?



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

1111

Pros and Cons

Oversampling

Pro – works with any verification flow (sim, emulation, formal, prototyping)

Con – glitchy RTL behavior may go undetected

Coverage

Pro – easy to write sophisticated scenarios

Con – overlapping events undetected or event never occurs

Solution? Delay assertion checking …



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

12

Cause and 

Effect



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

1313

Async signal causes another async event

• This is a weak property

• Make it strong

assert property ( @(posedge POR) 1 |-> @(posedge SYS_READY) 1 );

assert property ( @(posedge POR) 1 |-> @(posedge SYS_READY) s_eventually(1) );



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

14

Coverage Alternative

bit coverage[string];

cover property ( @(posedge POR      ) 1) coverage["POR"      ]++;

cover property ( @(posedge SYS_READY) 1) coverage["SYS_READY"]++;

final begin

  if ( coverage["POR"] ) begin

     assert ( coverage["SYS_READY"] == coverage["POR"] ) else

        $error( ... );

  end

end Expect a cause for 

each effect

POR SYS_READY

1 1

coverage[*]

Scenario 1 – Async signal causes another async event



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

15

Async signal causes RTL updates

assert property ( @(posedge reset) q == 0 );

   

     

   

 

 

Inactive

NBA

Active

Preponed

Observed

reset == 0

q == 2 

q <= 0 

reset = 1 

RTL

q == 0

Need to sample here!

q == 2 

Inputs from Preponed



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

16

Program blocks

program async_asserts;

   initial 

      forever

        @(posedge reset) 

            assert ( q == 0 );

endprogram

   

     

   

 

 

NBA

Active

Preponed

Observed

reset == 0

q == 2 

q <= 0 

q == 0

reset = 1 

Scheduled in Reactive

Inputs from Observed

Reactive



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

17

Sequence event

sequence seq_reset_event;

  @(posedge reset) 1;

endsequence

always

   @(seq_reset_event) assert ( q == 0 );

   

     

   

 

 

NBA

Active

Preponed

Observed

reset == 0

q == 2 

q <= 0 

q == 0

reset = 1 

Sequence end point in Observed



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

18

Procedural concurrent assertions

always @(posedge reset)

   assert property ( 1 )

      assert ( q == 0 );

   

     

   

 

 

NBA

Active

Preponed

Observed

reset == 0

q == 2 

q <= 0 

q == 0

reset = 1 

Procedural concurrent assertions mature in Observed

always_comb

   assert property ( @(posedge reset) 1 )

      assert ( q == 0 );

assert() executes in Observed

OR



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

19

NBA

Active

Preponed

Observed

reset == 0

q == 2 

q <= 0 

q == 0

reset = 1 

Postponed q == 0

#t

A timing delay

assign #1 delayed_reset = reset;

  assert property ( @(posedge delayed_reset) q == 0 );

   

     

   

 

 

NBA

Active

Preponed
reset == 0

q == 2 

q <= 0 

reset = 1 

#t

NBA

Active

Preponed q == 0

#t+1

assign #1step delayed_reset = reset;

  assert property ( @(posedge delayed_reset) q == 0 );



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

20

Async event causes async event with updates

assert property (@(posedge POR) 1 |-> @(posedge SYS_READY) s_eventually(1) 

                 |-> @(posedge SYS_GOOD) s_eventually(1));

NBA

Active

Preponed

POR = 1 

#t

NBA

Active

Preponed

SYS_READY = 1

#t+N1

NBA

Active

Preponed

SYS_GOOD = …

#t+N2

Multiclocked property



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

21

Overlapping behavior

always_comb

  assert property ( @(posedge POR) 1 |-> @(posedge SYS_READY) s_eventually(1))

    assert(SYS_GOOD == ...);

assert() executes in Observed

NBA

Active

Preponed

POR = 1 

#t

NBA

Active

Preponed

SYS_READY = 1

SYS_GOOD = …

#t+N

Observed SYS_GOOD == ...



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

22

Async timing window

property prop_check_timing;

   realtime start;

   realtime finish;

   @(posedge POR)       (1, start  = $realtime) |->

   @(posedge SYS_READY) (1, finish = $realtime) ##0

   (finish - start) == timing_window;

endproperty

assert property ( prop_check_timing );



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

23

The Effect and 

its Cause



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

2424

bit cov_por;

cover  property ( @(posedge POR ) 1  ) cov_por = 1;

assert property ( @(posedge SYS_READY) cov_por );

Async event caused by another event

sequence seq_past_por;

   @(posedge POR) 1 ##1 @(posedge SYS_READY) 1;

endsequence

assert property ( @(posedge SYS_READY) seq_past_por.triggered );

OR

Not as portable



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

2525

Overlapping effect-cause

sequence seq_past_por;
   @(posedge POR) 1 ##0 @(posedge SYS_READY) 1;
endsequence

assert property ( @(posedge SYS_READY) seq_past_por.triggered );

Avoid - inconsistent support across tools

   

         

 

 

Scenario 5 – Async event causes by another event



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

2626

RTL updated by async event

bit cov_reset;

always @(posedge reset) cov_reset = 1;

always_comb

    assert property ( @(q) 1 )

       assert ( cov_reset ) 

          cov_reset = 0;

       else $error ( … );

   

     

   

 

 



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

2727

Multiple causes for a sequence of events

   

         

         

        

 

 

 

 

bit cov_por, cov_mem_ready, cov_sys_ready;

cover  property ( @(posedge POR)       1) cov_por = 1;

cover  property ( @(posedge MEM_READY) 1) cov_mem_ready = 1;

cover  property ( @(posedge SYS_READY) 1) cov_sys_ready = 1;

assert property ( @(posedge SYS_GOOD) cov_por && 

                                      cov_mem_ready && 

                                      cov_sys_ready );



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

2828

Async timing window effect-and-cause

   

         

      

 

 

bit cov_por;

realtime start;

cover property ( @(posedge POR) 1 ) begin

   cov_por = 1;

   start = $realtime;

end

  

assert property ( @(posedge SYS_READY) cov_por && 

                  (($realtime - start) <= timing_window ));



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

29

Asynchronous 

Communication



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

3030

Asynchronous communication

Common types:

Clock domain crossing

Interface handshaking

Solution:  multi-clocked sequences



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

31

Clock domain crossing

sequence flag; !line ##1 line[*6] ##1 !line; endsequence

sequence irq; $fell( nIRQ ); endsequence

unclocked

line_ck

cpu_ck

line

##1

assert property 

   ( @(posedge line_ck) flag ##1 @(posedge cpu_ck) irq );

nIRQ

clock handover
sampling for $fell



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

32

Asynchronous protocol - UART

Module

UART

Tx

Rx

clk, reset

System i/f

Serial (UART)

protocol:

start

bit 8 data bits

parity

lsb msb

stop

bit

frame (11 bit times)
previous frame's

stop bit, or idle line

cts
rts
data

cts
rts
data



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

33

Async transfer with sampling

assert property ( handshake |=> check_trans );

sequence check_trans;

  logic [7:0] tr;    // Local variable

  @(posedge sample_clk)  1    ##1  // Skip start bit

      (1, tr[0] = data) ##1 (1, tr[1] = data) ##1

      (1, tr[2] = data) ##1 (1, tr[3] = data) ##1

      (1, tr[4] = data) ##1 (1, tr[5] = data) ##1

      (1, tr[6] = data) ##1 (1, tr[7] = data) ##1

      data === ^tr      ##1  // Check parity

      data === 1;   // Check stop bit

endsequence

sample_clkrts
cts

s
to

p

s
ta

rt

p
a

ri
ty

sequence handshake;

 @(posedge rts) 1 ##1

 @(posedge cts) 1;

endsequence

clock handover



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

34

Simplified SCSI I/O

Module

SCSI

c/d
i/o
msg

bsy
sel
atn

FSM

sreg_t state

data_t datareg
req
ack

databus

Instructions

Arbitration



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

35

SCSI protocol

SEL

BSY

Data(7-0,P)

C/D

I/O

MSG

REQ

ACK

ATN

Info transfer handshake

Arbitration handshake



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

36

Handshaking assertion

property check_data;

 data_t txdata;   // Local variable

 

 @(posedge clk) 

 ( state == TX, txdata = datareg )|=>

 @(posedge REQ) data_cmd ##1

 @(posedge ACK) databus == txdata;

endproperty

assert property ( check_data );

databus

c/d

i/o

msg

req

ack

TX

datareg

state

clock handover

sequence data_cmd;

  !cd && io && !msg;

endsequence

RTL signals



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

37

Summary



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

3838

Cause and effect scenarios

(1) Async signal causes another async event

(2) Async signal causes RTL updates

(3) Async event causes async event with updates

(4) Async timing window

   

     

   

 

 



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

3939

The effect and the cause scenarios

(5) Async event caused by another event

(6) RTL updated by async event

(7) Multiple causes for a sequence of events

(8) Async timing window effect-and-cause

   

     

   

 

 

   

         

      

 

 

   

         

         

        

 

 

 

 



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

4040

Recommendations

Asynchronous bus protocols
Use multi-clocked properties (usually straightforward)

Asynchronous controls
Oversampling generally good enough

Coverage approach works in most cases (plus bonus of functional coverage) 

Other scenarios, find a way to delay the checker’s sampling



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

41

SoC Design & 
Verification

FPGA & Hardware 
Design

Embedded Software
& Arm

Python, AI & Machine Learning

» SystemVerilog » UVM » Formal
» SystemC  » TLM-2.0

» VHDL  » Verilog  » SystemVerilog  
» Tcl  » AMD

» Emb C/C++ » Emb Linux » Yocto » RTOS 
» Security » Android » Arm » Rust » Zephyr 

» Python » Edge AI » Deep Learning

Examples available at:   https://edaplayground.com/x/qB72



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

42

New Design and Verification courses

Advanced Formal Verification

➢ equips you to tackle complex verification challenges by taking full advantage of 

formal verification in your engineering projects.

➢ forms a complete learning path with Essential Formal Verification course, which 

gives you a solid, practical grounding in formal verification.

SystemVerilog for New Designers: Self-Paced course

➢ get project-ready for FPGA or ASIC design, including RTL synthesis, block-level 

test benches, and FPGA design flows.

➢ high-quality content developed by expert instructors - now in self-paced format.

IC Verification with Python and cocotb
➢ learn cocotb principles, constructing different aspects of a verification environment 

using cocotb and Verification strategies and tactics.



C
o
p

y
ri

g
h

t 
©

 2
0

2
5

 D
o
u

lo
s
. 
A

ll 
R

ig
h

ts
 R

e
s
e

rv
e

d

43

Questions?


	Slide 1
	Slide 2: Asynchronous Assertions
	Slide 3: SystemVerilog Scheduler
	Slide 4: Difficulty with Async Checking
	Slide 5: Difficulty with Async Checking
	Slide 6: Difficulty with Async Checking
	Slide 7: Requirements for Async Assertions
	Slide 8: Common Methods  for Asynchronous Checking
	Slide 9: Synchronous, oversampling, or fast clock
	Slide 10: Event based methods
	Slide 11: Pros and Cons
	Slide 12: Cause and  Effect
	Slide 13:          Async signal causes another async event
	Slide 14: Coverage Alternative
	Slide 15:          Async signal causes RTL updates
	Slide 16: Program blocks
	Slide 17: Sequence event
	Slide 18: Procedural concurrent assertions
	Slide 19: A timing delay
	Slide 20:          Async event causes async event with updates
	Slide 21: Overlapping behavior
	Slide 22:          Async timing window
	Slide 23: The Effect and  its Cause
	Slide 24:          Async event caused by another event
	Slide 25: Overlapping effect-cause
	Slide 26:           RTL updated by async event
	Slide 27:           Multiple causes for a sequence of events
	Slide 28:          Async timing window effect-and-cause
	Slide 29: Asynchronous  Communication
	Slide 30: Asynchronous communication
	Slide 31: Clock domain crossing
	Slide 32: Asynchronous protocol - UART
	Slide 33: Async transfer with sampling
	Slide 34: Simplified SCSI I/O
	Slide 35: SCSI protocol
	Slide 36: Handshaking assertion
	Slide 37: Summary
	Slide 38: Cause and effect scenarios
	Slide 39: The effect and the cause scenarios
	Slide 40: Recommendations
	Slide 41
	Slide 42: New Design and Verification courses
	Slide 43: Questions?

