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Asynchronous Assertions | [.\

DOULOS
module Counter ( inputFClock,IReset,IEnable, initial begin ‘
Load, UpDn, input [7:0 ata, output [7:0] Q ) ... Reset = 1;
always @ ( posedge Reset or posedge Clock ) initial forever
if ( Reset ) Clock = #5 ~Clock; #
Q <= 0;
else
if ( Enable )
if ( Load ) f
O <= Data; Reset ___
else
/
if ( UpDn ) Q__ e X7 )X o
Q<=0 + 1;
else J?
Q<=Q -1; .
endmodule assert property ( @ (posedge Reset) Q == 0 );

(" il this work? J ™ ,
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SystemVerilog Scheduler

From previous time slot

A\ 4

Preponed ]

Active ]

r—

Inactivej
N —

Reactive

) — e

Re-inactive

\—e

[ Postponed ]

( Assertion sample values J

¥ MODULE and
INTERFACE code
schedules events here

[ Assertions evaluated ]

PROGRAM code
schedules events here

.

To next time slot

N

DOULOS



B, 9

Difficulty with Async Checking N

DOULOS

assert property ( @ (posedge Reset) Q == 0 ); 0 Qprev
Previous Preponed ]
time slot otve ) initial begin initial forever Qprev
, ... Reset = 1; Clock = #5 ~Clock;
¢ Inactive:]
1 0
NBA © | always @ ( posedge Reset ...)
g g if ( Reset ) Q <= 0;
% Observed ]
g Reactive “| 1 0
|Re-inactive ( RTL not updated yet! )
N (
° " Re-NBA |

Postponed ]

Next time slot 4



Difficulty with Async Checking N

DOULOS

0 Qprev
Previous Preponed ]
time slot rotve ) initial begin always @ (posedge Reset) 1 Qprev
) ... Reset = 1; assert (Q == 0 ),
¢ Inactive:]
NBA . ) always @ ( posedge Reset 0
3 ) if ( Reset ) Q <= 0;
% _____________________ Observed ] ________________________________________________________________________________________________________________________________________
S -
2 Reactive _ | 0
Re-inactive ( RTL not updated yet! )
S (
° " Re-NBA

Postponed ]
Next time slot 5




Difficulty with Async Checking SN

DOULOS

Previous Preponed ]

I
=

) ... Reset

r—
Inactive :]

NBA | always @( posedge Reset ...) 1 0
g if ( Reset ) Q <= 0;

Observed ]

~—

Reactive _ | 1 0
| Re-inactive | [ Checking needs delayed /

)
| Re-NBA

Copyright © 2025 Doulos. All Rights Reserved

Postponed ]

Next time slot 6
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Requirements for Async Assertions [.\

DOULOS

Portable across simulators

Deterministic

Thorough — checks in both directions

In other words, practical asynchronous assertions

See DVCon 2010 paper for other solutions:

“Asynchronous Behaviors Meet Their Match with SystemVerilog Assertions”

https://www.doulos.com/knowhow/systemverilog/asynchronous-behaviors-meet-their-match-with-systemverilog-assertions/
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Synchronous, oversampling, or fast clock N

DOULOS

FAST CLK |
CLK
POR - Z e

~

SYS_READY -

default clocking cb @ (posedge CLOCK); endclocking |

OR default clocking cb @ (posedge FAST CLK); endclocking |

assert property ( $rose(POR) |-> ##[0:$] SYS READY ); |
( What about glitches? )

Copyright © 2025 Doulos. All Rights Reserved



Event based methods 4 [Q\

DOULOS

POR . Z P

SYS_READY -

bit cover por = 0;
cover property ( @ (posedge POR) 1 ) cover por

1;

Then ...

assert property ( @(posedge SYS READY) cover por );

(" What if SYS_READY never occurs? )

Copyright © 2025 Doulos. All Rights Reserved
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Pros and Cons

Oversampling
Pro — works with any verification flow (sim, emulation, formal, prototyping)

Con — glitchy RTL behavior may go undetected

Coverage
Pro — easy to write sophisticated scenarios

Con — overlapping events undetected or event never occurs

[ Solution? Delay assertion checking ... ]

B, 9

N

DOULOS
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Effect
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POR

SYS READY

assert property

_ A

DOULOS

( @ (posedge POR) 1 |-> (@ (posedge SYS READY) 1 );

® This is a weak property

®* Make it strong

assert property

( @ (posedge POR)

1

| -> @ (posedge SYS READY) s eventually(l) );

13
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Coverage Alternative

B, 9

oA

DOULOS

POR

SYS READY

bit coverage[string];
cover property ( ( (posedge POR )
cover property ( (¢ (posedge SYS READY)

1)
1)

coverage [ "POR" ] ++;
coverage [ "SYS READY"]++;

final begin

if ( coverage|["POR"] ) begin
assert ( coverage["SYS READY" ]
Serror ( ) ;
end
end

coverage [ *]

o o

)

) else

[

coverage [ "POR" ]

Expect a cause for
each effect

14



V

O
&
)

Async signal causes RTL updates

%0
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clk |
reseti . ﬁ i
q__ 2 0_
$oae
assert property ( (@ (posedge reset) g == ) s *

( Inputs from Preponed)

Preponed

Inactive

NBA

. 4

DOULOS

reset ==
q J——

reset = 1

RTL

q<=0

Observed

q::

_[ Nee:d to sample here! ]

15
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Program blocks 4 [;\

DOULOS
clk
reset . Z o
q 2 ; 0
( 1 reset==0
[Inputs from Observed) _Preponed | __
program async_asserts; ) I X
. initial Active reset = 1
: forever ‘ ! J
¢ d (posedge reset) . )
S assert ( g == ) ; NBA ) q<=0
E: endprogram . ‘
; Observed | ¢ ==
o [ Scheduled in Reactive ] | Reactive

16
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Sequence event

clk

\o\

reset .

-
~

—~—
-

sequence seq reset event;
@ (posedge reset) 1;
endsequence

always
@ (seq_reset event) assert ( q == ) ;

( Sequence end point in Observed )

N

DOULOS
Preponed ref?t -
L | J q==
Active reset = 1
:
NBA q<=0
Observed q==

17
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.

Procedural concurrent assertions [.\

DOULOS
clk
reset . o |
( Procedural concurrent assertions mature in Observed ) . .' '2 r 5 '
always @ (posedge reset)
assert property ( 1 ) , Preponed reset ==
assert ( g == ) ; ( \ I q==
| assert() executes in Observed ) Active | reset =1
OR :
NBA q<=0
always comb !
assert property ( (@ (posedge reset) 1 ) ( ) L
assert ( g == ) g | Observed | ©

18
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DOULOS
clk
Z I
reset . I
! \/
q - 2 e 0
assign #l1 delayed reset = reset;
assert property ( (@ (posedge delayed reset) g == 0 );
¢ - #
2 Preponed reft Preponed q== reset ==
& | q== : Preploned q==
2 Ac’ilve reset =1 Ac’ilve Active reset = 1
b I
g <=0
£ NBA q NBA NBA q<=0
3 I
g Observed q==
8

assign #lstep delayed reset = reset;

assert property ( (@ (posedge delayed reset) == 0 );

Postponed q==
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assert property

POR

SYS READY

SYSGOOD/ / / / / /)<

N

DOULOS

(

Multiclocked property )

(@ (posedge POR) 1 |-> (@ (posedge SYS READY)

| -> @ (posedge SYS GOOD) s _eventually(1l));

s_eventually (

1)

Preponed

Active

NBA

POR =1

Preponed

Active

NBA

SYS_READY = 1

Preponed

Active

SYS GOOD = ...

NBA

20
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Overlapping behavior y Lo\

DOULOS

POR

SYS_ READY

SYSGOOD/ / / / / /)@{,

always comb
assert property ( ((posedge POR) 1 |-> (@ (posedge SYS READY) s eventually (1))

assert (SYS GOOD == ...);
[ assert() executes in Observed )
Preponed Preponed
| |
: B : SYS_READY = 1
ACtI'Ve POR =1 ACtI'Ve SYS_GOOD = ...
NBA NBA
|
|[ Observed | svs GOOD ==

21
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Async timing window

POR 5 — j? ;
sysrepoy [ %
property prop check timing;

realtime start;
realtime finish;
@ (posedge POR) (1, start = Srealtime)
@ (posedge SYS READY) (1, finish = $realtime)
(fEinish - start) == timing window;

endproperty

assert property ( prop check timing );

| —>

##0

B, 9

oA

DOULOS

22
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Async event caused by another event

B, 9

SYS READY

bit cov_por;
cover property ( ((posedge POR ) 1 ) cov por = 1;
assert property ( ((posedge SYS READY) cov por );

OR sequence seq past por;

@ (posedge POR) 1 ##1 @ (posedge SYS READY) 1;

endsequence

assert property ( ((posedge SYS READY) seq past por.triggered );

( Not as portable )

oA

DOULOS

24
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Overlapping effect-cause

POR |

SYS READY .

sequence seq past s
@ (posedge POR) 1 [##0

endsequence

assert property ( (@ (posedge SYS READY) seq past por.triggered );

. 4

~o —PFo

@ (posedge SYS READY) 1;

( Avoid - inconsistent support across tools )

DOULOS

25
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RTL updated by async event

clk

reset .

q 2

—~
-

(D:_FO\

bit cov_reset;
always @ (posedge reset) cov reset =

always comb
assert property ( @(g) 1 )
assert ( cov_reset )
cov_reset = 0;
else $error ( .. );

1;

B, 9

N

DOULOS

26



o
o)
>
c
o)
(2]
Q

14
(2]

@

<

o

14

<
B

o
>
o}

(@]

Te]

I

o

N

©

=
<

2
<
s
a
o}

O

.

Multiple causes for a sequence of events

SYS READY

SYS_GOOD

POR | | e J .
MEM READY | . <\/,L2\
: : : : // :

\O\
"y

bit cov_por, cov_mem ready,
cover property ( @ (posedge
cover property ( @ (posedge
cover property ( @ (posedge

assert property ( @ (posedge

cov_sys ready;

POR) l) cov por = 1;
MEM READY) 1) cov_mem ready = 1;
SYS READY) 1) cov_sys ready

I
[

SYS GOOD) cov_por &é&
cov_mem ready &é&
cov_sys ready );

N

DOULOS
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Async timing window effect-and-cause

R T
L et
SYS_READY . . L——f

bit cov _por;

realtime start;

cover property ( @ (posedge POR) 1 ) begin
cov_por = 1;
start = Srealtime;

end

assert property ( @(posedge SYS READY) cov por &&
(($realtime - start) <= timing window ));

B, 9

N

DOULOS
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Copyright © 2025 Doulos. All Rights Reserv

Asynchronous communication

Common types:
Clock domain crossing
Interface handshaking

Solution: multi-clocked sequences

. 4

DOULOS

30
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Clock domain crossing

-

Ty .
PO

DOULOS

sequence flag; !'line ##1 line[*6] ##1 'line; endsequence
sequence irqg; $fell( nIRQ ); endsequence

C unclocked )

line_ ck [1]1

s

s

s

s

yuuuuy

cpu_ck

line 1?/—.—.—.—.—.—.\—T/
>t

|
##1

nIRQ

/

Csampling for $fell

assert property
( @ (posedge line ck

) flag

P

n

( clock handover )

/

##

1l @ (posedge cpu ck) irqg );

31
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Asynchronous protocol - UART

clk, reset

VY

System i/f

|

start
bit «+—— 8 data bits

Serial (UART) .......... E_
protocol: :

cts

> rts = Tx

Module

UART

» data )

»cts

rts ~ Rx

data )

previous frame's
stop bit, or idle line

A

frame (11 bit times)

_v -

DOULOS

32
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Async transfer with sampling | [.\

DOULOS

sequence handshake;

@ (posedge rts) 1 |##1
@ (posedge cts) 1; -
endsequence ,/}W’X

" \ sample_clk
cts ‘Hr ( clock handover >
\

= S%p N

assert property ( handshake ||=>|check trans );

sequence check trans;

logic [7:0] tr; // Local variable

@ (posedge sample clk) 1 ##1 // Skip start bit
(1, tr[0] = data) ##1 (1, tr[l] = data) ##1
(1, tr[2] = data) ##1 (1, tr[3] = data) ##1
(1, tr[4] = data) ##1 (1, tr[5] = data) ##1
(1, tr[6] = data) ##1 (1, tr[7] = data) ##1
data === “tr ##1 // Check parity
data === 1; // Check stop bit

endsequence

33
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Simplified SCSI I/O

Module
SCSI

FSM

sreg_t state
data_t datareg

bsy
sel
atn

c/d
i/o
msg

req
ack

> Arbitration

> Instructions

databus

DOULOS

34
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SCSI protocol

BSY
SEL
ATN

C/D
/0O

MSG

REQ
ACK

Data(7-0,P)

( Arbitration handshake >

.

PN

< N\
\
\
i \
Info transfer handshake
/ P J P, P
_ _ /\

A X A

N

DOULOS

35
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Handshaking assertion [.\

DOULOS

sequence data cmd;
lcd && 10 && 'msg;

endsequence \\\\\\\

property check data;

R

data t txdata; // Local variable

@(Poseéff/fiklt:;4:RTLSmﬂdS)
v

( state"== TX, txdata = datareg )||=

databus

@ (posedge REQ) data cmd |##1

( clock handover )

@ (posedge ACK) databus == txdata;
endproperty

assert property ( check data );
36
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Cause and effect scenarios

(1) Async signal causes another async event

(2) Async signal causes RTL updates

(3) Async event causes async event with updates

(4) Async timing window

_ A

DOULOS

.
SYS_READY wi .
clk |
reset . j' 1 1
q___ 2 R 0
SYS_READY A ,e'\
SYS_GOOD %
PR {—
. Tns?
SYS_READY i

38
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The effect and the cause scenarios

(5) Async event caused by another event

(6) RTL updated by async event

(7) Multiple causes for a sequence of events

(8) Async timing window effect-and-cause

N

DOULOS

SYS_READY [L

clk

reset .

—I . .
MEM_READY | | |
SYS_READY - | | \
SYS_GOOD - : : ‘

PR

SYs READY © . —

39



Recommendations

Asynchronous bus protocols
Use multi-clocked properties (usually straightforward)

Asynchronous controls
Oversampling generally good enough
Coverage approach works in most cases (plus bonus of functional coverage)
Other scenarios, find a way to delay the checker’s sampling

Copyright © 2025 Doulos. All Rights Reserved

A

Lo\

DOULOS
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DOULOS Delivering KnowHow www.doulos.com
SoC Design & » SystemVerilog » UVM » Formal
Verification » SystemC » TLM-2.0

FPGA & Hardware » VHDL » Verilog » SystemVerilog

Design » Tcl » AMD

Embedded Software » Emb C/C++ » Emb Linux » Yocto » RTOS
& Arm » Security » Android » Arm » Rust » Zephyr

Python, Al & Machine Learning » Python » Edge Al » Deep Learning

&

LEARNING

Examples available at: https. //edaplayground com/x/qB72

SystemVerllog ' UVM @ g ‘

SECURE
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New Design and Verification courses
DOULOS

Advanced Formal Verification

» equips you to tackle complex verification challenges by taking full advantage of
formal verification in your engineering projects.

» forms a complete learning path with Essential Formal Verification course, which
gives you a solid, practical grounding in formal verification.

SystemVerilog for New Designers: Self-Paced course

» get project-ready for FPGA or ASIC design, including RTL synthesis, block-level
test benches, and FPGA design flows.

» high-quality content developed by expert instructors - now in self-paced format.

IC Verification with Python and cocotb

» learn cocotb principles, constructing different aspects of a verification environment
using cocotb and Verification strategies and tactics.

42
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