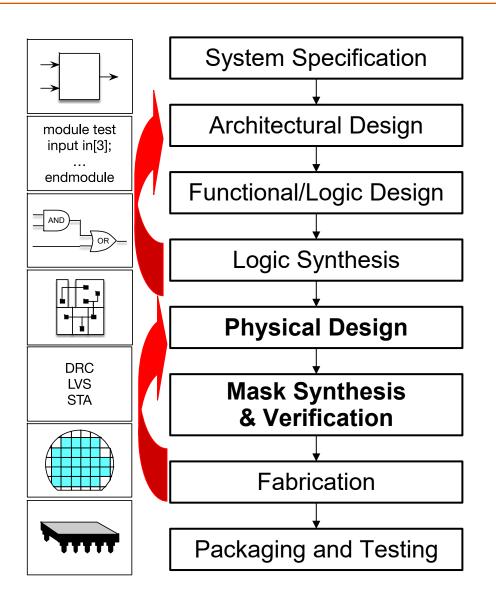


Verification Futures Austin, Nov. 12, 2025

Emerging Trends in Al for Chip Design and EDA

David Z. Pan, ACM/IEEE/SPIE Fellow

Silicon Labs Endowed Chair

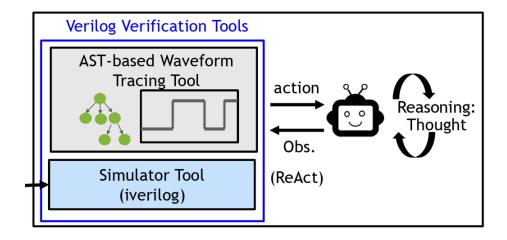

ECE Department, UT Austin

Silicon Catalyst Advisor

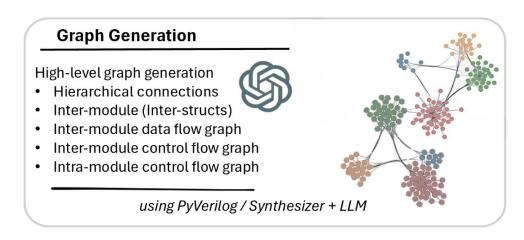
Al for Chip Design and EDA

- Al can serve as hammers and bridges to improve design productivity and quality + GenAl
- Everything: power, performance, area (PPA), yield, cost, ...
- Everywhere: All levels of design abstractions, digital, analog, RF, verification, ...
- All at once? not yet!

Al for RTL / Verilog Design


Al for software coding is widely successful

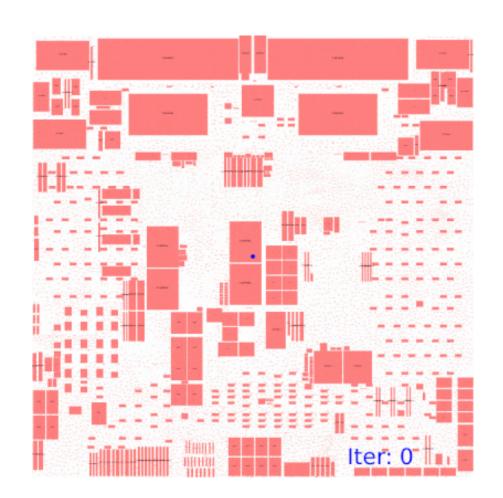
- Many papers on RTL generation, e.g. ->
 - However, they still cannot guarantee correctness
 - Not to mention high-quality PPA
- Hardware consists of inter-dependent concurrent modules
 - In contrast, software is native to LLM because it executes in a sequential order


Name	Techniques
MAGE	Agentic, Debug
VerilogCoder	Agentic, Debug
Aivril	Agentic
RTLFixer	Agentic, RAG
AutoVCoder	Finetune, RAG
VeriReason	Finetune, RL
VeriGen	Finetune
Autochip	Agentic
BetterV	Finetune, Opt
RTLCoder	Finetune, RL
VeriAssist	Agentic, Opt
ChipNeMo	Finetune
Paradigm-based	Agentic
C2HLSC	Spec2HLS, RAG
HLSPilot	Spec2HLS, RAG
LHS	Spec2HLS, RAG, Opt
VeriOpt	Agentic, RAG, Opt
Autosilicon	Agentic, RAG, Debug

RTL Generation with Formal Guidance

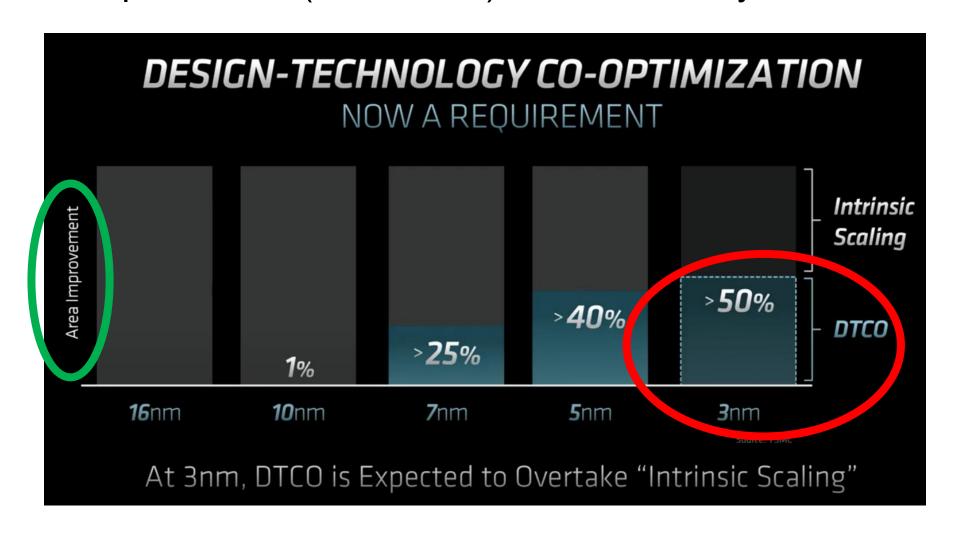
- VerilogCoder (Nvidia Research)
- Use Abstract Syntax Tree (AST) to identify errors related to specific signals

- RTL++ (Univ. Central Florida)
- Use Control Data Flow Graph (CDFG) to analyze control logic and signal dependency



However, verification is always difficult after completion.

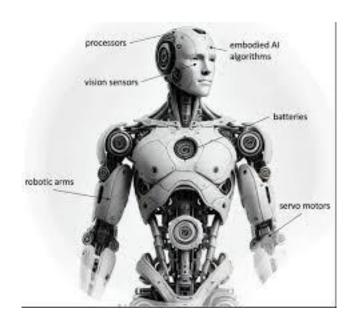
Our ongoing work focuses on stepwise verification during the design process.


VLSI Placement and SSTA: Differentiable

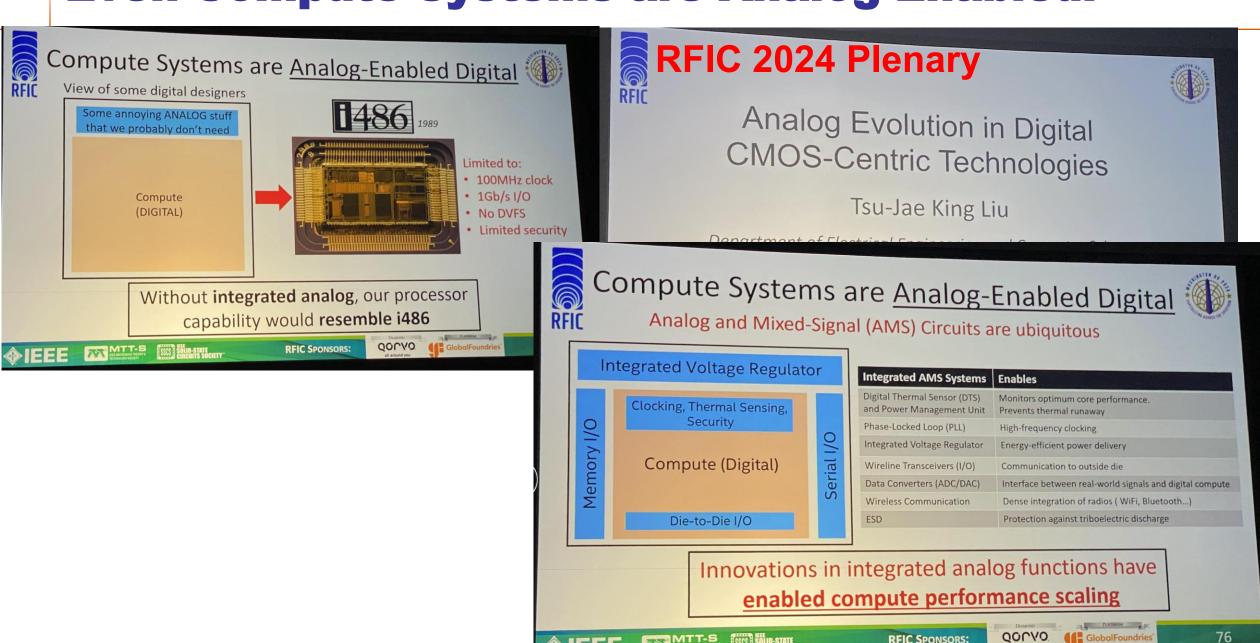
- Plays a central role in modern chip design closure for PPA
- Our DREAMPlace [DAC'19 BPA and TCAD'21 BPA] pioneered deeplearning inspired GPU acceleration (888 Github stars as 11/11/2025)
- INSTA [DAC'26 BPA] from Nvidia: differentiable SSTA and timing driven global placer

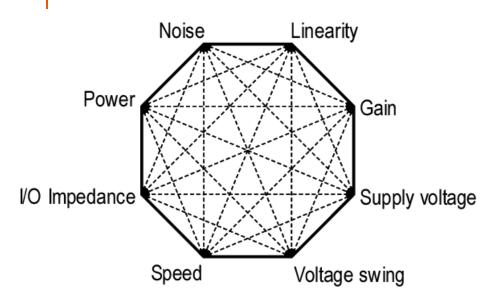
Push for Extreme DTCO (and STCO)

Mark Papermaster (AMD CTO) DAC 2022 Keynote

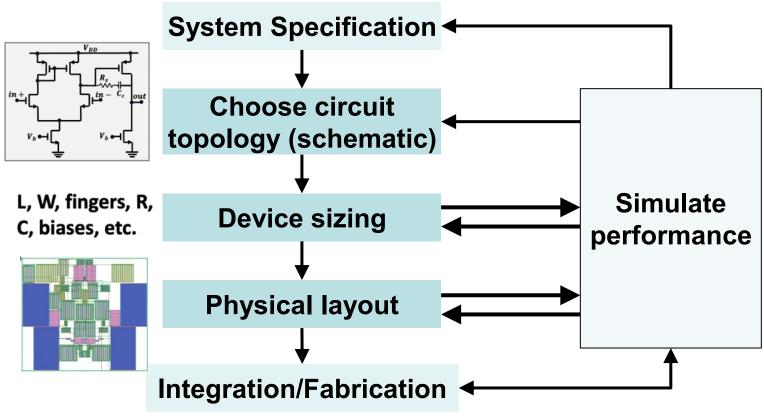


Growing Analog/RF IC Demand





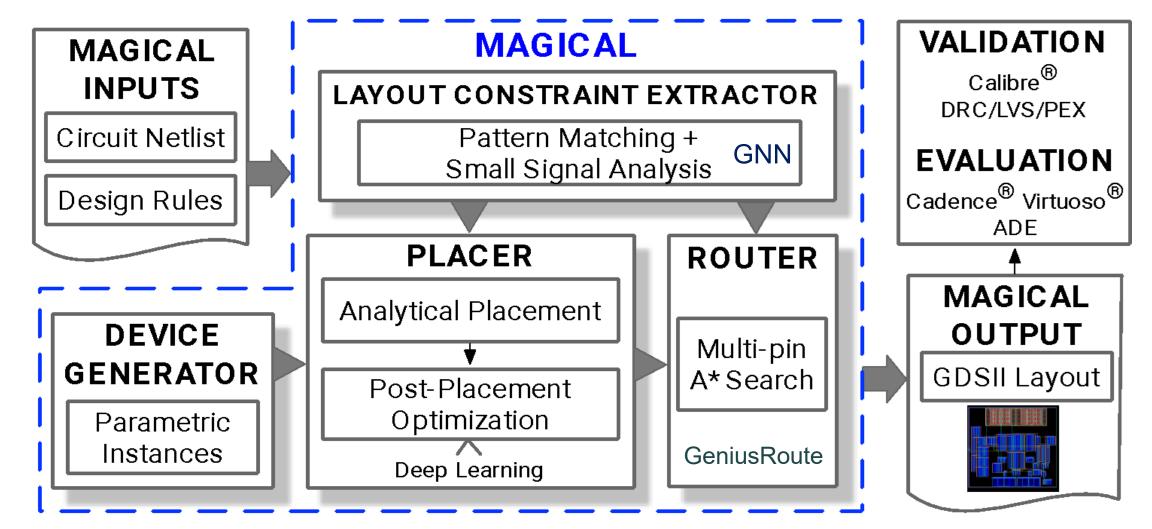
Even Compute Systems are Analog Enabled!



Analog / RF IC Designs are Hard

[Razavi, Design of Analog IC]

- Many design specs to juggle
- Heavily rely on designer experience
- Tons of simulations

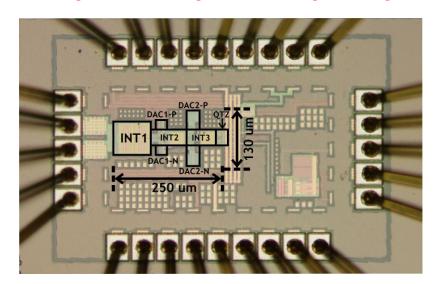

End to End Analog Design Automation (?)

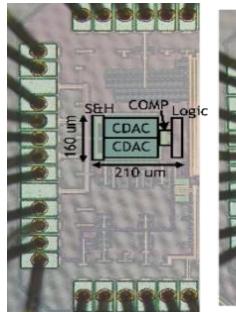
Topology
Sizing
Layout
Parasitic
Extraction
Post Layout
Simulations

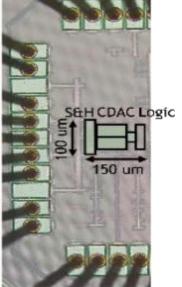
- Our overarching goal (dream): an end-to-end analog DA flow?
- Analog "S&PR", like RTL to GDSII for digital
 - Need to connect different steps together
 - Surrogate modeling to speed up the feedback-loop
- LLM and Agentic Al as design co-pilot

MAGICAL Layout Automation System

https://github.com/magical-eda/MAGICAL


20+ papers; open-sourced


MAGICAL Tapeout Proven


- 1GS/s 3rd-order high-performance continuous time ΔΣ modulator
- State-of-the-art performance, cf. original design [SSC-L'20]
- Various sub-block types
- O(month) vs. O(min) for layout

TSMC 40nm

- Extend MAGICAL to larger AMS systems
- OpenSAR for end-to-end SAR ADC compilation

12-bit ADC

10-bit ADC

[Liu+, ICCAD'21, SSC-L'22]

Analog Sizing using RL [DAC'21 BPA Candidate]

minimize Power

s.t. DC Gain > 60 dB

CMRR > 80 dB

PSRR > 80 dB

Output Swing > 2.4 V

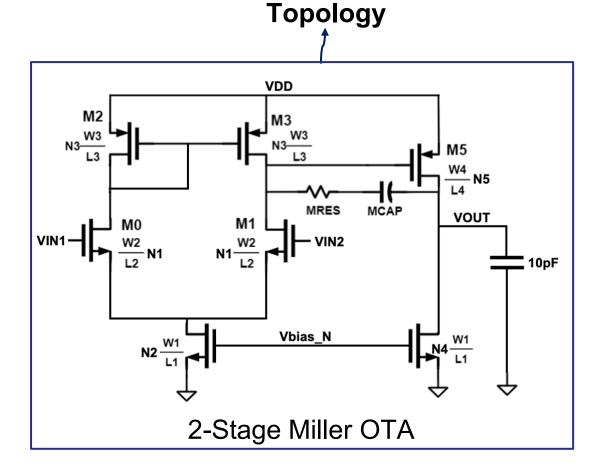
Output Noise $< 3 \times 10^{-4} \ V_{\rm rms}$

Phase Margin $> 60 \deg$

Unity Gain Frequency > 40 MHz

Settling Time $< 3 \times 10^{-8}$ s

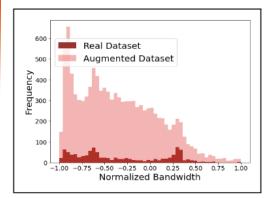
Static error < 0.1

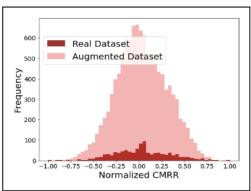

Saturation Margin > 50 mV

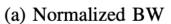
Specifications

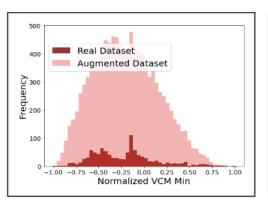
TABLE I: Design parameters and their ranges for Miller OTA

Parameters	LB	UB	Parameters	LB	UB
$L1(\mu m)$	0.18	2	MCAP(fF)	10	2000
$L2(\mu m)$	0.18	2	$MRES(\Omega)$	100	100k
$L3(\mu m)$	0.18	2	N1 (integer)	1	10
$L4(\mu m)$	0.18	2	N2 (integer)	1	10
$L5(\mu m)$	0.18	2	N3 (integer)	1	10
$W1(\mu m)$	0.22	150	N4 (integer)	1	10
$W2(\mu m)$	0.22	150	N5 (integer)	1	10
$W3(\mu m)$	0.22	150	N6 (integer)	1	10
$W4(\mu m)$	0.22	150	NC (integer)	1	10
$W5(\mu m)$	0.22	150	NR (integer)	1	10

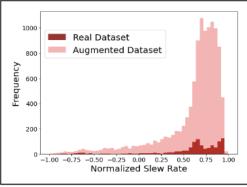

W:width; L=length; UB:upper bound; LB:lower bound




Design Parameters & Ranges → SoTA results to meet stringent specs while obtaining best results


[Budak+, DAC'21]

Sized-Topology Selection [Poddar+, DATE'24]



(c) Normalized VCM Min

(b) Normalized CMRR

(d) Normalized Slew Rate

- Previous methods generate/pick topologies first, then size and select, using simulations/ML, etc.
- Can we start from a rich set of data points with sized topology library (which can be generated offline, with best sizing algorithms/simulations)?
- Dataset augmentation, e.g., using VAEs and GANs
- Then we can skip computationally intensive tasks

SRC CADT Annual Review, 1st Place in Poster Competition

AnalogCoder: Analog Circuit Design via LLM

Method	Fully Automated 1	Auto Fix Errors ²	Benchmark	Open-Source	Training-Free	Circuit Type
ChipChat [7]	×	×	√	✓	✓	Digital
ChipGPT [8]	×	×	\checkmark	×	\checkmark	Digital
VeriGen [9]	✓	×	\checkmark	\checkmark	×	Digital
AutoChip [10]	✓	\checkmark	×	\checkmark	✓	Digital
VerilogEval [12]	✓	×	\checkmark	×	×	Digital
RTLLM [13]	✓	×	\checkmark	\checkmark	\checkmark	Digital
RTLfixer [14]	✓	\checkmark	×	\checkmark	✓	Digital
RTLCoder [15]	✓	×	×	\checkmark	×	Digital
ChipNeMo [18]	✓	×	×	×	×	Digital ³
BetterV [16]	✓	×	×	×	×	Digital
AnalogCoder	✓	✓	✓	✓	✓	Analog

Analogcoder: Analog circuit design via training-free code generation

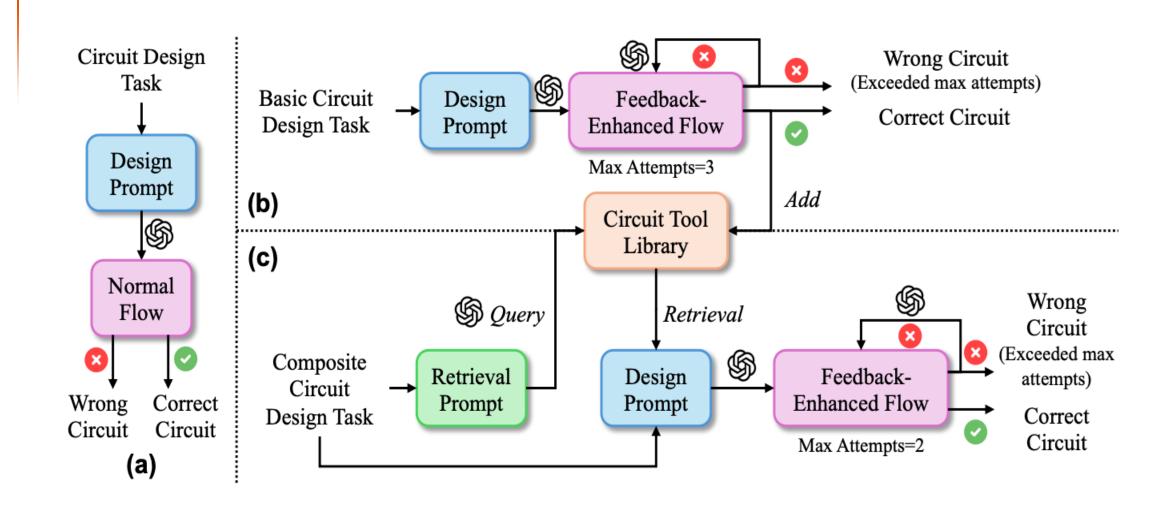
Y Lai, S Lee, G Chen, S Poddar, M Hu, DZ Pan, P Luo

Proceedings of the AAAI Conference on Artificial Intelligence 39 (1), 379-387

AAAI 2025 Oral (< 5% acceptance rate), already got 80 citations!

Open sourced: https://github.com/laiyao1/AnalogCoder

♀ Fork 12 **→**



Starred 88

2025

31 80

AnalogCoder Design Flow (Training-Free)

AnalogCoder-Pro: AnalogCoder with

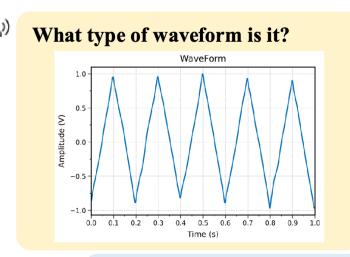
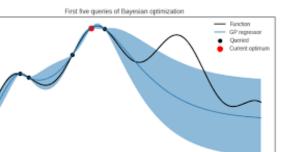

Multimodal & Optimization

TABLE I LLM-based Methods for Analog Design

Work	Multiple Types ¹	Training- Free	$\begin{array}{c} \mathbf{MLLM} \\ \mathbf{Debug}^2 \end{array}$	Circuit Gen.	Circuit Opt.	Open- Source
CktGNN [23]				•	•	•
LADAC [24]	•	•			•	
ADO-LLM [25]	•	•			•	
LaMAGIC [26], [27]				•	•	
AnalogCoder [28]	•	•	0	•		•
SPICEPilot [29]	•	•	0	•		
LEDRO [30]		•			•	
Aritsan [31]				•	•	
AmpAgent [32]		•			•	
Atelier [33]		•		•	•	
AnalogXpert [34]		•	0	•		
Malasa-Chai [35]	•			•		•
AnalogGenie/Lite [36], [37]	•			•	•	•
AnalogFed [38]	•			•	•	
AutoCircuit-RL [39]				•	•	
SPICEAssistant [40]		•	0	•	•	
AnalogCoder-Pro	•	•	•	•	•	•

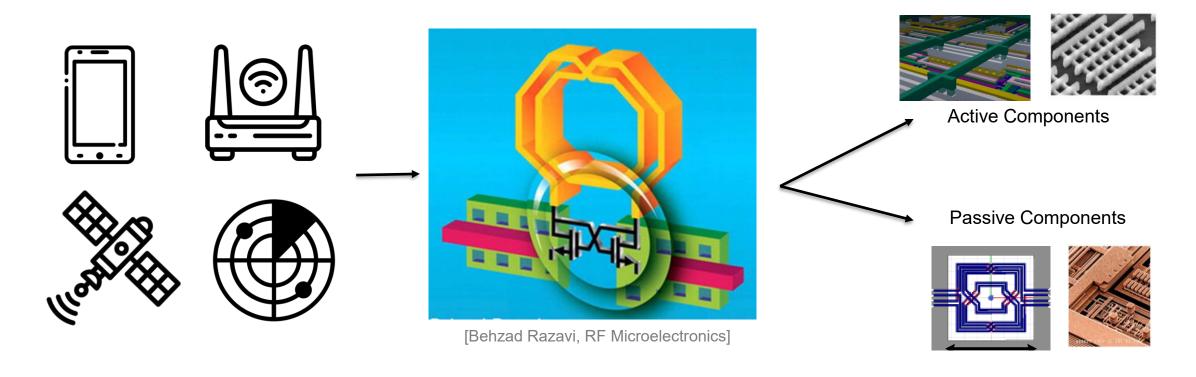
¹ Whether the work supports multiple circuit type designs.


https://arxiv.org/abs/2508.02518

Multimodal LLM

G

a triangular waveform ...

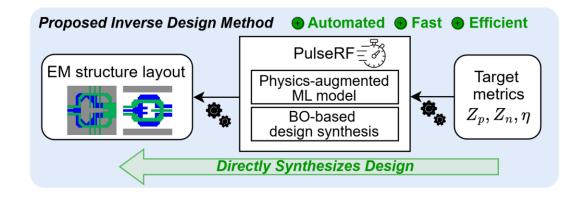


Device Sizing

² • - Full multi-modal debugging capability by signal images (e.g., waveform, frequency response), o - Text-only debugging.

RFIC (Radio Frequency Integrated Circuit)

- RFIC components are fundamental in wireless systems
- RFIC = active (transistors) + passive components
- Passive designs are bottlenecks for RFIC design



PulseRF for RFIC Passive Design

Conventional vs. our PulseRF approach [Chae+, ICCAD'24]

- Slow simulation restricts the number of optimization iterations possible
- Optimization is confined to a limited set of topology templates

- Physics-augmented ML model for fast design evaluation
- Bayesian optimization-based inverse design
- Super-human, non-intuitive designs

→ UT Team won the very first NSTC Jump Start R&D Project!

3DHI of Everything

- Digital/FPGA, analog, RF, photonics, emerging memory, ...
- A lot of "mismatches" and "multi-physics" (thermal, stress, ...)
- All kinds of Al-driven EDA tools needed for modeling, optimization, and STCO (system-technology co-optimization)

O Jul 18, 2024

UT's Texas Institute for Electronics Awarded \$840M To Build a DOD Microelectronics Manufacturing Center, Advance U.S. Semiconductor Industry

TSV Stress-Aware Full-Chip Mechanical Reliability Analysis and Optimization for 3D IC

By Moongon Jung, Joydeep Mitra, David Z. Pan, and Sung Kyu Lim

Communications of ACM 01/2014 Research Highlights

Conclusion

COMMUNICATIONS

CACM.ACM.ORG

OF THE ACM

O1/2023 OL.66 NO.01

Al for chip design: everything, everywhere!

- PPACT, digital, analog, RF, **3DHI**, ...
- > Prediction, Acceleration, Generation, Optimization ...
- Verification!
- Architecture Exploration ...
- Issues: DATA, model generalization, transferability, bias, explainability, optimality...
- Still far away from super-human "all at once!" (my dream ☺)

"My dream is to have a silicon compiler which can let people design chips as easily as they can write software"

Jan. 2023 Issue, Interviewed 06/22 ChatGPT released 11/22

ACM Member News

CLOSING THE LOOP BETWEEN AI FOR IC AND IC FOR AI

David Z. Pan is the holder of the Silicon Laboratories Endowed Chair in the

Electrical and Computer Engineering at the University of Texas at Austin (UT Austin).

Pan earned his undergraduate degree in physics from Peking University in Beijing, China. He went on to earn both his master's degree and Ph.D. in computer science from the University of California, Los Angeles.

After obtaining his doctorate, Pan became a research staff member at the IBM T.J. Watson Research Center in Yorktown Heights, NY He spent nearly three years with IBM before joining the faculty at UT Austin in 2003, where he has remained since.

Pan's research interests center on electronic design automation, with a focus on the physical design of integrated circuits (ICs).

"I am trying to close the loop between AI (artificial intelligence) for IC, and IC for AI," Pan says.

He explains that AI for IC leve mages artificial intelligence techniques to enable better agile and intelligent integrated circuit design, while IC for AI involves customizing chips for AI applications.

Pan says that as semiconductor technology enters the en of extreme scaling IC design and manufacturing will become ever more complex, and better IC design technologies will be needed more than ever to optimize factors such as performance,

design cost.

design cost.

In the future, Pan says, he wants to democratize chip design and make it as easy as compiling software.

"My dream is to have a silicon compiler that will let people design chips as easily as they can write software," says Pan. —John Delaney

Al for Chip Design

