CONSULTING

Deploying Al in DV for Smarter and
Faster IP Verification

Mike Bartley, CEO, Alpinum Consulting | Arjumand Yaqoob, staff Engineer, Qualcomm

ﬁ
Abstract aaiy

* Al is set to play a key role in optimizing the traditional design verification flows
and challenges. Providing a faster and smarter platform to deploy and use in
design verification while verifying designs of different complexities. We will be
presenting our proposed Al model and strategy. And will apply that to generate a
verification environment and Test Bench for an IP design to prove rapid
prototyping and efficient verification of designs.

11/11/2025 Copyright of Alpinum Systems Ltd. 2

ﬁ
Outline SONSULTNG

* Al Strategy
e UVM Test Bench Generation
* Results and Analysis

e Al Strategy — Model & Techniques

* Al Strategy — Features Implemented
* Conclusion

* Reference

e Questions

Al Strategy — Inputs CONSULTING

e Test generation, model is trained through various ML techniques

(Feedbacl;_»W_»Test (with choice of sequence length)
coverage, ...

* Test direction the model is trained to direct something else to generate the tests,
parameterizing constraint random test generation

Feedback Parameters
(coverage, ...) ML Model Test Generator Test

» Test selection is based on choosing tests from pre-generated tests on which model
is tuned to optimize the selection based on optimization, filtering and prioritizing

Large set
Of Tests Fewer Tests
Test Feature

/>
Al — Strategy Coverage Directed Feedback

Model receive feedback based on coverage score

Approach based on supervised learning for coverage directed tests selection with
novelty driven learn and identify stimulus different from previous

Biases tests with higher probability of coverage and prioritize those

Improving coverage and failure prediction
» Al assisted method for coverage feedback selection
* Training set, constraints extractions to assign weights on test scenarios

* Training data optimized the tests selection with higher coverage score

Coverage Closure (Flow)

.. Top 10 Knobs

configuration

Python & Parameters
Generator

| >

SV UVM

Knobs
Configuration &
Parameters

Settings

Testbenches

—

v"/—

Python UVM

I

B —"—

. 4

Verilator
* Parallel Simulations

Opensource

RTL
Design

N g

»{ avests s j

{ Measure J

Tool 5: UVM TB Automation with Python scripts

Design and
Interface files Python
script for
Input automation

v

Config file,
memory file Signals extraction using Regex Output
Python package

Backend

Input

* User should provide Design, Interface, Config (optional), Memory (optional) files.
Backend System

* The UVM standard code will be saved in python script.

* Python script will extract signals from design and interface files.

* By utilizing the extracted signals, the test bench components gets created.

Output

* The UVM testbench components in System Verilog format will get saved.

Examples

[>

CONSULTING
FIFO

Single Port RAM
Dual Port RAM
AXI....

|:| Output (UVM testbenches)

|:| Python module

— Process

Al for Config files, ML for

parameter optimization

UVM Test Bench Generation — Inputs Detail

CONSULTING

* Design I/0, Interface: Design I/O Top level design I/O and Interface read from a .SV file

* Reading Configuration Files: Configuration files specify additional details and information which guides the
python script to customize the generated components. Configs are specified in a text file

Control signal for read operation
deiver.read.operatien.control.signal: o8

* Prio, used to provide read and write operation priorities

All signals to drive in redup eration
driver.cead.signals: From interface= data, To seg.itep= data

] . .
c M |
emory In Itla Izatlon # All slgnals to drive them outs:Lde write and read operation
Qi l-" £a0.a00 WEL

ite: From sgg.item= we, To interface= we; From seg_item= ge, To interface= gg; From sgg_item= addr, To interface= addr

* Reset

MONITOR SIGNALS AND INPUTS
C ntrol signal for write oper t
monitor. write. operation.coniro

* Sequencer info

All signals to collect for write operation

° Total number Of Write/read transactions monitor.write collection.signals: From interface= addr, To gollect.port= addr; From interface= data, To gpllect port= data

Cuntrol s:Lgnal For write operatlun

e Chip select

ALl signals to collect for read operatio

mum,mammmnmﬁ,igml; From mterFace addr, To gollect port= addr; From interface= data, To gellect pori= data
.
« T
eSt EXtenS|on # ALl slgnals to collect outside wr:Lte and read operation
collect signals_outside read and write: From interface= we, To ¢ollect port= we; From interface= gg, To gpllect port= ge

* Total number of test extension

SCOREBOARD SIGNALS AND INPUTS

Conditional signal to write expected data into the memory

* Interface randomization sckis sondisians i

"If Condition™ body to write expected data into the memory
sxp.data.wrcite.sxpression if: exp.memtr.adde] = tr.data;

* Resource pool

"Else Condition" body if not able to write expected data into the memory
exp.data.urite expression.else: exp.mem[fr.adde] = fr.data;

* Parameterization

Conditional signals to write actual data into the memory

. . . read.condition: fr.we == @ && tr.oe
i ContrOI Slgna IS for d r|Ve r, monltor a nd Score boa rds # Retrieval of expected data from memory based on the address
exp_tr.assignment: exp.tr = exp.mem[act.tr.addr];

Compare the actual data with the expected data
comparisen.expressien: act.tr.data == exp.tc

SEQUENCE ITEM SIGNALS AND INPUTS
Sequence item transaction control slgnals
eq ansaction_contro als: addr, we, gg, data

UVM Test Bench Generation - Output CONSULTING

» UVM TB is generated using the Python Script model =l memory_init Text Document
» Complete UVM Verification environment is generated which D) sPRAM driver.sv e
[] SPRAM_env.sv SV File
including sequences and tests [SPRAM_monitor.sv —
» UVM TB overview for an SPRAM design 1] SPRAM_pkg.sv SV File
[] SPRAM_random_sequence.sv SV File
[] SPRAM_read_agent.sv SV File
[] SPRAM_read_sequence.sv SV File
[] SPRAM_scoreboard.sv SV File
[7] SPRAM_seq_item.sv SV File
[] SPRAM_sequencer.sv SV File
[] SPRAM_test.sv SV File
[] SPRAM_top.sv SV File
[] SPRAM_virtual_sequence.sv SV File
[] SPRAM_write_agent.sv SV File

D SPRAM _write_sequence.sw 5V File

EXPLORER

v TEST

GERL®

F FIFO_agent_passive.sv

FIFO_agent.sv

=} FIFO_driver.sv
2F FIFO_environment.sv

F FIFO_monitor.sv

FIFO_pkg.sv

} FIFO_seq_item.sv
} FIFO_sequence.sv
} FIFO_sequencer.sv

2k FIFO_test.sv

FIFO_top.sv
input_filepaths.txt
new_py_uvm2.py
new_uvm_for_two_files.py
new_uvm_org.py
new_uvm.py
SPRAM_agent_active.sv
SPRAM_agent_passive.sv

} SPRAM_driver.sv

SPRAM_environment.sv

} SPRAM_monitor.sv

SPRAM_pkg.sv

} SPRAM_seq_item.sv

SPRAM _sequence.sv

1} SPRAM_sequencer.sv

2k SPRAM_test.sv

2} SPRAM_top.sv
(5} SPRAM _virtual_sequenc...

template.py

> OUTLINE
> TIMELINE

{&F SPRAM_monitor.sv

class SPRAM monitor extends uvm monitor;
“uvm_component_utils(SPRAM monitor)

uvm_analysis_port#(SPRAM seq item) analysis port;

// Vvirtual interface handle
virtual mem_if myvinf;

SPRAM seq_item collect_port;

function new(string name = “SPRAM monitor",uvm_component parent)
super.new(name,parent);
collect port = new();
analysis port = new("analysis port”, this);

endfunction :new

virtual function void build_phase(uvm_phase phase);
super.build phase(phase);
if (luvm_config db#(virtual input if)::get(this, "", "myvinf
“uvm_fatal("NO myvinf ", "virtual interface not found™)

analysis port=new("analysis port",this);
collect port=SPRAM seq_item::type id::create("collect port”,
endfunction :build phase

virtual tack rin nhaceflinim nhace nhace):

OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS

[1

data out control signal: oe

——————————— True

UVM test bench components for SPRAM design have been generated successfully.
[1

data out control signal: oe

——————————— True

UVM test bench components for SPRAM design have been generated successfully.
——————————— True

Hr <p
r ol DR
y (=} SI

_top.sv @

{z} SPRAM_agent_passive.sv X {2} SPRAM seq_it

{F SPRAM_agent_passive.sv
1
class SPRAM agent passive extends uvm_agent;
SPRAM monitor mon;

“uvm_component_utils(SPRAM agent passive)

function new(string name="SPRAM agent passive",uvm compone
super.new(name, parent);
endfunction

virtual function void build phase(uvm_phase phase);
super.build phase(phase);
if(get_is active() == UVM_PASSIVE) begin
mon = SPRAM monitor :: type id::create("mon",this)
end
endfunction

endclass

CONSULTING

/>
Tool 5:: UVM TB Automation - Benefits ﬁ

~90% time reduction in the efforts needed for UVM TB generation
Higher accuracy

Consistent process

Less chance of human errors

Tool 5: UVM TB Automation - Challenges

* New designs may bring unseen challenges

Tool 5: UVM TB Automation - Roadmap

Al to generate a config file

Generated TB is entirely controlled by parameters

Use of Al to optimise parameters

Switch between different output formats, including Python VUM/CoCoTB, VHDL OSVVM

Al Strategy — Model & Techniques

* Objectives
* Increase verification efficiency
* Improve test coverage, bug detection, and debug time
e Enable intelligent automation in verification using Al/ML

* ML Techniques and Models

e Supervised Learning:
Learn from input-output pairs (e.g., failure patterns)
Unsupervised Learning
Discover patterns and anomalies in test data
Reinforcement Learning
Optimize test sequences via reward feedback

CONSULTING

/>
Al Strategy — Model & Techniques

* Al — Enhanced Verification Pipeline
* Input: Test & Random Data - ML Model
* Predict Failures & Coverage Bins
e Guide Test Generation, Direction, and Selection
* Run Simulations
* Feedback Loop: Update Knowledge Base / Generate New Tests

* Training Methodologies
e Offline Training:
e Use historical regression data for initial training
* Online Training:
* Incrementally update model after each simulation run
* Hybrid Training:

* Bootstrap with offline data, continuously improve online

/>
Al Strategy — Model & Techniques

e Advanced Techniques
* NLP: Automatic spec extraction & assertion generation
* Smart Regression: Nearest neighbor algorithm for test reuse
* GNN: Predict connectivity weights in complex designs
* Al-driven bug & coverage exposure using adaptive test strategies

* Inputs and Model Training Data
* Input Layer: Test & Random Stimuli
* Output Layer: Coverage Bins, Failure Signatures
* Training Data: Regression logs, connectivity graphs
* Use for predictive modeling and verification decision-making

/>
Al Strategy — Model & Techniques

* Debug Automation
* Bug isolation using Al-driven pattern recognition
* Failure triage with historical signature matching
* Clustering and root cause prediction using ML models

/>
Al Strategy — Model & Techniques

* Key Features: Al models are set to power up and being used to
* Power Test optimization
* Bug predictions & Root cause analysis
 Post Silicon validation (Detecting Hw anomalies for faster TTM)

* Al assisted formal verification techniques to develop properties for formal
engines

* Challenges: Several challenges are also associated with this
* Model explainability
 Scalability
* Integration with legacy system
 Verification of Al HW

Al Model — Features Implemented

 UVM TB Automation — Input Configuration and Parameter Optimisation
e Al and ML techniques to infer and generate the required configurations from a design

* This enhanced Al strategy based on an ML model helped create the complete
ECO system for the Verification Environment

* Enhancement to the current Al strategy and model can be added based on more
advanced ML techniques that can add value in several ways
* Bug isolation

Test plan creation

Bug prediction and root cause analysis

Creation of a high-level Reference model from design I/O and design files to be used in scoreboards

Constraint optimisation to generate different constraints dynamically
Debugging and Triaging

CONSULTING

Conclusion SONSULTNG

» We are Set to reduce manual time and efforts in TB implementations and building verification
environment

» The proposed model and infrastructure can be augmented with more Al assisted tools to
generate TB features i.e. Assertions

» Al engine is used for feature extraction and coverage tunning
» Automation is used for generate TB, UVCs , sequences and tests

» This model can be further extended to fine tune using Machine Learning based on the analysis of
following data

» Simulation results
» Debug data
» Regressions data

/>
References EONSULTING

[1] Bartley, M., Soni, M., C Tessolve (2024) . Al strategy for DV Flow & TB Al Tool.
https://www.tessolve.com

https://www.tessolve.com/

	Slide 1: Deploying AI in DV for Smarter and Faster IP Verification
	Slide 2: Abstract
	Slide 3: Outline
	Slide 6: AI Strategy – Inputs
	Slide 7: AI – Strategy Coverage Directed Feedback
	Slide 8
	Slide 10
	Slide 11: UVM Test Bench Generation – Inputs Detail
	Slide 12: UVM Test Bench Generation - Output
	Slide 13: UVM Test Bench Generation
	Slide 14
	Slide 16: AI Strategy – Model & Techniques
	Slide 17: AI Strategy – Model & Techniques
	Slide 18: AI Strategy – Model & Techniques
	Slide 19: AI Strategy – Model & Techniques
	Slide 20: AI Strategy – Model & Techniques
	Slide 21: AI Model – Features Implemented
	Slide 22: Conclusion
	Slide 23: References

