SYNOPSYS

RISC-V Processor Verification
Requires the Full Toolbox

Simon Davidmann, VP Eng., Processor Modeling & Verification
Verification Futures UK, July 2025

E——

Agenda

 Where and why is RISC-V being used? : y RISC

« RISC-V processor verification challenges

* The RISC-V processor verification solution: the full toolbox

« Dynamic verification, including test generation and hardware assisted verification
« Static / Formal verification

e Summary

SY"UPSYS © 2025 Synopsys, Inc. 2

Agenda

« Where and why is RISC-V being used?

Synoesys © 2025 Synopsys, Inc. 3

Where and why is RISC-V being used?

Automotive

Anyone can design their own processor based
on the RISC-V ISA

Modular ISA = choice of which features to o~ =
include/exclude I ionation il Software

Extensibility and freedom to customize at ISA
and micro-architectural levels

RISC-V enables the creation of domain-
specific differentiated processors

S‘/“UPS‘/S © 2025 Synopsys, Inc. 4

Agenda

RISC-V processor verification challenges

Synoesys © 2025 Synopsys, Inc. 5

Challenges in RISC-V Processor Verification

« Design complexity — architecture, micro-architecture, implementation
choices, custom features

« Source of processor IP (in-house, open source, vendor + custom
Instructions)

« Use case: microcontroller — application processor; closed versus
open to external software development

* Verification productivity and time to closure

« Team experience (designers and verification engineers)
* Processor verification methodology
 Tool selection

S‘/“UPS‘/S © 2025 Synopsys, Inc. 6

Agenda

The RISC-V processor verification solution: the full toolbox

S‘/“UPS‘/S © 2025 Synopsys, Inc. 7

The Synopsys Processor Verification Toolbox

Formal Verification Dynamic Verification

ImperasTS

VC Formal FPV + STING RISC-V test suites:
RIS_C-V ISA.A”.D Test Generation vector. MMU, PMP
Functional Verification
ImperasDV
~ VCFormal DPV Co-Simulation and Checking
Verify computational correctness for Verification Environment
RISC-V processors e
- mperasFPm 4 R ol |
~ VCFormal SEQ i RISC-V Reference Model 1 | !
Verify that custom instructions do not D e R Coverage . ________ ;
break the original core
: VCS & Verdi ZeBu & HAPS
VC Formal Portfolio Dynamic Simulation HW Assisted Verification

Verdi Verification Planning and Functional Coverage Platform

S‘/"UPS‘/S © 2025 Synopsys, Inc.

Tool & Methodology selection table shows how dynamic and
formal verification complement each other

Design Level Example Tool/Methodology

Unit Pipeline, FPU Formal + predefined assertion IP
Security Formal + predefined security assertion IP

Architecture ISA Dynamic

Formal + predefined assertion IP

Custom instructions, CSRs | Custom DSP, matrix Dynamic

Formal sequential equivalence checking,
register verification, datapath validation

Processing subsystem Coherent cache, multi- or Dynamic, especially using hardware assisted
many-processor accelerator | verification

Formal property verification for cache
coherence verification

S‘/“UPS‘/S © 2025 Synopsys, Inc.

Agenda

Dynamic verification, including test generation and hardware assisted

verification

SY"UPSYS © 2025 Synopsys, Inc. 10

Agenda

« Dynamic verification
— ImperasDV, ImperasFPM (reference model)
— Lock-step continuous compare, async events, weak memory models
— ImperasFC (functional coverage), ImperasSC (stimulus coverage)

— ImperasTS (directed test suites for compliance / compatibility)

S‘/"[]PS‘/S © 2025 Synopsys, Inc. 11

Agenda

« Dynamic verification
— ImperasDV, ImperasFPM (reference model)
— Lock-step continuous compare, async events, weak memory models
— ImperasFC (functional coverage), ImperasSC (stimulus coverage)

— ImperasTS (directed test suites for compliance / compatibility)

S‘/"[]PS‘/S © 2025 Synopsys, Inc. 12

What is ImperasDV?

« A front-end design verification solution for those designing a
processor using the RISC-V ISA

« Uses the ImperasFPM (configurable, extendable) as a reference

Model

model RISC-V Config

. Base Model 250+

« Uses a lock-step continuous compare methodology . params

« Performs score-boarding and checking

« Verifies asynchronous events using advanced pipeline
synchronization technology

« Verifies core with Weak or Strong Memory consistency / v \
* single- / multi-hart, with / without caches

SYNOPSYS
 Functional coverage (with reporting in Verdi) RISC-V RTL ImperasFPM .
—

RISC-V
L Reference Model

SYNOPSYS' results.log

. ImperasDV)

testProgram.elf \ VCS /

Synoesys © 2025 Synopsys, Inc. 13

ImperasFPMs (Fast Processor Model) for RISC-V

ImperasFPM - Base Model implements RISC-V specification in full
A Fully user configurable to select ISA extensions and
versions
User * Pre-defined configurations and custom instructions for
Extension: processor IP vendors

RISC-V Model Config

Base Model 250+ params CUSION

instructions
& CSRs

« User extensions built in a separate library do not
perturb the verified Base Model source, help reduce
maintenance

« Over 150 companies, organizations and universities
have used the ImperasFPM

« ImperasFPMs can be used as reference model for
verification, and also for software development with
virtual prototypes (e.g. Virtualizer)

Using the same model for both HW & SW verification enables significant reduction in SoC "Bring-Up" time

S\/HUPS‘/S © 2025 Synopsys, Inc. 14

Agenda

« Dynamic verification
— ImperasDV, ImperasFPM (reference model)
— Lock-step continuous compare, async events, weak memory models
— ImperasFC (functional coverage), ImperasSC (stimulus coverage)

— ImperasTS (directed test suites for compliance / compatibility)

S‘/"[]PS‘/S © 2025 Synopsys, Inc. 15

What is Lock-Step Continuous Compare Methodology?

« Co-simulation approach: Reference model and RTL run in lock-step

* Internal state of reference and RTL are compared after each instruction Model
retires Base Model || 2504
params

Advantages:

» Bugs reported immediately, not at end of simulation
* No wasted simulation cycles running past first error
« Easier to debug at the point of failure

— Y

SYNOPSYS
« Most comprehensive DV methodology RISC-VRTL g S o .
—

L Reference Model

SYNOPSYS' results.log

. ImperasDV)

testProgram.elf \ VCS /

Synoesys © 2025 Synopsys, Inc. 16

Asynchronous event verification with ImperasDV

* An architectural model cannot predict exactly
when an asynchronous event will take effect

* External net changes received as a set from
RTL tracer interface (RVVI)

S Interrupt taken, but which one?
® ImperasDV Pipeline Synchronization - —— \
technology determines whether RTL DUT [— e S
response to these events is legal r oo s

S‘/"UPS‘/S © 2025 Synopsys, Inc. 17

Asynchronous event verification with ImperasDV

Info

* An architectural model cannot predict exactly =

Info

when an asynchronous event will take effect ==

Info
Info
Info
Info

® External net changes received as a set from .«

Info

RTL tracer interface (RVVI)

Info
Info
Info

® ImperasDV Pipeline Synchronization Into

Info

technology determines whether RTL DUT

Info

response to these events is legal Into

*® If not, an error is flagged and debug information
IS provided

SYNoPSys

(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)
(IDV_RPT)

3 legal scenarios have been evaluated:
SCENARIO 1:
+ Exception { pc:0x1304 (test2+4a), fetch:'904ffl0ef jal x1,408', 'Machine software in
+ Retire { pc:0xc(vector_ table+c), inst:'5ca0006f jal x0,5d6" }
! dut.pc - 0x0000001c vector_table+tlc
ref.pc - 0x0000000c vector table+tc
! dut.mcause - 0x80000007 Interrupt:1l Code:7(Machine timer interrupt)
ref.mcause - 0x80000003 Interrupt:1l Code:3(Machine software interrupt)
SCENARIO 2:
+ Exception { pc:0x1304 (test2+4a), fetch:'904ff0ef jal x1,408', 'Machine software in
+ Net MTimerInterrupt => 0 { when:37351 }
+ Retire { pc:0xc(vector table+c), inst:'5cal0006f jal x0,5d6" }
! dut.pc - 0x0000001c vector table+lc
ref.pc - 0x0000000c vector table+c
! dut.mcause - 0x80000007 Interrupt:1l Code:7 (Machine timer interrupt)
ref.mcause - 0x80000003 Interrupt:1 Code:3 (Machine software interrupt)
SCENARIO 3:
+ Net MTimerInterrupt => 0 { when:37351 }
+ Exception { pc:0x1304 (test2+4a), fetch:'904ffl0ef jal x1,408', 'Machine software
© 2025 Synopsys, Inc. 18

RISC-V System’s Memory Consistency

» RISC-V systems can have many cores, harts, caches
* RISC-V ISA defines two memory models: TSO (Total Store Order) and RVWMO (Weak Memory Order)

TSO is strong memory model — and software can assume memory is consistent

RVWMO
* Is weaker model and allows hardware to be designed for simplicity and / or performance
 introduces several modeling and verification challenges compared to stronger memory models like TSO

* Reordering of memory operations

+ Delayed visibility of writes

+ Complex interactions between multiple cores / harts

« Explicit synchronization (fences) required to maintain correctness

Difficult-to-predict interleaving of memory operations

 allows reordering across the following operations

— Load — Load
Load — Store
Store — Load
Store — Store

Fence enforcement

S‘/"[]PS‘/S © 2025 Synopsys, Inc.

19

Verifying cores with multiple harts and caches with ImperasDV
TSO modeled in ImperasFPM reference model with option for RVWMO checking

RVWMO & caches means that
memory operations can have many
different orderings — all legal

Async inputs ImperasFC
RISC-V ISA
 Tracer notifies ImperasDV when DUT ~ coverage
memory IS operated on
— e.g. RTL DUT LD / ST instructions or instruction RISC-V RTL ImperasFRM
fetCh & memory RISC-V
Reference
— Indicating which hart and values and when Model

ImperasDV

For a verification run ImperasDV /
ImperasFPM must be configured to
select its memory consistency model

Synoesys © 2025 Synopsys, Inc. 20

Verifying cores with multiple harts and caches with ImperasDV
TSO modeled in ImperasFPM reference model with option for RVWMO checking

* An architectural model of an RVWMO multi-
hart device or device with cache(s) cannot
predict exactly when a memory operation and ImperasFC

its value will take effect RISC-V ISA
_ _ coverage
®* ImperasDV includes Memory Operation

Synchronization technology which determines
whether DUT memory operations and values RISC-V RTL Im%?rsacsf/PM

are legal and correct for RVWMO or TSO & memory Reference
Model

ImperasDV

Configure ImperasDV / ImperasFPM
to use TSO or RVWMO model

S‘/“UPS‘/S © 2025 Synopsys, Inc. 21

Verifying cores with multiple harts and caches with ImperasDV
TSO modeled in ImperasFPM reference model with option for RVWMO checking

* An architectural model of an RVWMO multi-
hart device or device with cache(s) cannot
predict exactly when a memory operation and
its value will take effect

®* ImperasDV includes Memory Operation
Synchronization technology which determines
whether DUT memory operations and values
are legal and correct for RVWMO or TSO

® If not, an error is flagged and debug
Information is provided

* Areas of memory can be excluded from the
checking by tagging them ‘volatile’

SYNoPSys

Example messages

Warning (IDV_MSR) Memory difference detected, Memory Synchronizer running...
Info (IDV_MSRLI) Reverting last instruction

Info (IDV_MSF) Memory Synchronizer finished after 6 iterations
Info (IDV_MSMDR)Memory difference resolved, continuing

Error (IDV_MSUR) Memory Synchronizer unable to resolve DUT memory load result
Error (IDV_MSNAR) Memory Synchronizer was not able to resolve the mismatch
Info (IDV_MSRRS) Restoring reference model state

Warning (IDV_MSFID) Fetched instruction bit pattern difference detected,
Memory Synchronizer running...

Info (IDV_MSFIA) Fetched instruction bit pattern accepted, continuing
Info (IDV_MSFP) Fetch of 0001 from 0x000100b2 propagated to reference model

Info (IDV_MSFDR) Fetched instruction difference resolved, continuing

Error (IDV_MSNARF) Memory Synchronizer was not able to resolve fetch mismatch
of 0001 from 0x000100b2

© 2025 Synopsys, Inc. 22

Agenda

« Dynamic verification
— ImperasDV, ImperasFPM (reference model)
— Lock-step continuous compare, async events, weak memory models
— ImperasFC (functional coverage), ImperasSC (stimulus coverage)

— ImperasTS (directed test suites for compliance / compatibility)

S‘/"[]PS‘/S © 2025 Synopsys, Inc. 23

ImperasFC: SystemVerilog Functional Coverage for RISC-V

« Functional coverage code generation

— Manual creation would be tedious, time
consuming and error prone

— >100K lines of SystemVerilog source code
— Synopsys tools can automatically generate

ImperaskFC

functional
coverage

functional coverage code for custom instructions Machine- SystemVerilog
readable coverage
RISC-V ISA code generator
specification

« Functional coverage is the key
verification metric

https://qgithub.com/riscv-verification/riscviISACQOV for list of covered extensions

© 2025 Synopsys, Inc. 24

SYNopsys

https://github.com/riscv-verification/riscvISACOV/

ImperaskC Is integrated with ImperasDV / works with Verdi

riscvISACOV: RISC-V SystemVerilog Functional
‘ Coverage: RV32|

ISA Extension: RV3D

Specification: | Base Integer Instruction Se1
Versiorc 21

XLEN: 32

nstructions: 37

Covergroups: 37

Coverponts 1o1al: 438

Coverpoints Compliance Basic; 204
Coverponts Complance Extended: 234

Coverpoint
Description
Number of
limes
nastruction

Extension Subset Instruction Cowvergroup Coverpoint

RV32 aodi #dck_cg Cp_asm_count

= execuled

AD |GPR|
cprd Rgster
sssignment
AD |GFR)
cp_rd_sign sign of
value
AS51(GPH)
cp rs1 regster
assignment

AS1 (GPR)

cprst_sign sign of
value

Coverpoint
Level

Complance
Basic

Compsance
Baskc

Complance
Basic

Compdance
Hasic

Compliance
Baskc

m B e i R e R Rl N
fle View Flan Eaualon Tooly sindow delp FL Meni
>4 QBT & a . s J . @ Rd L
Summary :‘;_,;r_- :ﬁ Covsre-l NSOV 256,110 add 29 :';’_"— :C‘ LoDt ":_,C"‘- '_n
-)
Hiwrarchy | Moduies gvm'nx'-;nurujsummn Teats [ummnd 'l T OVIrIscSAC OV . - Cross 20 Proj
EE j = sanr ' e Covar Grow ttam Scare metances UsC
- sy -ir
ST IR i e S S g LS X
Mg Griee Inek. S BB 7PN U4 GTSES U085 Bl Ty troeg
: S cmo_vd . RO 0O
* Group Sceee Inotacces X wep 3 0g wiwn Tl I = - -
o TES = =+ Sargfler) Bcmord e 00 O0%
. T | 4 s e - Ay B cmp_ed r. R CS OT%
88 omo_rd_rel_eg S | cC co ot PLMESommatt = *ABS"$ PP - 3
o 1 ea 1 - e e,
B omo_rd_rsl_eqval . L 00 CC% e > o & o & cmp_ral_ s o

B oo rd_ral_eq T L cC cov 185,528 LY == TaSd" L2f {1
SU_rRe L A |
omp_rd_rel_eqv 100.06% » aptlom, ot - “Pam =
B omo_rd.re2_eqvel B 00 06% e e e Stata BinName Tpe Atleast Sce Mt Count
Bl cmp_rel _rel_eg . ic cov ety
- = ar kizy ooumill = i
S 100 0% 2003)
\ - LLE = 10 1 pOeerpuiss ger 4
c B L oG cox § TSGLIDA.OpNIA)Reg) ATT 11
co rd 100 & BAATHD == 0 3 |
B o _re SN 1 0C CC ey aptics, ccammat - 4O
BB co_rd_masals . cces IGFR | Tegietar sssigsmest’)
T-= (e)
B8 co_rd_oign S 1 GG S proe "D T BIgE 1 DORMEORS |
WA plancgata)oval) 1T (e
B 2 _rd taggle S __N‘.VCCAES\ R e |
LovOre i Mo CovDetad 1hpDetad
Mussage .'.;.?‘_- a

The dengr ‘0o, work o' wan Saded sooeet iy
The fclowng temts ww mergedicaced fom "zov_wwh v
£ow_warl1-AD0-01
cov_work1 AND -1
com_work BUM L
Com_works) U8 G
ER R
Eov_workicvI2edln_ balln_wackd

|
Sxclueion Maragar Reguirsmerds Mansges | Messags
 Siniuing. ol

3
- M x»

» Auto-generated documentation in markdown and
csv formats for inclusion in Verification Plans

SYNoPSys

* Functional coverage data is reported in verification
tools such as Verdi

© 2025 Synopsys, Inc. 25

Start test development early with ImperasSC

Stimulus Coverage measures the impact of test stimulus on functional coverage

a

ImperasFC
RISC-V ISA

I coverage
ImperasSC
Stimulus ImperasFPM
Coverage RISC-V —
Reference

Model

testProgram.elf coverage.vdb

SystemVerilog ImperasDV
Testbench

« Uses ImperasFPM and ImperasFC

« Shift Left... no RTL required

=> start developing tests and measuring coverage in parallel with RTL development

SYNoPSys

How it works:
* Tests are run on the

ImperasFPM

RVVI-TRACE data is
captured and used to
sample functional
coverage in
ImperaskFC

Use Verdi to merge
and analyze coverage
results from multiple
tests

RISC-V processor RTL
and SystemVerilog
tracer are not required

© 2025 Synopsys, Inc. 26

Agenda

« Dynamic verification
— ImperasDV, ImperasFPM (reference model)
— Lock-step continuous compare, async events, weak memory models
— ImperasFC (functional coverage), ImperasSC (stimulus coverage)

— ImperasTS (directed test suites for compliance / compatibility)

S‘/"[]PS‘/S © 2025 Synopsys, Inc. 27

ImperasTS (directed Test Suites for compliance / compatibility)

* Directed test suites for architectural validation ("compliance")
* Provided as .S source, Self-checking (includes automatically generated assertions)

Basic fixed ISA — standard RV32, RV64, B, K, ... ratified instruction extensions
84 Test Suites

Complex, configurable extensions
- Test suites generated to match customer’s core configuration

- Vector (2v, Zvk)

* Includes 7 separate test suites
* Vector crypto (VK) included

- MMU

* Supports Sv32, SV39, and SV48 virtual memory systems
* Separate tests for User and Supervisor modes

. PMP/EPMP

* Supports 32 bit and 64bit PMP, EPMP
* Tests are generated to target specific pmpcfg / pmpaddr regions
* Allows read-only fields and custom reset values in CSRs

SY"UPSYS © 2025 Synopsys, Inc. 28

Agenda

Dynamic verification, including test generation and hardware assisted verification

SY"UPSYS © 2025 Synopsys, Inc. 29

STING — RISC-V Test Generation

Preventing bug escapes for complex RISC-V designs Configurations

C++ based tests

- Bare metal tool using a software driven methodology for RISC-V ASM-like Directed Tests
design verification

Integrates several test generation methodologies to give the best

verification throughput :

Highly scalable and quick test generation; compatible with any system
configuration/memory map; loT/embedded to server class; MP-ready

Self-checking architecturally correct stimulus portable across

Test Generator

Device Drivers

simulation, emulation, FPGA and silicon S
- Complete support for 32-bit and 64-bit RISC-V base integer
extensions along with all standard ratified extensions and several un- $

ratified ones

- Comprehensive coverage of privilege specification: MMU, PMP, PMA,
Hypervisor, Supervisor, CSRs; Ready for RVA22 and RVA23 profiles

VvCs
ZeBu
HAPS

Silicon

S‘/"UPS‘/S © 2025 Synopsys, Inc. 30

STING Use Cases

Verifying the functionality and - Privilege specification -
architectural compliance of Machine, Supervisor, User and
RISC-V extensions (several of Hypervisor extensions, MMU,
which are not ratified) PMP, PMA

Sweeping through several CPU - Testing multicore systems with
configurations for RISC-V core device interactions

vendor companies . Specialized workloads for
Security extensions - branch, load stores, floating
WorldGuard, PMP, Smepmp point, memory ordering, forward

progress, caches

STING users include processor IP vendors and SoC developers building their own RISC-V processor

Synoesys © 2025 Synopsys, Inc. 31

STING - Bugs Found

@)

* existed when a TLB Miss for an older load/store instruction waits for
its page-table-walk which cannot complete because newer stores have been issued and
filled up certain miss-handling buffers in the load/store unit. This was uncovered by STING

exercising streams of loads/stores with virtual memory enabled.”

* “Design had an to convert a conditional branch over a single
instruction into a predicated operation. There was a corner case bug in the implementation
of this logic which used to cause when the 2 instructions (a "branch"
and a "move") were separated by a pipeline flush in some scenarios.”

* due to a bug in flushing of
newer instructions when an older flush was taking place in the same cycle.”

* when a multiply instruction was in progress converted caught a pipeline
issue in multiply unit that converted one type of multiply to another type of multiply.”

* “Back-to-back diyides preceded by a long-latency memory bus read

* “STING and signaling/quiet
NaNs. RISC-V has some quirks particularly with respect to the sNaN/qNaN handling.”

* “After tuning for our cache configuration, STING
Made sure a were occurring. We support multiple
outstanding misses so it found things like window conditions when one outstanding miss
was getting filled and a request to that same line was being handled by the LSU. Windows
around when data is available vs. directory state through the pipeline. Some windows that
led to a cache line getting fetched and filled with "old" data while a write-back with new
data was in progress.”

* “Few privileged

for some of the trap
exceptions.”

@

* of instructions and trap exceptions ”

* “Issues with fence.i implementation resulting in

SYNoPSys

* “Not found directly by STING: but much of the testing is built upon running STING tests

while applying external stimulus of various forms. Debug, interrupts, etc.

”

I

The problem occurs
when attempting to execute from a PMP grain just prior to a configured PMP region. The
defect lets the checks for the prior grain use the configuration of the next grain, which can
cause exceptions to falsely fire, or falsely not fire.”

“ requiring a combination of: - Completed but uncommitted loads or
partial stores in the LSQ. - A dram slave request hits the LSU, matching one of the entries
from #1 - An outstanding device request.”

“@

: _ relating to a specific case where an instruction cache line boundary
is being crossed on the fetch buffer ingest side.”

“@)

instructions that cancels each other.”

for consecutive custom

DCIG\ CHE not incrementing the “free entries” counter which leads to a counter leak that
cou ”

“ (of the same core) when both threads are using the same
resources (VPU, ALU) and one of the threads is doing a long latency operation (e.g. div).”

@)

due to a bad LRU implementation.”

and caused some writes to be lost.”

“A pipeline optimization for multiplication operations results into a ’

© 2025 Synopsys, Inc. 32

Agenda

Dynamic verification, including test generation, hardware assisted verification

SY"UPSYS © 2025 Synopsys, Inc. 33

Hardware Accelerates Verification

HAPS Prototyping Solution ZeBu Emulation

DUT ||| L
Testbench Application ZeBU
L1 Cache
' | Server 5
Memorx Bus / sttem Bus .
N 0
W?FL

DDR Memory AXI Interconnect D ontro
Controller Module e Co

o R
AXI Master =lle \.i Vlrtuallzed§

Transactor ansacto Model
Prototyping 1\
Infrastructure UMRbus

HW/SW debug with real ASIC | Unified RTL debug with Verdi | Emulation Bring-Up and Software Stack

4 RISC-V embedded cores running at 100MHz in one FPGA

S\/HI]PS‘/S © 2025 Synopsys, Inc. 34

Agenda

 Where and why is RISC-V being used?

* RISC-V processor verification challenges

* The RISC-V processor verification solution: the full toolbox

» Dynamic verification, including test generation and hardware assisted verification
 Static / Formal verification

e Summary

S‘/"[]PS‘/S® © 2025 Synopsys, Inc. 35

Formal Verification: VC Formal

» Formal verification provides exhaustive proof of
correct behavior

« Excellent tool for unit-level DV

— Can get started early, even with design engineers

— Unit-level includes pipeline, floating point unit, load/store unit, ...

« RISC-V ISA Assertion IP (AIP) available to enable
early use of VC Formal

* VC Formal Apps improve verification efficiency of
many tasks

— Reqgister verification, datapath validation, connectivity checking,
security verification ...

SYNoPSys

FPV

Property
Verification

FTA

=)

Testbench
Analyzer

&

Sequential
Equivalence

1

FRY

Register
Verification

VC Formal Apps

DPV

2P

Datapath
Validation

AEP

Auto Checks

Security
Verification

FCA
.\"/

Coverage
Analyzer

FuSa

Functional
Safety

FXP
X-Propagation
Verification
FLP
pai

Low Power

~r
(L

Connectivity
Checking

© 2025 Synopsys, Inc.

36

RISC-V Core Unit Verification Task Examples Using Formal

Property Verification

* Prefetch Buffer:

— Redirect/Clear from various components: BPU/EX etc. should cause
proper action and in a priority order

— Instruction Cache

— Direction/Target Prediction

— Branch Target Buffer

— Wake: Detecting a ready instruction

— Dispatch: Need to select (oldest woken-up instruction first)

— Resolve Dependencies
 Decoder
— Check for undefined instructions

— Fusing check if 2 or 3 instructions can be used together

« Execution (ALU):
* Simple ALU functions
* Bypass Functionality Checking

* Misprediction should lead to redirect; Correct prediction
should result in completion

SYNoPSys

» Pipeline

FPv

» Load/Store Unit (LSU): Propert

— Load addr should be sent before Load data Verification

— Store addr should be sent before store data

— Load/Store Functionality

— Control logic

lDomxg lntr'rfaco]pnstru(tion C.athrxl

addt 6 B wdata o)
ks | RISC-V core _ N —
,.\s% Controller —0PA CGR ppc> '—l/ frata | &
Lipel §— B o A ¥ S
\Prefetchorinz RF e
Buffer & CfDecoder} sfexl | éuuﬂ ALU j A ':l_f
A ? i r{WB >0pB DIV Rm‘_L—A- e
T M ROPC A ,I 4
Y GPR i L el A
hwloop o pac— | s L————cSopa '
I A : D { MULT EX =
4 lio b:? g?g = :;F exl— o8 MAC WE| o
A £ o DIA, S ———=0pC), o
-~ < b4 EX AN o Wi— =
g o o fo-{wal- — -
o a2 MY oo,
T A A—éOpC Unit
LA oi e t— LA

J

Source: https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-
GautschiSchiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

© 2025 Synopsys, Inc. 37

https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

VC Formal RISC-V Assertion IP (AIP) for Exhaustive ISA Verification

RISC-V Core

111 1

RISC-V ISA AIP

SYNoPSys

Benefits of RISC-V ISA AIP Formal Verification

Formal exhaustively tests all possible RISC-V instruction
scenarios

Availability of RISC-V ISA AIP reduces debug turn-
around-time

RISC-V ISA AIP validates instruction execution control
and base-ISA data path

For complex math operations (MUL/DIV), will need DPV verification
to ensure datapath correctness

RISC-V ISA AIP can be used for multiple configurations
and cores

Verification quality and confidence are high

© 2025 Synopsys, Inc. 38

Formal RISC-V ISA AIP Applied to Design

RISC V Core (pipeline) Memory Interface

ool be

B Loglc

\ 4 \ 4

RISC-V ISA AIP Interface

RISC-V ISAAIP LOGIC and Properties

A

SYNoPSys

RISC-V ISA AIP needs minimal access to a
small number of points around the pipeline to
observe certain events

Interfaces to bind to RISC-V ISA AIP

— Instruction Fetch Interface
— Data Memory Interface
— Instruction Retire Interface

— Register Write Interface

Testbench logic
— DUT signal expressions to bind to RISC-ISA AIP interfaces
— DUT-specific constraints

RISC-V ISA AIP offers all the properties and
policies for checking the instruction
architecture

© 2025 Synopsys, Inc.

39

Verification of the RISC-V ISA AIP

 The RISC-V AIP itself is verified using formal against a testplan extracted from
the ISA spec

» Targets we have verified the AIP against in the past include:
— OpenHW CV32E40P and CV32E40X
— OpenHW CVAG (as both 32bit and 64bit variants)
— Internal Synopsys core
— Internal Synopsys core models
— lbex
— SweRV EH2

S‘/"[]PS‘/S © 2025 Synopsys, Inc. 40

Examples of Bugs Found With RISC-V Formal AIP

Likely to find
In simulation

Bug description FV runtime

Simultaneous writes to same destination register from stalled LOAD_FP retiring out of

order with subsequent OP_FP ~20 min

RV32F LOAD_FP unexpectedly writing 64-bit floating point values to FP register file
when core is configured as 64bit integer pipeline (RV64l) with RV32F — core overrides ~20 min
RV32F and instantiates 64bit FP pipeline (config bug)

A power optimization problem where inadvertent multiple register writes were seen for

stalled or unaligned load ~2 min Med

Core fully executes instruction that was not requested and updates the integer register
file — instr_read_valid without first instr_fetch_valid. Although protocol is violated, core ~1 min Med
does not protect the pipeline (expose security hole)

S‘/"[]PS‘/S © 2025 Synopsys, Inc. 41

Agenda

 Where and why is RISC-V being used?

» RISC-V processor verification challenges

* The RISC-V processor verification solution: the full toolbox

» Dynamic verification, including test generation and hardware assisted verification
 Static / Formal verification

e Summary

S‘/"[]PS‘/SGa © 2025 Synopsys, Inc. 42

Summary

* RISC-V processors are coming ... are here now!

* RISC-V processor verification is challenging
vy RISC

 The full toolbox I1s needed for successful
verification of RISC-V processors

SY"UPSYS © 2025 Synopsys, Inc. 43

SYNOPSYS'

Thank You

Learn more at www.synopsys.com/RISC-V

