
RISC-V Processor Verification

Requires the Full Toolbox

Simon Davidmann, VP Eng., Processor Modeling & Verification

Verification Futures UK, July 2025

© 2025 Synopsys, Inc. 2

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted verification

• Static / Formal verification

• Summary

© 2025 Synopsys, Inc. 3

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted verification

• Static / Formal verification

• Summary

© 2025 Synopsys, Inc. 4

Where and why is RISC-V being used?

Anyone can design their own processor based

on the RISC-V ISA

Modular ISA = choice of which features to

include/exclude

Extensibility and freedom to customize at ISA

and micro-architectural levels

RISC-V enables the creation of domain-

specific differentiated processors

© 2025 Synopsys, Inc. 5

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted verification

• Static / Formal verification

• Summary

© 2025 Synopsys, Inc. 6

Challenges in RISC-V Processor Verification

• Design complexity – architecture, micro-architecture, implementation

choices, custom features

• Source of processor IP (in-house, open source, vendor + custom

instructions)

• Use case: microcontroller – application processor; closed versus

open to external software development

• Verification productivity and time to closure

• Team experience (designers and verification engineers)

• Processor verification methodology

• Tool selection

© 2025 Synopsys, Inc. 7

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted verification

• Static / Formal verification

• Summary

© 2025 Synopsys, Inc. 8

The Synopsys Processor Verification Toolbox

Verdi Verification Planning and Functional Coverage Platform

VC Formal FPV +

RISC-V ISA AIP
Functional Verification

VC Formal DPV
Verify computational correctness for

RISC-V processors

VC Formal Portfolio
VCS & Verdi

Dynamic Simulation

STING
Test Generation

Formal Verification Dynamic Verification

ZeBu & HAPS
HW Assisted Verification

ImperasTS
RISC-V test suites:

vector, MMU, PMP

ImperasDV
Co-Simulation and Checking

Verification Environment

VC Formal SEQ
Verify that custom instructions do not

break the original core

ImperasFPM
RISC-V Reference Model

ImperasFC / ImperasSC
RISC-V ISA Functional

Coverage

© 2025 Synopsys, Inc. 9

Tool & Methodology selection table shows how dynamic and

formal verification complement each other

Design Level Example Tool/Methodology

Unit Pipeline, FPU Formal + predefined assertion IP

Security Formal + predefined security assertion IP

Architecture ISA Dynamic

Formal + predefined assertion IP

Custom instructions, CSRs Custom DSP, matrix Dynamic

Formal sequential equivalence checking,

register verification, datapath validation

Processing subsystem Coherent cache, multi- or

many-processor accelerator

Dynamic, especially using hardware assisted

verification

Formal property verification for cache

coherence verification

© 2025 Synopsys, Inc. 10

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted

verification

• Static / Formal verification

• Summary

© 2025 Synopsys, Inc. 11

Agenda

• Dynamic verification

– ImperasDV, ImperasFPM (reference model)

– Lock-step continuous compare, async events, weak memory models

– ImperasFC (functional coverage), ImperasSC (stimulus coverage)

– ImperasTS (directed test suites for compliance / compatibility)

© 2025 Synopsys, Inc. 12

Agenda

• Dynamic verification

– ImperasDV, ImperasFPM (reference model)

– Lock-step continuous compare, async events, weak memory models

– ImperasFC (functional coverage), ImperasSC (stimulus coverage)

– ImperasTS (directed test suites for compliance / compatibility)

© 2025 Synopsys, Inc. 13

What is ImperasDV?

• A front-end design verification solution for those designing a

processor using the RISC-V ISA

• Uses the ImperasFPM (configurable, extendable) as a reference

model

• Uses a lock-step continuous compare methodology

• Performs score-boarding and checking

• Verifies asynchronous events using advanced pipeline

synchronization technology

• Verifies core with Weak or Strong Memory consistency

• single- / multi-hart, with / without caches

• Functional coverage (with reporting in Verdi)

VCS

ImperasDV

RISC-V RTL

results.log

T
ra

c
e
r

testProgram.elf

ImperasFPM
RISC-V

Reference Model

Memory

User

Extension:

custom

instructions

& CSRs

RISC-V

Base Model

Model

Config

250+

params

© 2025 Synopsys, Inc. 14

ImperasFPMs (Fast Processor Model) for RISC-V

• Base Model implements RISC-V specification in full

• Fully user configurable to select ISA extensions and

versions

• Pre-defined configurations and custom instructions for

processor IP vendors

• User extensions built in a separate library do not

perturb the verified Base Model source, help reduce

maintenance

• Over 150 companies, organizations and universities

have used the ImperasFPM

• ImperasFPMs can be used as reference model for

verification, and also for software development with

virtual prototypes (e.g. Virtualizer)

ImperasFPM

User

Extension:

custom

instructions

& CSRs

RISC-V

Base Model
Model Config

250+ params

Using the same model for both HW & SW verification enables significant reduction in SoC "Bring-Up" time

© 2025 Synopsys, Inc. 15

Agenda

• Dynamic verification

– ImperasDV, ImperasFPM (reference model)

– Lock-step continuous compare, async events, weak memory models

– ImperasFC (functional coverage), ImperasSC (stimulus coverage)

– ImperasTS (directed test suites for compliance / compatibility)

© 2025 Synopsys, Inc. 16

VCS

ImperasDV

What is Lock-Step Continuous Compare Methodology?

• Co-simulation approach: Reference model and RTL run in lock-step

• Internal state of reference and RTL are compared after each instruction

retires

Advantages:

• Bugs reported immediately, not at end of simulation

• No wasted simulation cycles running past first error

• Easier to debug at the point of failure

• Most comprehensive DV methodology RISC-V RTL

results.log

T
ra

c
e
r

testProgram.elf

ImperasFPM
RISC-V

Reference Model

Memory

User

Extension:

custom

instructions

& CSRs

RISC-V

Base Model

Model

Config

250+

params

© 2025 Synopsys, Inc. 17

Asynchronous event verification with ImperasDV

• An architectural model cannot predict exactly

when an asynchronous event will take effect

• External net changes received as a set from

RTL tracer interface (RVVI)

• ImperasDV Pipeline Synchronization

technology determines whether RTL DUT

response to these events is legal

© 2025 Synopsys, Inc. 18

Asynchronous event verification with ImperasDV

• An architectural model cannot predict exactly

when an asynchronous event will take effect

• External net changes received as a set from

RTL tracer interface (RVVI)

• ImperasDV Pipeline Synchronization

technology determines whether RTL DUT

response to these events is legal

• If not, an error is flagged and debug information

is provided

Info (IDV_RPT) 3 legal scenarios have been evaluated:

Info (IDV_RPT) SCENARIO 1:

Info (IDV_RPT) + Exception { pc:0x1304(test2+4a), fetch:'904ff0ef jal x1,408', 'Machine software interrupt' }

Info (IDV_RPT) + Retire { pc:0xc(vector_table+c), inst:'5ca0006f jal x0,5d6' }

Info (IDV_RPT) ! dut.pc - 0x0000001c vector_table+1c

Info (IDV_RPT) ref.pc - 0x0000000c vector_table+c

Info (IDV_RPT) ! dut.mcause - 0x80000007 Interrupt:1 Code:7(Machine timer interrupt)

Info (IDV_RPT) ref.mcause - 0x80000003 Interrupt:1 Code:3(Machine software interrupt)

Info (IDV_RPT)

Info (IDV_RPT) SCENARIO 2:

Info (IDV_RPT) + Exception { pc:0x1304(test2+4a), fetch:'904ff0ef jal x1,408', 'Machine software interrupt' }

Info (IDV_RPT) + Net MTimerInterrupt => 0 { when:37351 }

Info (IDV_RPT) + Retire { pc:0xc(vector_table+c), inst:'5ca0006f jal x0,5d6' }

Info (IDV_RPT) ! dut.pc - 0x0000001c vector_table+1c

Info (IDV_RPT) ref.pc - 0x0000000c vector_table+c

Info (IDV_RPT) ! dut.mcause - 0x80000007 Interrupt:1 Code:7(Machine timer interrupt)

Info (IDV_RPT) ref.mcause - 0x80000003 Interrupt:1 Code:3(Machine software interrupt)

Info (IDV_RPT)

Info (IDV_RPT) SCENARIO 3:

Info (IDV_RPT) + Net MTimerInterrupt => 0 { when:37351 }

Info (IDV_RPT) + Exception { pc:0x1304(test2+4a), fetch:'904ff0ef jal x1,408', 'Machine software interrupt’ }

...

© 2025 Synopsys, Inc. 19

RISC-V System’s Memory Consistency
• RISC-V systems can have many cores, harts, caches

• RISC-V ISA defines two memory models: TSO (Total Store Order) and RVWMO (Weak Memory Order)

TSO is strong memory model – and software can assume memory is consistent

RVWMO

• is weaker model and allows hardware to be designed for simplicity and / or performance

• introduces several modeling and verification challenges compared to stronger memory models like TSO

• Reordering of memory operations

• Delayed visibility of writes

• Complex interactions between multiple cores / harts

• Explicit synchronization (fences) required to maintain correctness

• Difficult-to-predict interleaving of memory operations

• allows reordering across the following operations

– Load → Load

• Load → Store

• Store → Load

• Store → Store

• Fence enforcement

© 2025 Synopsys, Inc. 20

Verifying cores with multiple harts and caches with ImperasDV

TSO modeled in ImperasFPM reference model with option for RVWMO checking

• RVWMO & caches means that

memory operations can have many

different orderings – all legal

• Tracer notifies ImperasDV when DUT

memory is operated on

– e.g. RTL DUT LD / ST instructions or instruction

fetch

– Indicating which hart and values and when

• For a verification run ImperasDV /

ImperasFPM must be configured to

select its memory consistency model

RISC-V RTL

& memory

Async inputs

T
ra

c
e

r

ImperasFPM

RISC-V

Reference

Model

ImperasFC

RISC-V ISA

coverage

ImperasDV

© 2025 Synopsys, Inc. 21

Verifying cores with multiple harts and caches with ImperasDV

• An architectural model of an RVWMO multi-

hart device or device with cache(s) cannot

predict exactly when a memory operation and

its value will take effect

• ImperasDV includes Memory Operation

Synchronization technology which determines

whether DUT memory operations and values

are legal and correct for RVWMO or TSO

RISC-V RTL

& memory

Async inputs

T
ra

c
e

r

ImperasFPM

RISC-V

Reference

Model

ImperasFC

RISC-V ISA

coverage

ImperasDV

Configure ImperasDV / ImperasFPM

to use TSO or RVWMO model

TSO modeled in ImperasFPM reference model with option for RVWMO checking

© 2025 Synopsys, Inc. 22

Verifying cores with multiple harts and caches with ImperasDV

• An architectural model of an RVWMO multi-

hart device or device with cache(s) cannot

predict exactly when a memory operation and

its value will take effect

• ImperasDV includes Memory Operation

Synchronization technology which determines

whether DUT memory operations and values

are legal and correct for RVWMO or TSO

• If not, an error is flagged and debug

information is provided

• Areas of memory can be excluded from the

checking by tagging them ‘volatile’

ImperasDV

TSO modeled in ImperasFPM reference model with option for RVWMO checking

Example messages

Warning (IDV_MSR) Memory difference detected, Memory Synchronizer running...

Info (IDV_MSRLI) Reverting last instruction

...

Info (IDV_MSF) Memory Synchronizer finished after 6 iterations

Info (IDV_MSMDR)Memory difference resolved, continuing

...

Error (IDV_MSUR) Memory Synchronizer unable to resolve DUT memory load result

Error (IDV_MSNAR) Memory Synchronizer was not able to resolve the mismatch

Info (IDV_MSRRS) Restoring reference model state

...

Warning (IDV_MSFID) Fetched instruction bit pattern difference detected,

Memory Synchronizer running...

...

Info (IDV_MSFIA) Fetched instruction bit pattern accepted, continuing

Info (IDV_MSFP) Fetch of 0001 from 0x000100b2 propagated to reference model

Info (IDV_MSFDR) Fetched instruction difference resolved, continuing

...

Error (IDV_MSNARF) Memory Synchronizer was not able to resolve fetch mismatch

of 0001 from 0x000100b2

...

© 2025 Synopsys, Inc. 23

Agenda

• Dynamic verification

– ImperasDV, ImperasFPM (reference model)

– Lock-step continuous compare, async events, weak memory models

– ImperasFC (functional coverage), ImperasSC (stimulus coverage)

– ImperasTS (directed test suites for compliance / compatibility)

© 2025 Synopsys, Inc. 24

ImperasFC: SystemVerilog Functional Coverage for RISC-V

• Functional coverage code generation

– Manual creation would be tedious, time

consuming and error prone

– >100K lines of SystemVerilog source code

– Synopsys tools can automatically generate

functional coverage code for custom instructions

• Functional coverage is the key

verification metric

ImperasFC

functional

coverage

Machine-

readable

RISC-V ISA

specification

SystemVerilog

coverage

code generator

https://github.com/riscv-verification/riscvISACOV for list of covered extensions

https://github.com/riscv-verification/riscvISACOV/

© 2025 Synopsys, Inc. 25

ImperasFC is integrated with ImperasDV / works with Verdi

• Auto-generated documentation in markdown and

csv formats for inclusion in Verification Plans

• Functional coverage data is reported in verification

tools such as Verdi

© 2025 Synopsys, Inc. 26© 2025 Synopsys, Inc. 26

Start test development early with ImperasSC

Stimulus Coverage measures the impact of test stimulus on functional coverage

Testbench

coverage.vdb

ImperasSC

Stimulus

Coverage

testProgram.elf

ImperasDV

ImperasFPM

RISC-V

Reference

Model

ImperasFC

RISC-V ISA

coverage

RVVI

How it works:

• Tests are run on the

ImperasFPM

• RVVI-TRACE data is

captured and used to

sample functional

coverage in

ImperasFC

• Use Verdi to merge

and analyze coverage

results from multiple

tests

• RISC-V processor RTL

and SystemVerilog

tracer are not required

SystemVerilog

• Uses ImperasFPM and ImperasFC

• Shift Left… no RTL required

=> start developing tests and measuring coverage in parallel with RTL development

© 2025 Synopsys, Inc. 27

Agenda

• Dynamic verification

– ImperasDV, ImperasFPM (reference model)

– Lock-step continuous compare, async events, weak memory models

– ImperasFC (functional coverage), ImperasSC (stimulus coverage)

– ImperasTS (directed test suites for compliance / compatibility)

© 2025 Synopsys, Inc. 28

ImperasTS (directed Test Suites for compliance / compatibility)
• Directed test suites for architectural validation ("compliance")

• Provided as .S source, Self-checking (includes automatically generated assertions)

Basic fixed ISA – standard RV32, RV64, B, K, … ratified instruction extensions

• 84 Test Suites

Complex, configurable extensions

• Test suites generated to match customer’s core configuration

• Vector (Zv, Zvk)
• Includes 7 separate test suites

• Vector crypto (Vk) included

• MMU
• Supports Sv32, SV39, and SV48 virtual memory systems

• Separate tests for User and Supervisor modes

• PMP / EPMP
• Supports 32 bit and 64bit PMP, EPMP

• Tests are generated to target specific pmpcfg / pmpaddr regions

• Allows read-only fields and custom reset values in CSRs

© 2025 Synopsys, Inc. 29

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: ImperasDV == the full toolbox

• Dynamic verification, including test generation and hardware assisted verification

• Static / Formal verification

• Summary

© 2025 Synopsys, Inc. 30© 2025 Synopsys, Inc. 30

STING – RISC-V Test Generation

Preventing bug escapes for complex RISC-V designs

• Bare metal tool using a software driven methodology for RISC-V

design verification

• Integrates several test generation methodologies to give the best

verification throughput

• Highly scalable and quick test generation; compatible with any system

configuration/memory map; IoT/embedded to server class; MP-ready

• Self-checking architecturally correct stimulus portable across

simulation, emulation, FPGA and silicon

• Complete support for 32-bit and 64-bit RISC-V base integer

extensions along with all standard ratified extensions and several un-

ratified ones

• Comprehensive coverage of privilege specification: MMU, PMP, PMA,

Hypervisor, Supervisor, CSRs; Ready for RVA22 and RVA23 profiles

Configurations

C++ based tests

ASM-like Directed Tests

Test Generator

Micro-Kernel

Library

Device Drivers

STING

STING.elf

© 2025 Synopsys, Inc. 31

STING Use Cases

• Verifying the functionality and

architectural compliance of

RISC-V extensions (several of

which are not ratified)

• Sweeping through several CPU

configurations for RISC-V core

vendor companies

• Security extensions -

WorldGuard, PMP, Smepmp

• Privilege specification -

Machine, Supervisor, User and

Hypervisor extensions, MMU,

PMP, PMA

• Testing multicore systems with

device interactions

• Specialized workloads for

branch, load stores, floating

point, memory ordering, forward

progress, caches

STING users include processor IP vendors and SoC developers building their own RISC-V processor

© 2025 Synopsys, Inc. 32

STING - Bugs Found

★ “Deadlock condition existed when a TLB Miss for an older load/store instruction waits for
its page-table-walk which cannot complete because newer stores have been issued and
filled up certain miss-handling buffers in the load/store unit. This was uncovered by STING
exercising streams of loads/stores with virtual memory enabled.”

★ “Design had an optimization issue to convert a conditional branch over a single
instruction into a predicated operation. There was a corner case bug in the implementation
of this logic which used to cause register corruption when the 2 instructions (a "branch"
and a "move") were separated by a pipeline flush in some scenarios.”

★ “Page table walk returning incorrect address translations due to a bug in flushing of
newer instructions when an older flush was taking place in the same cycle.”

★ “Stall condition when a multiply instruction was in progress converted caught a pipeline
issue in multiply unit that converted one type of multiply to another type of multiply.”

★ “Back-to-back divides preceded by a long-latency memory bus read caused the second
divide to hang.”

★ “STING found a lot of nuances with floating-point rounding modes and signaling/quiet
NaNs. RISC-V has some quirks particularly with respect to the sNaN/qNaN handling.”

★ “After tuning for our cache configuration, STING did a good job stressing the cache
controller. Made sure a lot of cache conflicts were occurring. We support multiple
outstanding misses so it found things like window conditions when one outstanding miss
was getting filled and a request to that same line was being handled by the LSU. Windows
around when data is available vs. directory state through the pipeline. Some windows that
led to a cache line getting fetched and filled with "old" data while a write-back with new
data was in progress.”

★ “Few privileged CSRs were getting sign-extended incorrectly for some of the trap
exceptions.”

★ “Unexpected execution of instructions and trap exceptions in the shadow of branch”

★ “Issues with fence.i implementation resulting in incorrect execution of self modifying
code sequences”

★ “Not found directly by STING: but much of the testing is built upon running STING tests
while applying external stimulus of various forms. Debug, interrupts, etc. Having
sufficiently interesting code being executed by STING while that external stimulus
was on-going help find a number of good issues.”

★ “PMP execute check wrong for the grain prior to a valid grain. The problem occurs
when attempting to execute from a PMP grain just prior to a configured PMP region. The
defect lets the checks for the prior grain use the configuration of the next grain, which can
cause exceptions to falsely fire, or falsely not fire.”

★ “Corner-case hang requiring a combination of: - Completed but uncommitted loads or
partial stores in the LSQ. - A dram slave request hits the LSU, matching one of the entries
from #1 - An outstanding device request.”

★ “1 cycle window where wrong instruction text was serviced from the fetch buffer on
a backwards branch, relating to a specific case where an instruction cache line boundary
is being crossed on the fetch buffer ingest side.”

★ “FSM in the DCACHE not cleaning the state correctly for consecutive custom
instructions that cancels each other.”

★ “DCACHE not incrementing the “free entries” counter which leads to a counter leak that
could potentially block the core from doing any memory operation”

★ “Thread 0 starves Thread 1 (of the same core) when both threads are using the same
resources (VPU, ALU) and one of the threads is doing a long latency operation (e.g. div).”

★ “Livelock in the shared ICACHE due to a bad LRU implementation.”

★ “LRAM clock gating triggered too early and caused some writes to be lost.”

★ “A pipeline optimization for multiplication operations results into a deadlock condition”

© 2025 Synopsys, Inc. 33

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: ImperasDV == the full toolbox

• Dynamic verification, including test generation, hardware assisted verification

• Static / Formal verification

• Summary

© 2025 Synopsys, Inc. 34

Hardware Accelerates Verification

HAPS Prototyping Solution

HW/SW debug with real ASIC | Unified RTL debug with Verdi |

4 RISC-V embedded cores running at 100MHz in one FPGA

Memory Bus / System Bus

UART

AXI Interconnect

Module

DDR Memory

Controller

AXI Master

Transactor

DUT

Prototyping

Infrastructure UMRbus

GPIO

Transactor

DUT Control +

Cycle Counter

Linux

Application

RISC-V UART

DDR

PCIe

USB SNPS IP

Drivers

Uboot

Testbench

Real RTL

Virtualized

Model

ZeBu Emulation

Emulation Bring-Up and Software Stack

ZeBu

Server 5

RISC-V

Tile 1

L1 Cache

© 2025 Synopsys, Inc. 35

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted verification

• Static / Formal verification

• Summary

© 2025 Synopsys, Inc. 36

Formal Verification: VC Formal

• Formal verification provides exhaustive proof of

correct behavior

• Excellent tool for unit-level DV

– Can get started early, even with design engineers

– Unit-level includes pipeline, floating point unit, load/store unit, …

• RISC-V ISA Assertion IP (AIP) available to enable

early use of VC Formal

• VC Formal Apps improve verification efficiency of

many tasks

– Register verification, datapath validation, connectivity checking,

security verification …

VC Formal Apps

© 2025 Synopsys, Inc. 37

RISC-V Core Unit Verification Task Examples Using Formal

Property Verification

• Prefetch Buffer:

– Redirect/Clear from various components: BPU/EX etc. should cause

proper action and in a priority order

– Instruction Cache

– Direction/Target Prediction

– Branch Target Buffer

– Wake: Detecting a ready instruction

– Dispatch: Need to select (oldest woken-up instruction first)

– Resolve Dependencies

• Decoder

– Check for undefined instructions

– Fusing check if 2 or 3 instructions can be used together

• Execution (ALU):
• Simple ALU functions

• Bypass Functionality Checking

• Misprediction should lead to redirect; Correct prediction
should result in completion

• Load/Store Unit (LSU):

– Load addr should be sent before Load data

– Store addr should be sent before store data

– Load/Store Functionality

• Pipeline

– Control logic

Source: https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-

GautschiSchiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

© 2025 Synopsys, Inc. 38

VC Formal RISC-V Assertion IP (AIP) for Exhaustive ISA Verification

RISC-V Core

BIND

RISC-V ISA AIP

Benefits of RISC-V ISA AIP Formal Verification

• Formal exhaustively tests all possible RISC-V instruction

scenarios

• Availability of RISC-V ISA AIP reduces debug turn-

around-time

• RISC-V ISA AIP validates instruction execution control

and base-ISA data path
• For complex math operations (MUL/DIV), will need DPV verification

to ensure datapath correctness

• RISC-V ISA AIP can be used for multiple configurations

and cores

• Verification quality and confidence are high

© 2025 Synopsys, Inc. 39

Formal RISC-V ISA AIP Applied to Design

• RISC-V ISA AIP needs minimal access to a

small number of points around the pipeline to

observe certain events

• Interfaces to bind to RISC-V ISA AIP

– Instruction Fetch Interface

– Data Memory Interface

– Instruction Retire Interface

– Register Write Interface

• Testbench logic

– DUT signal expressions to bind to RISC-ISA AIP interfaces

– DUT-specific constraints

• RISC-V ISA AIP offers all the properties and

policies for checking the instruction

architecture

W

B

Memory Interface

RISC-V ISA AIP Interface

RISC V Core (pipeline)

RISC-V ISA AIP LOGIC and Properties

TB Logic

F

e

t

c

h

© 2025 Synopsys, Inc. 40

Verification of the RISC-V ISA AIP

• The RISC-V AIP itself is verified using formal against a testplan extracted from

the ISA spec

• Targets we have verified the AIP against in the past include:

– OpenHW CV32E40P and CV32E40X

– OpenHW CVA6 (as both 32bit and 64bit variants)

– Internal Synopsys core

– Internal Synopsys core models

– Ibex

– SweRV EH2

– …

© 2025 Synopsys, Inc. 41

Examples of Bugs Found With RISC-V Formal AIP

Bug description FV runtime
Likely to find

in simulation

Simultaneous writes to same destination register from stalled LOAD_FP retiring out of

order with subsequent OP_FP
~20 min Low

RV32F LOAD_FP unexpectedly writing 64-bit floating point values to FP register file

when core is configured as 64bit integer pipeline (RV64I) with RV32F – core overrides

RV32F and instantiates 64bit FP pipeline (config bug)

~20 min High

A power optimization problem where inadvertent multiple register writes were seen for

stalled or unaligned load
~2 min Med

Core fully executes instruction that was not requested and updates the integer register

file – instr_read_valid without first instr_fetch_valid. Although protocol is violated, core

does not protect the pipeline (expose security hole)

~1 min Med

© 2025 Synopsys, Inc. 42

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted verification

• Static / Formal verification

• Summary

© 2025 Synopsys, Inc. 43

• RISC-V processors are coming … are here now!

• RISC-V processor verification is challenging

• The full toolbox is needed for successful

verification of RISC-V processors

Summary

Thank You
Learn more at www.synopsys.com/RISC-V

