SYNOPSYS

RISC-V Processor Verification
Requires the Full Toolbox

Larry Lapides, Exec. Director, RISC-V Tools Bus. Dev.
Verification Futures UK, 2025

E——

Agenda

 Where and why is RISC-V being used?

RISC-V processor verification challenges

The RISC-V processor verification solution: the full toolbox

Dynamic verification, including test generation and hardware assisted verification

Formal verification

e Summary

S‘/"[]PS‘/S © 2024 Synopsys, Inc. 2

Agenda

« Where and why is RISC-V being used?

RISC-V processor verification challenges

The RISC-V processor verification solution: the full toolbox

Dynamic verification, including test generation and hardware assisted verification

Formal verification

e Summary

S‘/"[]PS‘/S © 2024 Synopsys, Inc. 3

Where and why is RISC-V being used?

Automotive

Anyone can design their own processor based
on the RISC-V ISA

Modular ISA = choice of which features to o~ =
include/exclude I ionation il Software

Extensibility and freedom to customize at ISA
and micro-architectural levels

RISC-V enables the creation of domain-
specific differentiated processors

S‘/“UPS‘/S © 2024 Synopsys, Inc. 4

Agenda

 Where and why is RISC-V being used?

RISC-V processor verification challenges

The RISC-V processor verification solution: the full toolbox

Dynamic verification, including test generation and hardware assisted verification

Formal verification

e Summary

S‘/"[]PS‘/S © 2024 Synopsys, Inc. 5

Challenges in RISC-V Processor Verification

« Design complexity — architecture, micro-architecture, implementation
choices, custom features

« Source of processor IP (in-house, open source, vendor + custom
Instructions)

« Use case: microcontroller — application processor; closed versus
open to external software development

* Verification productivity and time to closure

« Team experience (designers and verification engineers)
* Processor verification methodology
 Tool selection

S‘/“UPS‘/S © 2024 Synopsys, Inc. 6

RISC-V Processor Verification Process

Design verification from unit to SoC

Design Level Example Tool/Methodology

Unit Pipeline, FPU Formal + predefined assertion IP
Security Formal + predefined security assertion IP

Architecture ISA Dynamic

Formal + predefined assertion IP

Custom instructions, CSRs

Custom DSP, matrix

Dynamic

Formal sequential equivalence checking,
register verification, datapath validation

Processing subsystem

Coherent cache, multi- or
many-processor accelerator

Dynamic, especially using hardware assisted
verification

Formal property verification for cache
coherence verification

SYNoPsys

© 2024 Synopsys, Inc.

Agenda

 Where and why is RISC-V being used?

RISC-V processor verification challenges

The RISC-V processor verification solution: the full toolbox

Dynamic verification, including test generation and hardware assisted verification

Formal verification

e Summary

S‘/"[]PS‘/S © 2024 Synopsys, Inc. 8

The RISC-V Processor Verification Toolbox

Formal Verification Dynamic Verification

ImperasTS

VC Formal FPV + STING RISC.V test suites:
RIS_C-V ISA.A”.D Test Generation vector, MMU, PMP
Functional Verification
ImperasDV
_ Ve Fo_rmal DPV Co-Simulation and Checking
Verify computational correctness for Verification Environment
RISC-V processors e el
' Lo ImperasFC |
| ImperasFPM Lo . |
. VC Formal SE_Q ' RISC.V Reference Model | ! RISC-V ISA Functional :
Verify that custom instructions do not D e R Coverage . ________ ;
break the original core
: VCS & Verdi ZeBu & HAPS
VC Formal Portfolio Dynamic Simulation HW Assisted Verification

Verdi Verification Planning and Functional Coverage Platform

S‘/"UPS‘/S © 2024 Synopsys, Inc.

Agenda

 Where and why is RISC-V being used?

RISC-V processor verification challenges

The RISC-V processor verification solution: the full toolbox

Dynamic verification, including test generation and hardware assisted

verification

Formal verification

e Summary

S‘/"[]PS‘/S © 2024 Synopsys, Inc. 10

Fast Processor Models for RISC-V: ImperasFPMs

Use Cases: Software Development and RISC-V Processor Verification

RISC-V Model Config User ExtenS|or_15:
Base Model (250+ Parameters) Custom Instructions
& CSRs

Verification
py a— e Solution

; ; ImperasFPM RISC-V Model
the industry leading processor model

of RISC-Vprocessors instantiated in
more than 50 SoCs

A

Virtual Prototypes

Using the same model for both HW & SW verification enables significant reduction in SoC "Bring-Up" time

S‘/“UPS‘/S © 2024 Synopsys, Inc. 11

ImperasDV RISC-V Processor Verification Solution

Enabling complete and comprehensive processor verification

Configurable, extendable RISC-V
reference model S{iiopsyS VCS

Debug driver
ImperasDV

RISC-V RTL simulation in VCS

|

| ST'NGTS RISC-VRTL | RvVI ImperasFC
) . I’iS(:?/FSe;?I'SESTS & memory | Tracer Functional coverage
« Scoreboarding and checking

ImperasFPM
RISC-V Model

Interrupt driver

Functional coverage output to Verdi

VCS with ImperasDV solution reduces RTL risk and accelerates verification schedule

S‘/“UPS‘/S © 2024 Synopsys, Inc. 12

ImperasFPMs (Fast Processor Models) for RISC-V

ImperasFPM
A

RISC-V
Base Model

SYNopsys

Model Config
250+ params

Base Model implements RISC-V specification in full

Fully user configurable to select ISA extensions and
versions

Pre-defined configurations and custom instructions for
processor IP vendors

User extensions built in a separate library do not
perturb the verified Base Model, help reduce
maintenance

Because every ImperasFPM uses the RISC-V Base
Model, and including users of both commercial and
free tools, over 150 companies, organizations and
universities have used the ImperasFPM

© 2024 Synopsys, Inc. 13

ImperasFC: SystemVerilog Functional Coverage for RISC-V

« Functional coverage code generation

— Manual creation would be tedious, time
consuming and error prone

— >100K lines of code
— Synopsys tools can automatically generate

ImperaskFC

functional
coverage

functional coverage code for custom instructions Machine- SystemVerilog
readable coverage
RISC-V ISA code generator
specification

« Functional coverage is the key
verification metric

https://qgithub.com/riscv-verification/riscviISACOV/tree/v20240124/documentation for list of covered extensions

© 2024 Synopsys, Inc. 14

SYNopsys

https://github.com/riscv-verification/riscvISACOV/tree/v20240124/documentation

Integrating ImperasDV with Verdi

| e o
riscvISACOV: RISC-V SystemVerilog Functional
Coverage: RV32|
|
ISA Entension: RV3Z o)
Mo e 8l average 1>+t 40t Bars. e bem 4004 TE pamred ol e
Specification: | Bese imeger Insiruction Set v T e o -
\ x 21 - -
Version: 2 322 i:ﬂ; : v " =L
XLEN: 32 - $R .0, cwsn Ly 3 P catetu 4¥.e
instructions: 37 uterihy | Moddny Vu--r-"u"«_, Totrtr s Wty [Tep— _-J 319 Svwcnatove : Croes 20 Breq
Covergroups: 37 i fio -liE a1 \ -. -'.----—- oen [Rre—. vot
Coverponts tatal: 438 e BEAIEE SRR SN 230 R0 T D - ey e
Coverpoints Compliance Basic: 204 o G e R O v o4 - R4 S
Coverponts Compliance Extended: 234 B RO RN RED e i+ B o
SAse R Mo
m— e o
Coverpoint Coverpaoint === R e Y
Extension Subset Instruction Covergroup Coverpoint X 20 cos
Description Level o o Juos Dudune Yee At Gos et Ceoe
Clor o . - A3 o
Number of ! 7 O
ava2l ad 4 R times Compiance ! >
acdi add_c cp_asm_coun .
E =9 e ratruction Basic S > o
—) 00N
5 executod 0 0O
RD (GPR) [sl
o st Complance >itime et et
¢ r [{ o
P v Basic [—— 5.
assignment ;
™ o o o
The blbnarg tewn we mwramthated b Cwm -
fD |GPR fv . -
(R Compliance e
cp_rd_sgn sign of Sisic e, ekt At
3 - -
value y o ettty fully o
AS1{(GPR)
1 . Compsance .
cp_Is 10g5 - Sererente nawge
P e Basic .
assignment S a8
AS1({GPR)
i o o4 Complance
Cp_ral_s
RILLAD ” Basic
value

» Auto-generated documentation in markdown and
csv formats for inclusion in Verification Plans

* Functional coverage data is reported in verification
tools such as Verdi

© 2024 Synopsys, Inc.

SYNopsys

STING Generates Tests for RISC-V Processors and Systems

‘ STING J ‘ RISC-V design J ‘ Target Platforms J

— —

RTL simulati@_

— —

HW emulaticﬂ_
— —

FPGA prototype

— —

P
B
r
|

p
h
e
r
a
|

—0 =0 T —-—= 0 T

Silicon |
Generate Verify RISC-V ISA, Test
constrained random, custom extensions, on multiple platforms
directed and graph- multi-hart, memory Including silicon

based tests coherence, concurrency devices

Synoesys © 2024 Synopsys, Inc. 16

STING

Preventing bug escapes for complex RISC-V designs

* Bare metal tool using a software driven methodology for
RISC-V design verification

* Integrates several test generation methodologies to give the
best verification throughput

* Highly scalable and quick test generation; Compatible with
any system configuration/memory map; loT/embedded to
server class; MP-ready

* Self-checking architecturally correct stimulus portable across
simulation, emulation, FPGA and silicon

SYNoPSys

Configurations

C++ based tests

ASM-like Directed Tests

Test Generator

Device Drivers

-

STING.elf

.

VCS

ZeBu
HAPS

Silicon

© 2024 Synopsys, Inc.

17

STING

Preventing bug escapes for complex RISC-V designs

* Complete support for 32-bit and 64-bit RISC-V base integer
extensions along with all standard ratified extensions and
several un-ratified ones

* Comprehensive coverage of privilege specification - MMU,
PMP, PMA, Hypervisor, Supervisor, CSRs; Ready for RVA22
and RVA23 profiles

* Used for architectural compliance and functional testing of
several proprietary and open source RTL designs and models

SYNoPSys

Configurations

C++ based tests

ASM-like Directed Tests

Test Generator

Device Drivers

-

STING.elf

.

VCS

ZeBu
HAPS

Silicon

© 2024 Synopsys, Inc.

18

STING

Preventing bug escapes for complex RISC-V designs

Self-checking test generation for RISC-V
Addressing single CPU and complex many core SoC designs

Generates constrained-random, directed stimulus, and
combinations of the two

Portable across simulation, emulation, prototyping and silicon
Full support for the RISC-V ISA specification
Extensible to custom instructions and peripheral devices

ImperasDV adds comprehensive checking and functional
coverage when STING output is used in VCS

SYNoPSys

Configurations

C++ based tests

ASM-like Directed Tests

Test Generator

Device Drivers

-

STING.elf

.

VCS

ZeBu
HAPS
Silicon

© 2024 Synopsys, Inc. 19

STING - Use Cases

» Verifying the functionality and
architectural compliance of
RISC-V extensions (several of
which are not ratified)

* Sweeping through several CPU
configurations for RISC-V core

vendor companies

* Security extensions -
WorldGuard, PMP, Smepmp

SYNoPSys

Privilege specification -
Machine, Supervisor, User and
Hypervisor extensions, MMU,
PMP, PMA

Testing multicore systems with
device interactions

Specialized workloads for
branch, load stores, floating
point, memory ordering, forward
progress, caches

© 2024 Synopsys, Inc. 20

STING - Bugs Found

@)

existed when a TLB Miss for an older load/store instruction waits for
its page-table-walk which cannot complete because newer stores have been issued and
filled up certain miss-handling buffers in the load/store unit. This was uncovered by STING
exercising streams of loads/stores with virtual memory enabled.”

*

* “Design had an to convert a conditional branch over a single
instruction into a predicated operation. There was a corner case bug in the implementation
of this logic which used to cause ster 1on when the 2 instructions (a "branch”
and a "move") were separated by a pipeline flush in some scenarios.”

* _ _ : _ due to a bug in flushing of
newer instructions when an older flush was taking place in the same cycle.”

* © _ on when a multiply instruction was in progress converted caught a pipeline
issue in multiply unit that converted one type of multiply to another type of multiply.”

* “Back-to-back diyides preceded by a long-latency memory bus read

* “STING _ _) and signaling/quiet
NaNs. RISC-V has some quirks particularly with respect to the sNaN/gNaN handling.”

* “After tuning for our cache configuration, STING
Made sure a were occurring. We support multiple
outstanding misses so it found things like window conditions when one outstanding miss
was getting filled and a request to that same line was being handled by the LSU. Windows
around when data is available vs. directory state through the pipeline. Some windows that
led to a cache line getting fetched and filled with "old" data while a write-back with new
data was in progress.”

* “Few privileged
exceptions.”

for some of the trap

@

* of instructions and trap exceptions

* “Issues with fence.i implementation resulting in

SYNoPSys

* “Not found directly by STING: but much of the testing is built upon running STING tests

while applying external stimulus of various forms. Debug, interrupts, etc.

”

I

The problem occurs
when attempting to execute from a PMP grain just prior to a configured PMP region. The
defect lets the checks for the prior grain use the configuration of the next grain, which can
cause exceptions to falsely fire, or falsely not fire.”

“ requiring a combination of: - Completed but uncommitted loads or
partial stores in the LSQ. - A dram slave request hits the LSU, matching one of the entries
from #1 - An outstanding device request.”

“@

a bac relating to a specific case where an instruction cache line boundary
is being crossed on the fetch buffer ingest side.”

“@)

instructions that cancels each other.”

for consecutive custom

“DCACHE not incrementing the “free entries” counter which leads to a counter leak that
could i

@

(of the same core) when both threads are using the same
resources (VPU, ALU) and one of the threads is doing a long latency operation (e.g. div).”

@)

due to a bad LRU implementation.”

and caused some writes to be lost.”

“A pipeline optimization for multiplication operations results into a ’

© 2024 Synopsys, Inc. 21

Hardware Accelerates Verification

HAPS Prototyping Solution ZeBu Emulation

DUT ||| L
Testbench Application ZeBU
L1 Cache
' | Server 5
Memorx Bus / sttem Bus .
N 0
W?FL

DDR Memory AXI Interconnect D ontro
Controller Module e Co

o R
AXI Master =lle \.i Vlrtuallzed§

Transactor ansacto Model
Prototyping 1\
Infrastructure UMRbus

HW/SW debug with real ASIC | Unified RTL debug with Verdi | Emulation Bring-Up and Software Stack

4 RISC-V embedded cores running at 100MHz in one FPGA

S‘/“UPS‘/S © 2024 Synopsys, Inc. 22

Agenda

 Where and why is RISC-V being used?

RISC-V processor verification challenges

The RISC-V processor verification solution: the full toolbox

Dynamic verification, including test generation and hardware assisted verification

Formal verification

e Summary

S‘/"[]PS‘/S © 2024 Synopsys, Inc. 23

Formal Verification: VC Formal

» Formal verification provides exhaustive proof of
correct behavior

« Excellent tool for unit-level DV

— Can get started early, even with design engineers

— Unit-level includes pipeline, floating point unit, load/store unit, ...

« RISC-V ISA Assertion IP (AIP) available to enable
early use of VC Formal

* VC Formal Apps improve verification efficiency of
many tasks

— Reqgister verification, datapath validation, connectivity checking,
security verification ...

SYNoPSys

FPV

Property
Verification

FTA

=)

Testbench
Analyzer

&

Sequential
Equivalence

1

FRY

Register
Verification

VC Formal Apps

DPV

2P

Datapath
Validation

AEP

Auto Checks

Security
Verification

FCA
.\"/

Coverage
Analyzer

FuSa

Functional
Safety

FXP
X-Propagation
Verification
FLP
pai

Low Power

~r
(L

Connectivity
Checking

© 2024 Synopsys, Inc.

24

RISC-V Core Unit Verification Task Examples Using Formal

Property Verification

* Prefetch Buffer:

— Redirect/Clear from various components: BPU/EX etc. should cause
proper action and in a priority order

— Instruction Cache

— Direction/Target Prediction

— Branch Target Buffer

— Wake: Detecting a ready instruction

— Dispatch: Need to select (oldest woken-up instruction first)

— Resolve Dependencies
 Decoder
— Check for undefined instructions

— Fusing check if 2 or 3 instructions can be used together

« Execution (ALU):
* Simple ALU functions
* Bypass Functionality Checking

* Misprediction should lead to redirect; Correct prediction
should result in completion

SYNoPSys

» Pipeline

FPv

» Load/Store Unit (LSU): Propert

— Load addr should be sent before Load data Verification

— Store addr should be sent before store data

— Load/Store Functionality

— Control logic

lDomxg lntr'rfaco]pnstru(tion C.athrxl

addt 6 B wdata o)
ks | RISC-V core _ N —
,.\s% Controller —0PA CGR ppc> '—l/ frata | &
Lipel §— B o A ¥ S
\Prefetchorinz RF e
Buffer & CfDecoder} sfexl | éuuﬂ ALU j A ':l_f
A ? i r{WB >0pB DIV Rm‘_L—A- e
T M ROPC A ,I 4
Y GPR i L el A
hwloop o pac— | s L————cSopa '
I A : D { MULT EX =
4 lio b:? g?g = :;F exl— o8 MAC WE| o
A £ o DIA, S ———=0pC), o
-~ < b4 EX AN o Wi— =
g o o fo-{wal- — -
o a2 MY oo,
T A A—éOpC Unit
LA oi e t— LA

J

Source: https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-
GautschiSchiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

© 2024 Synopsys, Inc. 25

https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

VC Formal RISC-V AIP for Exhaustive ISA Verification

RISC-V Core

111 1

RISC-V ISA AIP

SYNoPSys

Benefits of RISC-V ISA AIP Formal Verification

Formal exhaustively tests all possible RISC-V instruction
scenarios

Availability of RISC-V ISA AIP reduces debug turn-
around-time

RISC-V ISA AIP validates instruction execution control
and base-ISA data path

For complex math operations (MUL/DIV), will need DPV verification
to ensure datapath correctness

RISC-V ISA AIP can be used for multiple configurations
and cores

Verification quality and confidence are high

© 2024 Synopsys, Inc. 26

Formal RISC-V ISA AIP Applied to Design

RISC V Core (pipeline) Memory Interface

ool be

B Loglc

\ 4 \ 4

RISC-V ISA AIP Interface

RISC-V ISAAIP LOGIC and Properties

A

SYNoPSys

RISC-V ISA AIP needs minimal access to a
small number of points around the pipeline to
observe certain events

Interfaces to bind to RISC-V ISA AIP

— Instruction Fetch Interface
— Data Memory Interface
— Instruction Retire Interface

— Register Write Interface

Testbench logic
— DUT signal expressions to bind to RISC-ISA AIP interfaces
— DUT-specific constraints

RISC-V ISA AIP offers all the properties and
policies for checking the instruction
architecture

© 2024 Synopsys, Inc.

27

Verification of the RISC-V ISA AIP

 The RISC-V AIP itself is verified using formal against a testplan extracted from
the ISA spec

* The testbench contains a CPU core target to act as reference for our
Interpretation of the architecture
— Any failures due to difference in interpretation would need resolving with the vendor

» Targets we have verified the AIP against in the past include:
— OpenHW CV32E40P and CV32E40X
— OpenHW CVAG (as both 32bit and 64bit variants)
— Internal Synopsys core
— Internal Synopsys core models
— lbex
— SweRV EH2

SY"UPSYS © 2024 Synopsys, Inc. 28

RISC-V ISA AIP Checks

* Register write address (RD) check

* Register write data (Result) check — for the integer Property example:

p| pel | ne Checker for Load address Check conditions

. . . property p_snps_riscv_aip_check_load_addri;
d Load/Store (allg ned/m Isal |g ned) add reSS/d ata CheCk (instructions_q[instr_mem_load_addr_count_g].instr_load &&
. instructions_q[instr_mem_load_addr_count_q].instr_state== INSTR_LOAD_ADDR1 &&
 RAW- Read after Write hazard check read_adr_vaii
. . |-> ((read_addr ==instructions_q[instr_mem_load_addr_count_g].mem_addrl) ||/// aligned case
¢ WAW' erte after erte hazard Ch@Ck (read_addr == ihstructions_q[instr_mem_load_addr_count_q].effective_addr))}; // unaligned
* Instruction fetch address check at fetch interface endpropery
« Race condition check on register file write interface e (e
)) address calculated in AIP
W|th mu |t|p|e pOI‘tS Memory read address
signal in DUT

« AIP internal data structure pointer checks (for ease of
debug)

» Check for legal config parameter values
» Highly configurable constraints model to match design

S‘/"[]PS‘/S © 2024 Synopsys, Inc. 29

RISC-V ISA AIP Functionality — Some Detalils

« Fetch address checks work around branch prediction by ensuring that all
addresses come from what'’s possible within the program
— RISC-V ISA AIP keeps track of all control flow instructions

* Instructions are only ready to be checked after all of their input operands are

“available”
— RISC-V ISA AIP keeps track of all hazards between instructions

— We cope with multi-issue/out of order execution by precomputing results in decode (when possible) and
by preserving program order

« Forwarding is implicitly checked because all source operands are known in

advance from within the AIP
— RISC-V ISA AIP keeps track of the most up to date value of all registers

30

SY"UPSYS © 2024 Synopsys, Inc.

Examples of Bugs Found With RISC-V Formal AIP

Likely to find
In simulation

Bug description FV runtime

Simultaneous writes to same destination register from stalled LOAD_FP retiring out of

order with subsequent OP_FP ~20 min

RV32F LOAD_FP unexpectedly writing 64-bit floating point values to FP register file
when core is configured as 64bit integer pipeline (RV64l) with RV32F — core overrides ~20 min
RV32F and instantiates 64bit FP pipeline (config bug)

A power optimization problem where inadvertent multiple register writes were seen for

stalled or unaligned load ~2 min Med

Core fully executes instruction that was not requested and updates the integer register
file — instr_read_valid without first instr_fetch_valid. Although protocol is violated, core ~1 min Med
does not protect the pipeline (expose security hole)

S‘/"[]PS‘/S © 2024 Synopsys, Inc. 31

Agenda

 Where and why is RISC-V being used?

RISC-V processor verification challenges

The RISC-V processor verification solution: the full toolbox

Dynamic verification, including test generation and hardware assisted verification

Formal verification

e Summary

S‘/"[]PS‘/S © 2024 Synopsys, Inc. 32

SYNOPSYS'

Thank You

Learn more at www.synopsys.com/RISC-V

