
RISC-V Processor Verification

Requires the Full Toolbox

Larry Lapides, Exec. Director, RISC-V Tools Bus. Dev.

Verification Futures UK, 2025

© 2024 Synopsys, Inc. 2

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted verification

• Formal verification

• Summary

© 2024 Synopsys, Inc. 3

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted verification

• Formal verification

• Summary

© 2024 Synopsys, Inc. 4

Where and why is RISC-V being used?

Anyone can design their own processor based

on the RISC-V ISA

Modular ISA = choice of which features to

include/exclude

Extensibility and freedom to customize at ISA

and micro-architectural levels

RISC-V enables the creation of domain-

specific differentiated processors

© 2024 Synopsys, Inc. 5

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted verification

• Formal verification

• Summary

© 2024 Synopsys, Inc. 6

Challenges in RISC-V Processor Verification

• Design complexity – architecture, micro-architecture, implementation

choices, custom features

• Source of processor IP (in-house, open source, vendor + custom

instructions)

• Use case: microcontroller – application processor; closed versus

open to external software development

• Verification productivity and time to closure

• Team experience (designers and verification engineers)

• Processor verification methodology

• Tool selection

© 2024 Synopsys, Inc. 7

RISC-V Processor Verification Process

Design verification from unit to SoC

Design Level Example Tool/Methodology

Unit Pipeline, FPU Formal + predefined assertion IP

Security Formal + predefined security assertion IP

Architecture ISA Dynamic

Formal + predefined assertion IP

Custom instructions, CSRs Custom DSP, matrix Dynamic

Formal sequential equivalence checking,

register verification, datapath validation

Processing subsystem Coherent cache, multi- or

many-processor accelerator

Dynamic, especially using hardware assisted

verification

Formal property verification for cache

coherence verification

© 2024 Synopsys, Inc. 8

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted verification

• Formal verification

• Summary

© 2024 Synopsys, Inc. 9

The RISC-V Processor Verification Toolbox

Verdi Verification Planning and Functional Coverage Platform

VC Formal FPV +

RISC-V ISA AIP
Functional Verification

VC Formal DPV
Verify computational correctness for

RISC-V processors

VC Formal Portfolio
VCS & Verdi

Dynamic Simulation

STING
Test Generation

Formal Verification Dynamic Verification

ZeBu & HAPS
HW Assisted Verification

ImperasTS
RISC-V test suites:

vector, MMU, PMP

ImperasDV
Co-Simulation and Checking

Verification Environment

VC Formal SEQ
Verify that custom instructions do not

break the original core

ImperasFPM
RISC-V Reference Model

ImperasFC
RISC-V ISA Functional

Coverage

© 2024 Synopsys, Inc. 10

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted

verification

• Formal verification

• Summary

© 2024 Synopsys, Inc. 11

Fast Processor Models for RISC-V: ImperasFPMs

Using the same model for both HW & SW verification enables significant reduction in SoC "Bring-Up" time

Use Cases: Software Development and RISC-V Processor Verification

ImperasFPM RISC-V Model

User Extensions:

Custom Instructions

& CSRs

RISC-V

Base Model

Model Config

(250+ Parameters)
SW Development w/

Virtual Prototypes

Processor

Verification

Solution

Shift left software development using

the industry leading processor model
Reference model used for verification

of RISC-Vprocessors instantiated in

more than 50 SoCs

© 2024 Synopsys, Inc. 12

ImperasDV RISC-V Processor Verification Solution

Enabling complete and comprehensive processor verification

• Configurable, extendable RISC-V

reference model

• RISC-V RTL simulation in VCS

• Scoreboarding and checking

• Functional coverage output to Verdi

VCS with ImperasDV solution reduces RTL risk and accelerates verification schedule

STING

ImperasTS

riscvISATESTS

© 2024 Synopsys, Inc. 13

ImperasFPMs (Fast Processor Models) for RISC-V

• Base Model implements RISC-V specification in full

• Fully user configurable to select ISA extensions and

versions

• Pre-defined configurations and custom instructions for

processor IP vendors

• User extensions built in a separate library do not

perturb the verified Base Model, help reduce

maintenance

• Because every ImperasFPM uses the RISC-V Base

Model, and including users of both commercial and

free tools, over 150 companies, organizations and

universities have used the ImperasFPM

ImperasFPM

User

Extension:

custom

instructions

& CSRs

RISC-V

Base Model
Model Config

250+ params

© 2024 Synopsys, Inc. 14

ImperasFC: SystemVerilog Functional Coverage for RISC-V

• Functional coverage code generation

– Manual creation would be tedious, time

consuming and error prone

– >100K lines of code

– Synopsys tools can automatically generate

functional coverage code for custom instructions

• Functional coverage is the key

verification metric

ImperasFC

functional

coverage

Machine-

readable

RISC-V ISA

specification

SystemVerilog

coverage

code generator

https://github.com/riscv-verification/riscvISACOV/tree/v20240124/documentation for list of covered extensions

https://github.com/riscv-verification/riscvISACOV/tree/v20240124/documentation

© 2024 Synopsys, Inc. 15

Integrating ImperasDV with Verdi

• Auto-generated documentation in markdown and

csv formats for inclusion in Verification Plans

• Functional coverage data is reported in verification

tools such as Verdi

© 2024 Synopsys, Inc. 16

Verify RISC-V ISA,

custom extensions,

multi-hart, memory

coherence, concurrency

Generate

constrained random,

directed and graph-

based tests

Test

on multiple platforms

including silicon

devices

Target Platforms

HW emulation

RTL simulation

FPGA prototype

Silicon

STING RISC-V design

STING Generates Tests for RISC-V Processors and Systems

© 2024 Synopsys, Inc. 17© 2024 Synopsys, Inc. 17

STING

Preventing bug escapes for complex RISC-V designs

★ Bare metal tool using a software driven methodology for

RISC-V design verification

★ Integrates several test generation methodologies to give the

best verification throughput

★ Highly scalable and quick test generation; Compatible with

any system configuration/memory map; IoT/embedded to

server class; MP-ready

★ Self-checking architecturally correct stimulus portable across

simulation, emulation, FPGA and silicon

Configurations

C++ based tests

ASM-like Directed Tests

Test Generator

Micro-Kernel

Library

Device Drivers

STING

STING.elf

© 2024 Synopsys, Inc. 18© 2024 Synopsys, Inc. 18

STING

Preventing bug escapes for complex RISC-V designs

★ Complete support for 32-bit and 64-bit RISC-V base integer

extensions along with all standard ratified extensions and

several un-ratified ones

★ Comprehensive coverage of privilege specification - MMU,

PMP, PMA, Hypervisor, Supervisor, CSRs; Ready for RVA22

and RVA23 profiles

★ Used for architectural compliance and functional testing of

several proprietary and open source RTL designs and models

Configurations

C++ based tests

ASM-like Directed Tests

Test Generator

Micro-Kernel

Library

Device Drivers

STING

STING.elf

© 2024 Synopsys, Inc. 19© 2024 Synopsys, Inc. 19

STING

Preventing bug escapes for complex RISC-V designs

• Self-checking test generation for RISC-V

• Addressing single CPU and complex many core SoC designs

• Generates constrained-random, directed stimulus, and

combinations of the two

• Portable across simulation, emulation, prototyping and silicon

• Full support for the RISC-V ISA specification

• Extensible to custom instructions and peripheral devices

• ImperasDV adds comprehensive checking and functional

coverage when STING output is used in VCS

Configurations

C++ based tests

ASM-like Directed Tests

Test Generator

Micro-Kernel

Library

Device Drivers

STING

STING.elf

© 2024 Synopsys, Inc. 20

STING - Use Cases

★ Verifying the functionality and

architectural compliance of

RISC-V extensions (several of

which are not ratified)

★ Sweeping through several CPU

configurations for RISC-V core

vendor companies

★ Security extensions -

WorldGuard, PMP, Smepmp

★ Privilege specification -

Machine, Supervisor, User and

Hypervisor extensions, MMU,

PMP, PMA

★ Testing multicore systems with

device interactions

★ Specialized workloads for

branch, load stores, floating

point, memory ordering, forward

progress, caches

© 2024 Synopsys, Inc. 21

STING - Bugs Found

★ “Deadlock condition existed when a TLB Miss for an older load/store instruction waits for
its page-table-walk which cannot complete because newer stores have been issued and
filled up certain miss-handling buffers in the load/store unit. This was uncovered by STING
exercising streams of loads/stores with virtual memory enabled.”

★ “Design had an optimization issue to convert a conditional branch over a single
instruction into a predicated operation. There was a corner case bug in the implementation
of this logic which used to cause register corruption when the 2 instructions (a "branch"
and a "move") were separated by a pipeline flush in some scenarios.”

★ “Page table walk returning incorrect address translations due to a bug in flushing of
newer instructions when an older flush was taking place in the same cycle.”

★ “Stall condition when a multiply instruction was in progress converted caught a pipeline
issue in multiply unit that converted one type of multiply to another type of multiply.”

★ “Back-to-back divides preceded by a long-latency memory bus read caused the second
divide to hang.”

★ “STING found a lot of nuances with floating-point rounding modes and signaling/quiet
NaNs. RISC-V has some quirks particularly with respect to the sNaN/qNaN handling.”

★ “After tuning for our cache configuration, STING did a good job stressing the cache
controller. Made sure a lot of cache conflicts were occurring. We support multiple
outstanding misses so it found things like window conditions when one outstanding miss
was getting filled and a request to that same line was being handled by the LSU. Windows
around when data is available vs. directory state through the pipeline. Some windows that
led to a cache line getting fetched and filled with "old" data while a write-back with new
data was in progress.”

★ “Few privileged CSRs were getting sign-extended incorrectly for some of the trap
exceptions.”

★ “Unexpected execution of instructions and trap exceptions in the shadow of branch”

★ “Issues with fence.i implementation resulting in incorrect execution of self modifying
code sequences”

★ “Not found directly by STING: but much of the testing is built upon running STING tests
while applying external stimulus of various forms. Debug, interrupts, etc. Having
sufficiently interesting code being executed by STING while that external stimulus
was on-going help find a number of good issues.”

★ “PMP execute check wrong for the grain prior to a valid grain. The problem occurs
when attempting to execute from a PMP grain just prior to a configured PMP region. The
defect lets the checks for the prior grain use the configuration of the next grain, which can
cause exceptions to falsely fire, or falsely not fire.”

★ “Corner-case hang requiring a combination of: - Completed but uncommitted loads or
partial stores in the LSQ. - A dram slave request hits the LSU, matching one of the entries
from #1 - An outstanding device request.”

★ “1 cycle window where wrong instruction text was serviced from the fetch buffer on
a backwards branch, relating to a specific case where an instruction cache line boundary
is being crossed on the fetch buffer ingest side.”

★ “FSM in the DCACHE not cleaning the state correctly for consecutive custom
instructions that cancels each other.”

★ “DCACHE not incrementing the “free entries” counter which leads to a counter leak that
could potentially block the core from doing any memory operation”

★ “Thread 0 starves Thread 1 (of the same core) when both threads are using the same
resources (VPU, ALU) and one of the threads is doing a long latency operation (e.g. div).”

★ “Livelock in the shared ICACHE due to a bad LRU implementation.”

★ “LRAM clock gating triggered too early and caused some writes to be lost.”

★ “A pipeline optimization for multiplication operations results into a deadlock condition”

© 2024 Synopsys, Inc. 22

Hardware Accelerates Verification

HAPS Prototyping Solution

HW/SW debug with real ASIC | Unified RTL debug with Verdi |

4 RISC-V embedded cores running at 100MHz in one FPGA

Memory Bus / System Bus

UART

AXI Interconnect

Module

DDR Memory

Controller

AXI Master

Transactor

DUT

Prototyping

Infrastructure UMRbus

GPIO

Transactor

DUT Control +

Cycle Counter

Linux

Application

RISC-V UART

DDR

PCIe

USB SNPS IP

Drivers

Uboot

Testbench

Real RTL

Virtualized

Model

ZeBu Emulation

Emulation Bring-Up and Software Stack

ZeBu

Server 5

RISC-V

Tile 1

L1 Cache

© 2024 Synopsys, Inc. 23

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted verification

• Formal verification

• Summary

© 2024 Synopsys, Inc. 24

Formal Verification: VC Formal

• Formal verification provides exhaustive proof of

correct behavior

• Excellent tool for unit-level DV

– Can get started early, even with design engineers

– Unit-level includes pipeline, floating point unit, load/store unit, …

• RISC-V ISA Assertion IP (AIP) available to enable

early use of VC Formal

• VC Formal Apps improve verification efficiency of

many tasks

– Register verification, datapath validation, connectivity checking,

security verification …

VC Formal Apps

© 2024 Synopsys, Inc. 25

RISC-V Core Unit Verification Task Examples Using Formal

Property Verification

• Prefetch Buffer:

– Redirect/Clear from various components: BPU/EX etc. should cause

proper action and in a priority order

– Instruction Cache

– Direction/Target Prediction

– Branch Target Buffer

– Wake: Detecting a ready instruction

– Dispatch: Need to select (oldest woken-up instruction first)

– Resolve Dependencies

• Decoder

– Check for undefined instructions

– Fusing check if 2 or 3 instructions can be used together

• Execution (ALU):
• Simple ALU functions

• Bypass Functionality Checking

• Misprediction should lead to redirect; Correct prediction
should result in completion

• Load/Store Unit (LSU):

– Load addr should be sent before Load data

– Store addr should be sent before store data

– Load/Store Functionality

• Pipeline

– Control logic

Source: https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-

GautschiSchiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6
https://www.semanticscholar.org/paper/Near-Threshold-RISC-V-Core-With-DSP-Extensions-for-Gautschi-Schiavone/47f8ce7e0f0f64d0707a13c83c32c30959aa64d5/figure/6

© 2024 Synopsys, Inc. 26

VC Formal RISC-V AIP for Exhaustive ISA Verification

RISC-V Core

BIND

RISC-V ISA AIP

Benefits of RISC-V ISA AIP Formal Verification

• Formal exhaustively tests all possible RISC-V instruction

scenarios

• Availability of RISC-V ISA AIP reduces debug turn-

around-time

• RISC-V ISA AIP validates instruction execution control

and base-ISA data path
• For complex math operations (MUL/DIV), will need DPV verification

to ensure datapath correctness

• RISC-V ISA AIP can be used for multiple configurations

and cores

• Verification quality and confidence are high

© 2024 Synopsys, Inc. 27

Formal RISC-V ISA AIP Applied to Design

• RISC-V ISA AIP needs minimal access to a

small number of points around the pipeline to

observe certain events

• Interfaces to bind to RISC-V ISA AIP

– Instruction Fetch Interface

– Data Memory Interface

– Instruction Retire Interface

– Register Write Interface

• Testbench logic

– DUT signal expressions to bind to RISC-ISA AIP interfaces

– DUT-specific constraints

• RISC-V ISA AIP offers all the properties and

policies for checking the instruction

architecture

W

B

Memory Interface

RISC-V ISA AIP Interface

RISC V Core (pipeline)

RISC-V ISA AIP LOGIC and Properties

TB Logic

F

e

t

c

h

© 2024 Synopsys, Inc. 28

Verification of the RISC-V ISA AIP

• The RISC-V AIP itself is verified using formal against a testplan extracted from

the ISA spec

• The testbench contains a CPU core target to act as reference for our

interpretation of the architecture

– Any failures due to difference in interpretation would need resolving with the vendor

• Targets we have verified the AIP against in the past include:

– OpenHW CV32E40P and CV32E40X

– OpenHW CVA6 (as both 32bit and 64bit variants)

– Internal Synopsys core

– Internal Synopsys core models

– Ibex

– SweRV EH2

– …

© 2024 Synopsys, Inc. 29

RISC-V ISA AIP Checks

• Register write address (RD) check

• Register write data (Result) check – for the integer

pipeline

• Load/Store (aligned/misaligned) address/data check

• RAW- Read after Write hazard check

• WAW- Write after Write hazard check

• Instruction fetch address check at fetch interface

• Race condition check on register file write interface

with multiple ports

• AIP internal data structure pointer checks (for ease of

debug)

• Check for legal config parameter values

• Highly configurable constraints model to match design

• Property example:

property p_snps_riscv_aip_check_load_addr1;

(instructions_q[instr_mem_load_addr_count_q].instr_load &&

instructions_q[instr_mem_load_addr_count_q].instr_state== INSTR_LOAD_ADDR1 &&

read_addr_valid

|-> ((read_addr == instructions_q[instr_mem_load_addr_count_q].mem_addr1) || // aligned case

(read_addr == instructions_q[instr_mem_load_addr_count_q].effective_addr))); // unaligned

case

endproperty

Checker for Load address
Check conditions

Memory read address

signal in DUT

Expected memory read

address calculated in AIP

© 2024 Synopsys, Inc. 30

RISC-V ISA AIP Functionality – Some Details

• Fetch address checks work around branch prediction by ensuring that all

addresses come from what’s possible within the program

– RISC-V ISA AIP keeps track of all control flow instructions

• Instructions are only ready to be checked after all of their input operands are

“available”

– RISC-V ISA AIP keeps track of all hazards between instructions

– We cope with multi-issue/out of order execution by precomputing results in decode (when possible) and

by preserving program order

• Forwarding is implicitly checked because all source operands are known in

advance from within the AIP

– RISC-V ISA AIP keeps track of the most up to date value of all registers

© 2024 Synopsys, Inc. 31

Examples of Bugs Found With RISC-V Formal AIP

Bug description FV runtime
Likely to find

in simulation

Simultaneous writes to same destination register from stalled LOAD_FP retiring out of

order with subsequent OP_FP
~20 min Low

RV32F LOAD_FP unexpectedly writing 64-bit floating point values to FP register file

when core is configured as 64bit integer pipeline (RV64I) with RV32F – core overrides

RV32F and instantiates 64bit FP pipeline (config bug)

~20 min High

A power optimization problem where inadvertent multiple register writes were seen for

stalled or unaligned load
~2 min Med

Core fully executes instruction that was not requested and updates the integer register

file – instr_read_valid without first instr_fetch_valid. Although protocol is violated, core

does not protect the pipeline (expose security hole)

~1 min Med

© 2024 Synopsys, Inc. 32

Agenda

• Where and why is RISC-V being used?

• RISC-V processor verification challenges

• The RISC-V processor verification solution: the full toolbox

• Dynamic verification, including test generation and hardware assisted verification

• Formal verification

• Summary

Thank You
Learn more at www.synopsys.com/RISC-V

