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What is the Project About?

• Aims of the project: 

• Validate and implement an open-source RISC-V core using Synopsys® tools and AI

• Assess the efficacy of DSO.ai by using it to optimize Power, Performance, and Area (PPA)

Verification Implementation 

• UVM and Testbenches

• Synopsys VCS® Simulator

• Verdi® Debug Environment

• Fusion Compiler

• DSO.ai
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Project Specification 

Verification

• Verifying and implementing the open source 

Bluespec MCU SoC

• Code and functional coverage analysis

• SAIF file generation for test with best code 

coverage

Implementation 

• Technology: 14nm node using the 

SAED14nm cell library

• Floorplan Optimization:

• Area: ≤ 65,000µm²

• Core utilization: 70% - 80%

• Core offset: 0.45nm

• Performance Goals:

• Target frequency: 500MHz

• Maximum power limit: 3.38mW

• Create Baseline using Fusion Compiler

• Input Baseline into DSO.ai to maximize 

Power and Performance



Verification
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Verification

• The verification environment is spread across two testbenches

Verification

MCU Testbench (MCU TB) Google Open-Source UVM based 

constraint random instruction generator 

(RISCV-DV TB)

RTL simulated using VCS® Generate constrained random RISC-V 

instructions

Run bring-up test, ISA tests Log comparison between SPIKE ISS and 

RTL

Code coverage is generated in this 

testbench

Functional coverage is generated in this 

testbench
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Verification
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SAIF File Generation

.fsdb .vcd .saif

• Captures switching activities in the design during 

simulation, can be used to analyze power 

Purpose:

• Find the test with highest coverage

• Reflects switching activities that correlate 

with power usage

• Provides a more accurate power guideline for 

the implemented design

Verification



Implementation
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Design Setup

RTL Codes
module mkSoC_Top(CLK,
 gpios,
 ……
);
always @(posedge CLK)

Cell Libraries (CLIBs) 
base, clock gating

MCMM Timing 

Constraints

Technology File 
saed14nm_1p9m.tf

mkSoC_Top.dlib

Power Grid Insertion

Design Library

Floorplanning

LVT
ndm

HVT
ndm

RVT
ndm

SLVT
ndm

SRAM
ndm

Implementation 
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Floorplan & Power Grid Insertion Implementation 

Floorplan Floorplan with Power Grid

Area: 63,663.885 µm²

Core Utilization: 73.6%​

Core Offset: 10 nm​

Cache Size: 1 kB
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Multi-Corner Multi-Mode Timing Constraints

fast

func

slow

typical func::typical

func::fast

func::slow

ScenarioCornerMode

• Each corner must be constrained with a different 

Process, Voltage, and Temperature (PVT)

• Timing constraints modified iteratively using a 

script to optimise baseline's PPA
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Implementation 
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Design Space Optimization AI (DSO.ai )

• Optimized a baseline's PPA by exploring unconventional search space solutions.

• Optimization strategies included optimizing each metric individually.

• Then explored a balanced trade-off between all metrics to find optimal solutions.
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Why AI?

• Manual tuning is slow and limited

• Complex design space

• DSO.ai  uses reinforcement learning

• Parallelized exploration saves time

• Objective-driven optimization
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AI-Driven Design Exploration with Reinforcement 

Learning

• DSO.ai  uses reinforcement learning to explore the design space iteratively.

• Each design run is treated as an “action” with feedback in the form of PPA 

metrics.

• The AI learns from past results to improve its decisions over time.

• Best runs from one stage (slice) are used as inputs for the next stage (e.g., 

compile → clock → route).

• Efficiently avoids repeating poor configurations.
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Prioritizing Metrics for Better AI Exploration

• AI needs clear goals to optimize — these are set through metrics.

• Common metrics: WNS, TNS, Total and Leakage Power, Area, etc.

• Two strategies used:

o Pareto Optimization: Balances trade-offs across multiple metrics.

o ADES (AI-Driven Efficiency Strategy): Assigns weights to focus on specific goals.

• Helps DSO.ai  focus on what matters most for the design.

• Leads to faster convergence and more meaningful results.
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Pareto Example

• Each dot = one DSO.ai  run

• Green = Pareto-optimal trade-offs

• Purple = Baseline (higher power, 

worse timing)

• AI found lower-power, timing-closed 

designs

• Most runs cluster near WNS ≈ 0 ns
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ADES Example

• Histogram of number of runs for 

each metric value

• Green = Target values for metrics

• Blue = Baseline metric value (worse 

than target value)

• AI optimized timing in expense of 

other metrics

• Most runs achieve lower WNS and 

HWNS ≈ 0.000 ns
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AI Optimization vs Baseline Results

• DSO.ai produced 2 solutions with increased PPA compared to the Baseline

• Solution 1: Balanced PPA at 500MHz (35% power and 7% area improvement)

• Solution 2: 1GHz target frequency (9.9% area and 100% frequency improvement)
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Results

Verification Implementation 

• SAIF File generated for Fusion Compiler

• Code and functional coverage analysis done

• Optimized test suite with 63.06 CPU time

• Frequency: 500MHz & 1GHz 

• Power (SAIF included):

• Baseline: 0.106mW

• DSO.ai 500MHz: 0.0688mW

• DSO.ai 1GHz: 0.189mW

• Floorplan:

• Area: 63,663µm²​

• Core utilization: 70%

• Core offset (Power Grid): 10nm
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AI Usage Advantages and Disadvantages

• Requires a large team of skilled engineers 

to fine-tune performance

• Engineering time can be high as projects 

can span months

• Requires less computational resources to 

run

• A small team of less skilled engineers 

can fine-tune performance effectively

• Achieve competitive outcomes with less 

resources in a shorter amount of time

• Requires more computational resources to 

run

Traditional Workflow AI Usage (DSO.ai )
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Conclusion

• AI usage enabled more effective performance tuning in a shorter time-period.

• Optimal baseline achieved within 6 - 7 weeks.

• 2 improved designs using DSO.ai  achieved within 2 weeks.

• Only 3 students needed to improve PPA using DSO.ai .

• More time allocated to prioritize power grid insertion due to time savings.



Thank you
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