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What is the Project About?

« Aims of the project:
« Validate and implement an open-source RISC-V core using Synopsys® tools and Al
» Assess the efficacy of DSO.ai by using it to optimize Power, Performance, and Area (PPA)

Verification

« UVM and Testbenches : _ .
« Synopsys VCS® Simulator ‘ g FUS'OH_%Omp”ef
- Verdi® Debug Environment RISC-V’ * DSO.a




Project Specification
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Verification

» Verifying and implementing the open source
Bluespec MCU SoC

» Code and functional coverage analysis

« SAIF file generation for test with best code
coverage
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Technology: 14nm node using the
SAED14nm cell library
Floorplan Optimization:

* Area: < 65,000pum?

» Core utilization: 70% - 80%

» Core offset: 0.45nm
Performance Goals:

« Target frequency. 500MHz

«  Maximum power limit: 3.38mW
Create Baseline using Fusion Compiler™
Input Baseline into DSO.ai™ to maximize
Power and Performance
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Verification Verification

* The verification environment is spread across two testbenches

MCU Testbench (MCU TB) Google Open-Source UVM based

constraint random instruction generator
(RISCV-DV TB)

RTL simulated using VCS® Generate constrained random RISC-V
instructions

Run bring-up test, ISA tests Log comparison between SPIKE ISS and
RTL

Code coverage is generated in this Functional coverage is generated in this

testbench testbench

University of
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UVM tests

Verification

Compiled ELF files
for simulation

Y ¢

Spike traces Compiled files run

generated with on RTL with code

functional coverage coverage enabled
Spike 1SS logs RTL logs
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SAIF File Generation Verification

« Captures switching activities in the design during

simulation, can be used to analyze power

Purpose:

« Find the test with highest coverage

* Reflects switching activities that correlate
with power usage
* Provides a more accurate power guideline for

the implemented design
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Design Setup

Cell Libraries (CLIBS)

base, clock gating

---
CBvVT RVT VT

Design Library

P w mkSoC_Top.dlib MCMM Timing
Constraints
R

Technology File

saed1l4nm_1p9m.tf .
Floorplanning

_

RTL Codes

module mkSoC_Top(CLK,

= Power Grid Insertion
aiways @(posedge CLK) T
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Multi-Corner Multi-Mode Timing Constraints

« Each corner must be constrained with a different
Process, Voltage, and Temperature (PVT)

[ Mode | Corner [ Scenario | . Timing constraints modified iteratively using a

f b script to optimise baseline's PPA
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Design Space Optimization Al (DSO.ai™)

« Optimized a baseline's PPA by exploring unconventional search space solutions.
« Optimization strategies included optimizing each metric individually.
* Then explored a balanced trade-off between all metrics to find optimal solutions.

Universit



Why Al?

Manual tuning is slow and limited

Complex design space

DSO.ai™ uses reinforcement learning

Parallelized exploration saves time

» Objective-driven optimization

University of
Southampton
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Al-Driven Design Exploration with Reinforcement
Learning

« DSO.ai™ uses reinforcement learning to explore the design space iteratively.

« Each design run is treated as an “action” with feedback in the form of PPA
metrics.

* The Al learns from past results to improve its decisions over time.

« Best runs from one stage (slice) are used as inputs for the next stage (e.g.,
compile — clock — route).

- Efficiently avoids repeating poor configurations.

University of
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Prioritizing Metrics for Better Al Exploration

Al needs clear goals to optimize — these are set through metrics.
« Common metrics: WNS, TNS, Total and Leakage Power, Area, etc.

« Two strategies used:

o Pareto Optimization: Balances trade-offs across multiple metrics.
o ADES (Al-Driven Efficiency Strategy): Assigns weights to focus on specific goals.

« Helps DSO.ai™ focus on what matters most for the design.
 Leads to faster convergence and more meaningful results.

University of
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Pareto Example

TOTAL POWER vs WNS (route)

 Each dot = one DSO.ai™ run ERARREREE"S, Q o
« Green = Pareto-optimal trade-offs F SEIRRS G
* Purple = Baseline (higher power, ;

worse timing) 2 o0
Al found lower-power, timing-closed ;

designs
- Most runs cluster near WNS=0ns

0.0000 00025 00050 a_oms;m'smg 00125 00150 00175  0.0200
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ADES Example e

—— baseline
30 1

—— unacceptable

« Histogram of number of runs for
each metric value

» Green = Target values for metrics
 Blue = Baseline metric value (Worse 0,000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

than target value) . WNS (route)
Al optimized timing in expense of % -
other metrics

 Most runs achieve lower WNS and
HWNS = 0.000 ns

0.00 0.01 0.02 0.03 0.04 0.05 0.06
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Power (mWw)

Al Optimization vs Baseline Results

« DS0O.ai™ produced 2 solutions with increased PPA compared to the Baseline
« Solution 1: Balanced PPA at 500MHz (35% power and 7% area improvement)
« Solution 2: 1GHz target frequency (9.9% area and 100% frequency improvement)
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Results
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Verification

« SAIF File generated for Fusion Compiler
» Code and functional coverage analysis done
* Optimized test suite with 63.06 CPU time

University of

outhampton

* Frequency: 500MHz & 1GHz
» Power (SAIF included):
« Baseline: 0.106mW
« DSO.ai™ 500MHz: 0.0688mW
« DSO.ai™ 1GHz: 0.189mW
» Floorplan:
* Area: 63,663um?
» Core utilization: 70%
» Core offset (Power Grid): 10nm
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Al Usage Advantages and Disadvantages

Traditional Workflow Al Usage (DSO.ai™)

* Requires a large team of skilled engineers « Asmall team of less skilled engineers
to fine-tune performance can fine-tune performance effectively

» Engineering time can be high as projects * Achieve competitive outcomes with less
can span months resources in a shorter amount of time

* Requires less computational resources to * Requires more computational resources to

run run

......
@So?:tegavn?!pton 20



Conclusion

« Al usage enabled more effective performance tuning in a shorter time-period.
« Optimal baseline achieved within 6 - 7 weeks.

« 2 Improved designs using DSO.al™ achieved within 2 weeks.

* Only 3 students needed to improve PPA using DSO.ai™,

* More time allocated to prioritize power grid insertion due to time savings.

University of
Southampton
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