
Validate and Implement a RISC-V

core using AI
GDP 15

Team Members:

Vidushi Yaksh, Joseph Teh, Al Rawshan, William Ly, Y. Solomon Zhang,

Cleon Kok

Academic Supervisor:

Mark Zwolinski

External Partner: Synopsys® Northern Europe Ltd

2

What is the Project About?

• Aims of the project:

• Validate and implement an open-source RISC-V core using Synopsys® tools and AI

• Assess the efficacy of DSO.ai by using it to optimize Power, Performance, and Area (PPA)

Verification Implementation

• UVM and Testbenches

• Synopsys VCS® Simulator

• Verdi® Debug Environment

• Fusion Compiler

• DSO.ai

3

Project Specification

Verification

• Verifying and implementing the open source

Bluespec MCU SoC

• Code and functional coverage analysis

• SAIF file generation for test with best code

coverage

Implementation

• Technology: 14nm node using the

SAED14nm cell library

• Floorplan Optimization:

• Area: ≤ 65,000µm²

• Core utilization: 70% - 80%

• Core offset: 0.45nm

• Performance Goals:

• Target frequency: 500MHz

• Maximum power limit: 3.38mW

• Create Baseline using Fusion Compiler

• Input Baseline into DSO.ai to maximize

Power and Performance

Verification

5

Verification

• The verification environment is spread across two testbenches

Verification

MCU Testbench (MCU TB) Google Open-Source UVM based

constraint random instruction generator

(RISCV-DV TB)

RTL simulated using VCS® Generate constrained random RISC-V

instructions

Run bring-up test, ISA tests Log comparison between SPIKE ISS and

RTL

Code coverage is generated in this

testbench

Functional coverage is generated in this

testbench

6

Verification

7

SAIF File Generation

.fsdb .vcd .saif

• Captures switching activities in the design during

simulation, can be used to analyze power

Purpose:

• Find the test with highest coverage

• Reflects switching activities that correlate

with power usage

• Provides a more accurate power guideline for

the implemented design

Verification

Implementation

9

Design Setup

RTL Codes
module mkSoC_Top(CLK,
 gpios,
 ……
);
always @(posedge CLK)

Cell Libraries (CLIBs)
base, clock gating

MCMM Timing

Constraints

Technology File
saed14nm_1p9m.tf

mkSoC_Top.dlib

Power Grid Insertion

Design Library

Floorplanning

LVT
ndm

HVT
ndm

RVT
ndm

SLVT
ndm

SRAM
ndm

Implementation

10

Floorplan & Power Grid Insertion Implementation

Floorplan Floorplan with Power Grid

Area: 63,663.885 µm²

Core Utilization: 73.6%​

Core Offset: 10 nm​

Cache Size: 1 kB

11

Multi-Corner Multi-Mode Timing Constraints

fast

func

slow

typical func::typical

func::fast

func::slow

ScenarioCornerMode

• Each corner must be constrained with a different

Process, Voltage, and Temperature (PVT)

• Timing constraints modified iteratively using a

script to optimise baseline's PPA

-0.2

-0.15

-0.1

-0.05

0

0.05

0.05 0.1 0.15 0.2

W
o
rs

t
N

e
g
a
ti
v
e
 S

la
c
k
 (

n
s
)

Clock Uncertainty (ns)

WNS

HWNS

Implementation

12

Design Space Optimization AI (DSO.ai)

• Optimized a baseline's PPA by exploring unconventional search space solutions.

• Optimization strategies included optimizing each metric individually.

• Then explored a balanced trade-off between all metrics to find optimal solutions.

13

Why AI?

• Manual tuning is slow and limited

• Complex design space

• DSO.ai uses reinforcement learning

• Parallelized exploration saves time

• Objective-driven optimization

14

AI-Driven Design Exploration with Reinforcement

Learning

• DSO.ai uses reinforcement learning to explore the design space iteratively.

• Each design run is treated as an “action” with feedback in the form of PPA

metrics.

• The AI learns from past results to improve its decisions over time.

• Best runs from one stage (slice) are used as inputs for the next stage (e.g.,

compile → clock → route).

• Efficiently avoids repeating poor configurations.

15

Prioritizing Metrics for Better AI Exploration

• AI needs clear goals to optimize — these are set through metrics.

• Common metrics: WNS, TNS, Total and Leakage Power, Area, etc.

• Two strategies used:

o Pareto Optimization: Balances trade-offs across multiple metrics.

o ADES (AI-Driven Efficiency Strategy): Assigns weights to focus on specific goals.

• Helps DSO.ai focus on what matters most for the design.

• Leads to faster convergence and more meaningful results.

16

Pareto Example

• Each dot = one DSO.ai run

• Green = Pareto-optimal trade-offs

• Purple = Baseline (higher power,

worse timing)

• AI found lower-power, timing-closed

designs

• Most runs cluster near WNS ≈ 0 ns

17

ADES Example

• Histogram of number of runs for

each metric value

• Green = Target values for metrics

• Blue = Baseline metric value (worse

than target value)

• AI optimized timing in expense of

other metrics

• Most runs achieve lower WNS and

HWNS ≈ 0.000 ns

18

AI Optimization vs Baseline Results

• DSO.ai produced 2 solutions with increased PPA compared to the Baseline

• Solution 1: Balanced PPA at 500MHz (35% power and 7% area improvement)

• Solution 2: 1GHz target frequency (9.9% area and 100% frequency improvement)

19

Results

Verification Implementation

• SAIF File generated for Fusion Compiler

• Code and functional coverage analysis done

• Optimized test suite with 63.06 CPU time

• Frequency: 500MHz & 1GHz

• Power (SAIF included):

• Baseline: 0.106mW

• DSO.ai 500MHz: 0.0688mW

• DSO.ai 1GHz: 0.189mW

• Floorplan:

• Area: 63,663µm²​

• Core utilization: 70%

• Core offset (Power Grid): 10nm

20

AI Usage Advantages and Disadvantages

• Requires a large team of skilled engineers

to fine-tune performance

• Engineering time can be high as projects

can span months

• Requires less computational resources to

run

• A small team of less skilled engineers

can fine-tune performance effectively

• Achieve competitive outcomes with less

resources in a shorter amount of time

• Requires more computational resources to

run

Traditional Workflow AI Usage (DSO.ai)

21

Conclusion

• AI usage enabled more effective performance tuning in a shorter time-period.

• Optimal baseline achieved within 6 - 7 weeks.

• 2 improved designs using DSO.ai achieved within 2 weeks.

• Only 3 students needed to improve PPA using DSO.ai .

• More time allocated to prioritize power grid insertion due to time savings.

Thank you

	Slide 1: Validate and Implement a RISC-V core using AI
	Slide 2: What is the Project About?
	Slide 3: Project Specification
	Slide 4: Verification
	Slide 5: Verification
	Slide 6
	Slide 7: SAIF File Generation
	Slide 8: Implementation
	Slide 9: Design Setup
	Slide 10: Floorplan & Power Grid Insertion
	Slide 11: Multi-Corner Multi-Mode Timing Constraints
	Slide 12: Design Space Optimization AI (DSO.ai™)
	Slide 13: Why AI?
	Slide 14: AI-Driven Design Exploration with Reinforcement Learning
	Slide 15: Prioritizing Metrics for Better AI Exploration
	Slide 16: Pareto Example
	Slide 17: ADES Example
	Slide 18: AI Optimization vs Baseline Results
	Slide 19: Results
	Slide 20: AI Usage Advantages and Disadvantages
	Slide 21: Conclusion
	Slide 22: Thank you

