
1

A novel formal verification technique to System
verification

Surinder Sood

2

Motivation and Problem statement

• There is no technique available to verify specific system2 behavior which should guarantee

• Completeness

• Correctness

• Consistency

• Existing formal techniques are limited only to component level designs, but guarantee 3Cs

(mentioned above)1

• Proof convergence on larger designs is difficult to achieve using available state-of-the-art

formal techniques

1https://dvcon-proceedings.org/document/lets-be-formal-while-talking-about-verification-quality-a-novel-approach-to-qualify-assertion-based-
vips/
2 A system is defined as an integration of two or more components

https://dvcon-proceedings.org/document/lets-be-formal-while-talking-about-verification-quality-a-novel-approach-to-qualify-assertion-based-vips/
https://dvcon-proceedings.org/document/lets-be-formal-while-talking-about-verification-quality-a-novel-approach-to-qualify-assertion-based-vips/

3

Main Idea: Proof convergence using decomposition and refinement

RefinementRefinement

Sub-step results together make overall system level proof

Complex requirement

on a bigger design

Partial check1 on

a design

component

Partial check2 on

a design

component

4

Refinement Explained

Suppose we have a system-level requirement:"If a request is made, it will be acknowledged within 3 cycles."

• This can be written as a temporal property: P: always (req |=> ##[1:3] ack) This is our top-level contract:
•Assumption (A): none

•Guarantee (G): req |=> ##[1:3] ack

Suppose the system has two submodules

2.Responder (acknowledges req_out with ack)

Contract P1 for Request Manager
P1: always (req_in |=> ##1 req_out)

Contract P2 for Responder

P2: always (req_out |=> ##[1:2] ack)

•Assumption (A2): req_out follows req_in quickly

•Guarantee (G2): ack within 1–2 cycles after req_out

1.Request Manager (generates) req_out when req_in is received)

•Assumption (A1): none

•Guarantee (G2): req_in |=> ##1 req_out

This refines the behavior: req_in leads to req_out in 1 cycle.
It refines the part of the system that converts req_out into ack.

Decomposed into Subcomponents

5

Example: Assumption weakening

• Definition: Making the assumptions on the environment less restrictive, i.e., the module must work

in more scenarios.

assume property (req_valid |-> ##[1:2] ack_received);

Original assumption: This means the environment must respond to a request with an acknowledgment in 1–2 cycles.

Weakened assumption:

assume property (req_valid |-> ##[1:5] ack_received);

Now, the environment may take up to 5 cycles — this is weaker because it allows more behaviors

Example 2— weaken data constraints:

Original : assume property (req_valid |-> (req_data == 8'hFF));

Weakened: assume property (req_valid |-> (req_data[7:4] ==
4'hF)); // only high nibble fixed

The component can tolerate more behaviors from its environment than the global system assumption. This is called weakening the assumption — i.e., it assumes less. Example: A2​⊇A

Example 1:

6

Example: Guarantee Strengthening

• Definition: Making the guarantees of a component more demanding, i.e., the module promises to

behave better or under broader conditions.

Original guarantee:
assert property (req_valid |-> ##[1:3] grant);

The module guarantees to issue a grant within 1–3 cycles.

Strengthened Guarantee:

assert property (req_valid |-> ##[1:2] grant);

Now, the module guarantees to respond sooner — this is stronger.

Example 2: Another form of strengthening:

Original guarantee:

assert property (req_valid |-> (grant == 1'b1));

Only guarantees grant when req_valid.

Strengthened Guarantee:

assert property ((req_valid || pending_req) |-> (grant == 1'b1));

Guarantees grant under more general condition (e.g., not just current request, but any pending one too).

The component provides at least the same guarantees as the system-level property — possibly more. This is called strengthening the guarantee. Example: G2​⊆G

Example 1:

7

Proposed Solution

Step 1: Specify the
system level behavior as

a contract (Natural
Language)

Step 2: Do contract
decomposition using
standard refinement

techniques1

Step 3: Translate the
refinements into system

Verilog assertions
(SVAs)

Step 4: Prove the SVAs
using a SMT solver (E.g.

Jasper Gold)

Step 5: Composition of
the SVAs refine the

system level behavior.
Hence help in system

level property verification

Step 6: This deals with
composite property

verification .

1A. Cimatti and S. Tonetta, “Contracts-refinement proof system for component-based embedded systems,” Science of computer programming, vol. 97, pp. 333–348, 2015.

8

Evidence: Formal verification of a System
memory management unit
• A SMMU has in build TLBs and caches which

provide faster access to various DMA requests from
I/O devices before they are passed to the system
interconnect .

• These caches behave in a similar way as the
processor caches

• Example system level behaviors for SMMU

• Any invalidation request also invalidate the
corresponding caches [E1]

• Any system level invalidation/Sync request is
eventually Acknowledged [E2]

• A design Bug introduced in E2[E3]

System level

behavior

Time taken (conventional formal

technique/Proposed technique)

Property converging:

Conventional/Proposed technique

Comments

E1 122271/106541 seconds

 (13 % improvement)

No/Yes The system level

property did not converge

the property

E2 5200/4100 seconds

(21 % performance improvement

Yes/yes Proposed technique

converged property faster

E3 49588/48849 seconds

(2 % improvement)

No/Yes Proposed solution caught

the bug, while

conventional solution did

not converge at all

9

Evidence: Formal verification of Granule
protection check wrapper block

System level

behavior

Time taken (conventional formal

technique/Proposed technique)

Bound achieved Comments

E1 45319/46571 seconds

(3% improvement)

14/24(Got Cex) invalidate_all_must_depart_after_gmb_inv_ack:

All Invalidate operations must follow the GPC invalidations

E2 13888/23449 seconds

(40 % improvement)

14/20 sync_must_not_overtake_trans_faults:
A synchronization operation must not overtake translation

faults

Using conventional approach bound was not increasing, but with our
approach the property bound showed increase, although property did

not converge

A GPC logic checks that a memory access to a physical address space (PAS) is allowed, according to the Granule
Protection Tables (GPTs). It retrieves the relevant GPT entries from either the Granule Cache, which caches
recently used GPT entries, or system memory. If a GPC does not pass, this is referred to as a Granule Protection
Fault (GPF).

10

Summary

1. Standalone properties consume more resources, their probability of

convergence is still less

2. Compositional system level properties are automatically proven if their

corresponding component level refinement properties are proven

3. Better refinement strategy gives faster convergence

4. If the system level property does not converge with the proposed

technique, it still gives a better bound as compared to standalone

properties

5. Further research is required to create more efficient refinement

techniques and deployment of AI can also be done for faster

convergence

	Slide 1
	Slide 2: Motivation and Problem statement
	Slide 3: Main Idea: Proof convergence using decomposition and refinement
	Slide 4: Refinement Explained
	Slide 5: Example: Assumption weakening
	Slide 6: Example: Guarantee Strengthening
	Slide 7
	Slide 8: Evidence: Formal verification of a System memory management unit
	Slide 9: Evidence: Formal verification of Granule protection check wrapper block
	Slide 10: Summary

