
HDLRegression – A reliable

and efficient tool for FPGA

regression testing

VFUK 2025

VFUK 2025

VFUK 2025

Inventas ▪ Norway’s largest independent design center

and product development company

▪ Established in 1997

▪ 170 designers and engineers

▪ Developing UVVM & HDLRegression

▪ Established the UVVM Steering Committee

▪ Provider of UVVM methodology and IP

Verification challenges

Why regression - and what it is

HDLRegression - key features & workflow

Key take-aways

VFUK 2025

Topics

VFUK 2025

Verification challenges ▪ 87 % of projects had at least

one non-trivial bug escape into

production.

▪ ≈ 67 % missed their original

schedule.

▪ Verification can consume up to

50% of total project effort.

▪ Debugging is the single largest

time sink for FPGA verification

engineers.

*2024 Wilson Research Group FPGA functional verification trends

VFUK 2025

Why do these problems
happen? • Late discovery → many teams still only do a

quick test before going to the lab; bugs appear

late and cost more.

• Design complexity → SoC FPGAs, several

clock domains, and embedded CPUs.

• Ad-hoc scripts → manually maintained

compile orders and test lists get outdated fast.

• Unpredictable debug → one bad failing test

can take days to fix.

• Change ripple → a fix in one block breaks

logic that previously worked.

VFUK 2025

Some types of testing

Unit testing

Integration testing

Retesting

Regression testing

Directed testing

Formal verification

Functional testing

Randomised / constrained testing

System testing

VFUK 2025

What is regression testing?

▪ Re-running the same functional and non-

functional tests after each change.

▪ Confirms that behaviour we already

validated still works.

▪ When something that passed yesterday

fails today, that’s a regression.

▪ Must be fully automated and repeatable.

▪ Usual split: quick sanity pack and full

suite overnight.

Change happens

Tests are re-run

Regression caught

if something breaks

VFUK 2025

Benefits of regression testing

▪ Early fault detection – re-run tests after every code

or configuration change.

▪ Foundation for CI pipelines – CI tools rely on

healthy regression suite.

▪ Lower cost of defects – issues fixed at commit-time

are orders of magnitude cheaper than those found

in the lab – or in the field.

▪ Confidence to refactor and innovate – clean up

code or add features without silently breaking

existing functionality.

VFUK 2025

▪ Focuses on a specific bug fix.

▪ Performed after fixing a known defect.

▪ Targets a specific failed test case.

▪ Usually manual.

▪ Confirms critical defects.

▪ Ensure recent changes haven’t broken

existing functionality.

▪ Performed after any code change.

▪ Reruns a broader set of previously

passed test.

▪ Often automated.

Retesting vs regression testing

Regression testingRetesting

VFUK 2025

Regression testing in FPGA projects

▪ Code, config and constraints

changes

▪ Recompile and simulation

cycles are long

▪ Testbenches are complex and

evolve with the design

▪ Changes in tooling and

environment add more risk

VFUK 2025

When is a test case ready for regression?

▪ Defined purpose

▪ Deterministic behavior

▪ Self-checking

▪ Clean dependencies

▪ Passes consistently

VFUK 2025

Effective regression strategies

▪ Prioritise core functionality and

recent changes

▪ Run different test scopes: fast

checks, full regressions

▪ Plan for test reuse and

maintenance

▪ Automate where possible

VFUK 2025

▪ Focus on functionality that is

▪ Stable and unlikely to change often

▪ Important for system correctness

▪ Fast to simulate

▪ Examples

▪ Reset and initialization

▪ FSMs

▪ Control registers

▪ Communication

▪ Interrupt logic

▪ Include

▪ Large tests or full system tests

▪ Randomised or coverage-driven tests

▪ Corner cases

▪ Long simulations

▪ When to run

▪ Approaching release

▪ After major merges

▪ During nightly / weekly CI

▪ Examples

▪ System-level simulations

▪ Long randomised sequences

▪ Full code/functional coverage

What to run daily and what
to run at milestones

Daily regression Milestone / nightly regression

VFUK 2025

Common pitfalls

▪ Outdated test scripts

▪ Flaky tests: sometimes pass,

sometimes fail.

▪ Poorly maintained testbenches

▪ Lack of ownership in large

teams

VFUK 2025

Benefits of test automation

▪ Much faster than manual testing

▪ Reliable results

▪ Ensure consistency

▪ Saves time and cost

▪ Human intervention is not required while

execution

▪ Increases efficiency

▪ Re-usable test scripts

▪ Test frequently and thoroughly

VFUK 2025

Continuous regression
▪ Run tests each time we push code

→ we spot errors right away.

▪ Just the needed tests run after a change

→ can save minutes / hours.

▪ Small quick set on every push to the

server, full test at night or before

milestone/release.

▪ Keep logs from every run

→ easy to see when a bug showed up.

▪ Gives developers trust to commit often

without breaking old features.

VFUK 2025

What to look for in an HDL
regression tool

Simulator support GHDL, NVC, Questa, Modelsim, Riviera-PRO

Easy setup One pragma, one Python script

Test management Filter by test case name or group

Test automation / CI integration CLI + exit codes + logs

Debug support Waveforms, logs, color coded PASS/FAIL

Scalable Works for units and top-level

Framework-support UVVM, OSVVM, Vunit, or in-house

Feature HDLRegression

VFUK 2025

What is
HDLRegression?

▪ An open-source regression runner for VHDL/Verilog TB – written in Python 3.

▪ Ultra-easy start-up – only a pragma comment in the TB; no refactor.

▪ Framework independent – works with UVVM, OSVVM, Vunit, or in-house code.

▪ Auto-detects ModelSim, Questa, Riviera-PRO, GHDL, NVC, and drives them for you.

▪ Scales from quick unit tests to large, multi-library projects.

▪ Goal: simplicity and efficiency → focus on writing good tests.

VFUK 2025

Testbench integration
and test cases

▪ One pragma comment to mark

testbench.

▪ No renaming or restructuring required.

▪ Test cases defined by generics, entity-

architecture, and sequencer built-in test

cases.

--HDLRegression:TB
entity tc_tb is

generic (
GC_TESTCASE : string := "UVVM_TB";
GC_GENERIC_1 : natural := 1;
GC_GENERIC_2 : natural := 2;
GC_PATH : string := ""
);

end tc_tb;

architecture tb_arch of tc_tb is
begin

p_seq : process
begin

if GC_TESTCASE = "tc_1" then
...

elsif GC_TESTCASE = "tc_2" then
...

else
...

end if;

report_alert_counters(FINAL);
std.env.stop;
wait;

end process;

end architecture tb_arch;

VFUK 2025

Simple Python script

▪ 6-12 lines of plain Python.

▪ Import HDLRegression, list files &

libraries, and call start().

▪ Same script runs RTL and netlist

simulations.

▪ Use the same script to run locally

and in CI pipelines.

▪ Full Python language available.

from hdlregression import HDLRegression

hr = HDLRegression()

hr.add_files("../src/*.vhd", "design_lib")
hr.add_files("../tb/*.vhd", "test_lib")

hr.start()

VFUK 2025

Select TC to run
▪ Default regression mode:

runs any new tests and any

tests that failed the last time.

▪ Run a single test case:

-tc <tc id> or

–tc <entity>.<arch>.<tc>

▪ Use wildcards to filter:

-tc uart_tb.*.rx*

sim % python ../script/sim.py -ltc

===
HDLRegression version 0.61.2
See /doc/hdlregression.pdf for documentation.

===

Scanning files...
Building test suite structure...
TC:1 - tc_tb.tb_arch.random_write_and_read
TC:2 - tc_tb.tb_arch.tc_read_empty

sim % py ../script/run.py -tc 2

===
HDLRegression version 0.61.2
See /doc/hdlregression.pdf for documentation.

===

Scanning files...
Building test suite structure...
Simulator: NVC

Starting simulations...
Running 1 out of 2 test(s) using 1 thread(s).
Running: test_lib.tc_tb.tb_arch.tc_read_empty (test_id: 2)
Result: PASS (0h:0m:0s).

Simulation run time: 0h:0m:0s.
SIMULATION SUCCESS: 1 passing test(s).

VFUK 2025

Select TG to run
▪ Gather sanity tests, overnight

regressions, corner case tests,

interface tests etc. in groups.

▪ Define test groups in the

regression script

<tg name>, <entity>, <arch>, <tc>

▪ Run a test group:

-tg <tg name>

hr.add_to_testgroup("nightly_tests", "tc_tb", "tb_arch", "random_write_and_read")
hr.add_to_testgroup("daily_tests", "tc_tb", "tb_arch", "tc_read_empty")

hr.start()

Sim % python ../script/sim.py -ltg
===
HDLRegression version 0.61.2
See /doc/hdlregression.pdf for documentation.

===

Scanning files...
Building test suite structure...
|---- nightly_tests
| |-- tc_tb.tb_arch.random_write_and_read
|---- daily_tests
| |-- tc_tb.tb_arch.tc_read_empty

Test case 1

Test case 2

Test case 3

Test case 4

Test case 5

Test case 6

Daily tests

Nightly tests

VFUK 2025

Fast local feedback

▪ Incremental re-run→ only tests

touched by changed files run.

▪ Unit-level tests finish in seconds

on a laptop.

▪ Instant PASS/FAIL summary with

exit code.

Starting simulations...
Running 2 out of 2 test(s) using 1 thread(s).

Running: test_lib.tc_tb.tb_arch.random_write_and_read (test_id: 1)
Result: FAIL (0h:0m:0s)
Test run: sim_errors=1, sim_warnings=0.

Running: test_lib.tc_tb.tb_arch.tc_read_empty (test_id: 2)
Result: PASS (0h:0m:0s).

Simulation run time: 0h:0m:0s.
SIMULATION FAIL: 2 tests run, 1 test(s) failed.

VFUK 2025

Grows with the
project

▪ Auto dependency scan builds

compile order as libraries grow.

▪ Thread flag –t N fans out over

all cores/licenses.

▪ Rarely need to touch the script

during the project.

VFUK 2025

End-to-end Run

▪ Scan → Detect unchanged →

Skip → Run changed tests

▪ Failing tests stay red until fixed

▪ Full regression:

-fr / --fullRegression

sim % python ../script/sim.py

===.
HDLRegression version 0.61.2
See /doc/hdlregression.pdf for documentation.

===

Scanning files...
Building test suite structure...
Simulator: NVC

Starting simulations...
Test run not required. Use "-fr"/"--fullRegression" to re-run all tests.

sim % touch ../src/mem_block.vhd

sim % python ../script/sim.py

===
HDLRegression version 0.61.2
See /doc/hdlregression.pdf for documentation.

===

Scanning files...
Building test suite structure...
Simulator: NVC
Compiling library: design_lib - OK -

Starting simulations...
Moving previous test run to: ./hdlregression/test_2025-04-30_11.46.58.379030.
Running 2 out of 2 test(s) using 1 thread(s).
Running: test_lib.tc_tb.tb_arch.random_write_and_read (test_id: 1)
Result: PASS (0h:0m:0s).

Running: test_lib.tc_tb.tb_arch.tc_read_empty (test_id: 2)
Result: PASS (0h:0m:0s).

Simulation run time: 0h:0m:0s.
SIMULATION SUCCESS: 2 passing test(s).

VFUK 2025

GUI and waves ▪ -g / --gui CLI options opens

ModelSim/Questa with project

precompiled and test case loaded.

▪ Work interactively in GUI while debugging.

▪ GHDL / NVC dumps VCD/FST files.

VFUK 2025

CI pipelines

▪ Easy integration with CI.

▪ Same script, check in with rest

of the code.

▪ PASS/FAIL badge from result

(exit code).

▪ Stores logs and coverage as

artifacts.

VFUK 2025

Documentation

VFUK 2025

Key take-aways ▪ Regression improves the

verification flow.

▪ Use CI pipelines for running

regression on each push.

▪ A reliable regression tool and

self-checking TB is key.

▪ HDLRegression is easy to use
▪ One pragma in the TB.

▪ One small Python script.

▪ Works with any verification FW.

▪ Fast feedback, CI-ready, scales with your

projects.

▪ Open-source and free on GitHub

	Presentasjon
	Slide 1: HDLRegression – A reliable and efficient tool for FPGA regression testing
	Slide 2: Inventas
	Slide 3: Topics
	Slide 4: Verification challenges
	Slide 5: Why do these problems happen?
	Slide 6: Some types of testing
	Slide 7: What is regression testing?
	Slide 8: Benefits of regression testing
	Slide 9: Retesting vs regression testing
	Slide 10: Regression testing in FPGA projects
	Slide 11: When is a test case ready for regression?
	Slide 12: Effective regression strategies
	Slide 13: What to run daily and what to run at milestones
	Slide 14: Common pitfalls
	Slide 15: Benefits of test automation
	Slide 16: Continuous regression
	Slide 17: What to look for in an HDL regression tool
	Slide 18: What is HDLRegression?
	Slide 19: Testbench integration and test cases
	Slide 20: Simple Python script
	Slide 21: Select TC to run
	Slide 22: Select TG to run
	Slide 23: Fast local feedback
	Slide 24: Grows with the project
	Slide 25: End-to-end Run
	Slide 26: GUI and waves
	Slide 27: CI pipelines
	Slide 28: Documentation
	Slide 29: Key take-aways

