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HDLRegression — A reliable
and efficient tool for FPGA
regression testing
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Inventas

VFUK 2025

Norway'’s largest independent design center
and product development company
Established in 1997

170 designers and engineers

Developing UVVM & HDLRegression
Established the UVVM Steering Committee
Provider of UVVM methodology and IP



Topics

Verification challenges

Why regression - and what it is
HDLRegression - key features & workflow
Key take-aways
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Verification challenges
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87 % of projects had at least

one non-trivial bug escape into

production.

» =~ 67 % missed their original
schedule.

= Verification can consume up to
50% of total project effort.

= Debugging is the single largest

time sink for FPGA verification

engineers.

*2024 Wilson Research Group FPGA functional verification trends



Why do these problems
happen?
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Late discovery - many teams still only do a
quick test before going to the lab; bugs appear
late and cost more.

Design complexity - SoC FPGAs, several
clock domains, and embedded CPUs.

Ad-hoc scripts - manually maintained
compile orders and test lists get outdated fast.
Unpredictable debug - one bad failing test
can take days to fix.

Change ripple = a fix in one block breaks

logic that previously worked.



Some types of testing
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Unit testing

Integration testing

System testing

Retesting

Randomised / constrained testing

Directed testing

Formal verification

Functional testing
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Regression testing




What is regression testing?

( Change happens }
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>< Tests are re-run )

|

Regression caught>
S

f something break

Re-running the same functional and non-
functional tests after each change.
Confirms that behaviour we already
validated still works.

When something that passed yesterday
fails today, that’s a regression.

Must be fully automated and repeatable.
Usual split: quick sanity pack and full

suite overnight.



Benefits of regression testing
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Early fault detection — re-run tests after every code
or configuration change.

Foundation for ClI pipelines — Cl tools rely on
healthy regression suite.

Lower cost of defects — issues fixed at commit-time
are orders of magnitude cheaper than those found
in the lab — or in the field.

Confidence to refactor and innovate — clean up
code or add features without silently breaking
existing functionality.



Retesting vs regression testing

C Retesting )

» Focuses on a specific bug fix.

» Performed after fixing a known defect.

» Targets a specific failed test case.
» Usually manual.

= Confirms critical defects.
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C Regression testing )

» Ensure recent changes haven’t broken
existing functionality.

» Performed after any code change.

» Reruns a broader set of previously
passed test.

= Often automated.



Regression testing in FPGA projects
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Code, config and constraints
changes

Recompile and simulation
cycles are long

Testbenches are complex and
evolve with the design
Changes in tooling and

environment add more risk



When is a test case ready for regression?
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Defined purpose
Deterministic behavior
Self-checking

Clean dependencies

Passes consistently



Effective regression strategies

VFUK 2025

Prioritise core functionality and
recent changes

Run different test scopes: fast
checks, full regressions

Plan for test reuse and
maintenance

Automate where possible



What to run daily and what
to run at milestones

(' Daily regression ) ( Milestone / nightly regression )
= Focus on functionality that is * Include

= Stable and unlikely to change often = Large tests or full system tests

= |Important for system correctness = Randomised or coverage-driven tests

= Fast to simulate = Corner cases

» Long simulations

= Examples = When to run
= Reset and initialization = Approaching release
= FSMs = After major merges
= Control registers = During nightly / weekly CI
= Communication
= Interrupt logic = Examples

= System-level simulations
= Long randomised sequences
= Full code/functional coverage
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Common pitfalls

= Qutdated test scripts

= Flaky tests: sometimes pass,
sometimes fail.

= Poorly maintained testbenches

= |Lack of ownership in large

teams
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Benefits of test automation
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Much faster than manual testing
Reliable results

Ensure consistency

Saves time and cost

Human intervention is not required while
execution

Increases efficiency

Re-usable test scripts

Test frequently and thoroughly




Continuous regression
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Run tests each time we push code

—> we spot errors right away.

Just the needed tests run after a change
—> can save minutes / hours.

Small quick set on every push to the
server, full test at night or before
milestone/release.

Keep logs from every run

—> easy to see when a bug showed up.
Gives developers trust to commit often

without breaking old features.



What to look for in an HDL

regression tool

( Feature

) C HDLRegression

)

Simulator support

GHDL, NVC, Questa, Modelsim, Riviera-PRO

Easy setup

One pragma, one Python script

Test management

Filter by test case name or group

Test automation / Cl integration

CLI + exit codes + logs

Debug support

Waveforms, logs, color coded PASS/FAIL

Scalable

Works for units and top-level

Framework-support

UVVM, OSVVM, Vunit, or in-house
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What is
HDLRegression?

= An open-source regression runner for VHDL/Verilog TB — written in Python 3.
= Ultra-easy start-up — only a pragma comment in the TB; no refactor.

» Framework independent — works with UVVM, OSVVM, Vunit, or in-house code.

» Auto-detects ModelSim, Questa, Riviera-PRO, GHDL, NVC, and drives them for you.

» Scales from quick unit tests to large, multi-library projects.

» Goal: simplicity and efficiency - focus on writing good tests.
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Testbench integration
and test cases

= One pragma comment to mark
testbench.

= No renaming or restructuring required.

» Test cases defined by generics, entity-
architecture, and sequencer built-in test

cases.
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--HDLRegression:TB
entity|tc_tb is
generic (

GC_TESTCASE
GC_GENERIC_1
GC GENERIC 2
GC_PATH
)

end tc_tb;

architecture |tb_arch| of
begin

p_seq : process
begin
if |GC_TESTCASE =

elsif |GC_TESTCASE

else

end if;

. string
. natural
. natural
¢ string

"UVWWM TB";
1;
2;

tc_tb is

“tc_1" |then

= “tc_2" |then

report_alert_counters(FINAL);

std.env.stop;
wait;
end process;

end architecture tb_arch;




Simple Python script

from hdlregression import HDLRegression

hr = HDLRegression()

.add_files("../src/*.vhd", "design 1ib")
.add_files("../tb/*.vhd", "test_lib")

.start()
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6-12 lines of plain Python.

Import HDLRegression, list files &
libraries, and call start().

Same script runs RTL and netlist

simulations.

Use the same script to run locally
and in Cl pipelines.

Full Python language available.



Select TC to run

sim % python ../script/sim.py -ltc

HDLRegression version 0.61.2
See /doc/hdlregression.pdf for documentation.

Scanning files...

Building test suite structure...

TC:1 - tc_tb.tb_arch.random_write_and_read
TC:2 - tc_tb.tb_arch.tc_read_empty

HDLRegression version 0.61.2
See /doc/hdlregression.pdf for documentation.

Scanning files...
Building test suite structure...
Simulator: NVC

Starting simulations...
Running 1 out of 2 test(s) using 1 thread(s).

Running: test_lib.tc_tb.tb_arch.tc_read_empty (test_id:

Result: PASS (@h:0m:0s).

Simulation run time: ©h:@m:@s.
SIMULATION SUCCESS: 1 passing test(s).

VFUK 2025

Default regression mode:
runs any new tests and any
tests that failed the last time.
Run a single test case:

-tc <tc id>or

-tc <entity>.<arch>.<tc>
Use wildcards to filter:

-tc uart_tb.*.rx*



Select TG to run

» (Gather sanity tests, overnight
regressions, corner case tests,
interface tests etc. in groups.

= Define test groups in the
Sim % python ../script/sim.py -1ltg o .
HDLRegression version 0.61.2 regreSSIOn Scrlpt

See /doc/hdlIregression.pdf for document

hr.add_to_testgroup("nightly tests", "tc_tb", "tb_arch", "random_write_and_read")
hr.add_to_testgroup("daily_tests", "tc_tb", "tb_arch", "tc_read_empty")

hr.start()

<tg name>, <entity>, <arch>, <tc>

Scanning files...

?L_J%%(_Jing test suite structure... u Run a test grou p:

nightly tests

|-- tc_tb.tb_arch.random_write_and_read

|
I-—-— daily tests —tg <tg name>

|-- tc_tb.tb_arch.tc_read_empty
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Fast local feedback

» |[ncremental re-run—> only tests
touched by changed files run.

= Unit-level tests finish in seconds
on a laptop.

» |nstant PASS/FAIL summary with

exit code.
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Starting simulations...
Running 2 out of 2 test(s) using 1 thread(s).

Running: test_lib.tc_tb.tb_arch.random_write_and_read (test_id: 1)
Result: (6h:em:0s)
Test run: sim_errors=1, sim_warnings=0.

Running: test_lib.tc_tb.tb_arch.tc_read_empty (test_id: 2)
Result: PASS (@h:em:@s).

Simulation run time: @h:0@m:0s.
SIMULATION FAIL: 2 tests run, 1 test(s) failed.




Grows with the
project

= Auto dependency scan builds

compile order as libraries grow.

» Thread flag -t N fans out over
all cores/licenses.
= Rarely need to touch the script

during the project.

VFUK 2025

N /1
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sim % python ../script/sim.py

End-to-end Run

See /doc/hdlIregression.pdf for documentation.

Scanning files...
Building test suite structure...
Simulator: NVC

Starting simulations...
Test run not required. Use "-fr"/"--fullRegression" to re-run all tests.

sim % touch ../src/mem_block.vhd
sim % python ../script/sim.py

HDLRegression version 0.61.2

] Scan 9 Detect u nchanged 9 See /doc/hdlIregression.pdf for documentation.

Skip = Run changed tests

Compiling library: design_lib - OK -

. Fai I i n g teStS Stay red u nti I fixed i;?):/tii:gg ;irr::ilcifisotzss.{run to: ./hdlIregression/test_2025-04-30_11.46.58.379030.

Running 2 out of 2 test(s) using 1 thread(s).
Running: test_lib.tc_tb.tb_arch.random_write_and_read (test_id: 1)

] Fu I I reg ression : Result: PASS (Oh:0m:0s).

Running: test_lib.tc_tb.tb_arch.tc_read_empty (test_id: 2)
Result: PASS (Oh:0m:0s).

-fr / --fullRegression

Simulation run tim Om:0s.
SIMULATION SUCCESS: 2 passing test(s).
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GUI and waves

-g / --gui CLI options opens
ModelSim/Questa with project
precompiled and test case loaded.

Work interactively in GUI while debugging.
GHDL / NVC dumps VCD/FST files.
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# _____________________________
# - HDLRegression test runner -
# _____________________________
2
# Script commands are:
&
§ 35 = Start simulation
# r = Recompile changed and dependent £iles
$# ra = Recompile All and restart
pl# ro = Recompile Only
# rs = ReStart
# rr = Restart and Bun
$# h = Help (this menu)
# J = Quit (this test run)
# gc = Quit Completely (regression)
&
¢ Current test:
# tc_tb.tbh_arch.random write_and read
2




U o + @ uvwm & UVVM / Pipelines / #22706

CI pipelines v N L= Merge for release

Q Search or go to...
@ Passed  Marius Elvegard created pipeline for commit ade58825 (& 3 days ago, finished 2 days ago

Project For ci_v2_development_mk2
© UVVM Child pipeline (parent) branch €O 21jobs @44 minutes 30 seconds, queued for 789 seconds
& Pinned 2 Jobs 21 Tests 0
Issues 0
. . .
= Easy integration with ClI a0y
pstream
I I WI . regression
8 Manage > @ uvwMm
< #22702 © e &
" . . & Plan v Parent
= Same script, check in with rest ... > © un
47 Build ~ @ il s}
f th d I e @ vip_avalon_mm o
o) e coade. o
@ vip_avalon_st fs)
Pipeline editor
Pipeline schedules © vip_axi c
= PASS/FAIL badge from result
Artifacts @ vip_axilite [s]
O secure >
® vip_axistream fs)
L] & Deploy >
exit code P
. @ Operate >
G2 Monitor > & vip_error_injection &)
- S‘t I d I Analyze > @ vip_ethernet s}
ores I0gs and coverage as )
@ Settings @ vip_gmii s}
. @ vip_gpio s
artifacts. © o
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Documentation
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# / HDLRegression

HDLRegression

TENTS
Introduction
Usage

Installation

Application Programming Interface (API)

Command Line Interface (CLI)

Graphical User Interface (GUI)

Testbench

Template files

Test Automation Server

Generated output © Copyright 2021, UWM

Tips

Built with Sphinx using a theme provided by Read the Docs

View page source

Next ©



Key take-aways = Regression improves the

verification flow.

= Use Cl pipelines for running
regression on each push.

= A reliable regression tool and
self-checking TB is key.

= HDLRegression is easy to use

= One pragma in the TB.

One small Python script.

Works with any verification FW.

Fast feedback, Cl-ready, scales with your
projects.

Open-source and free on GitHub
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