VFUK 2025

HDLRegression — A reliable
and efficient tool for FPGA
regression testing

22222222

Inventas

VFUK 2025

Norway'’s largest independent design center
and product development company
Established in 1997

170 designers and engineers

Developing UVVM & HDLRegression
Established the UVVM Steering Committee
Provider of UVVM methodology and IP

Topics

Verification challenges

Why regression - and what it is
HDLRegression - key features & workflow
Key take-aways

VFUK 2025

Verification challenges

VFUK 2025

87 % of projects had at least

one non-trivial bug escape into

production.

» =~ 67 % missed their original
schedule.

= Verification can consume up to
50% of total project effort.

= Debugging is the single largest

time sink for FPGA verification

engineers.

*2024 Wilson Research Group FPGA functional verification trends

Why do these problems
happen?

VFUK 2025

Late discovery - many teams still only do a
quick test before going to the lab; bugs appear
late and cost more.

Design complexity - SoC FPGAs, several
clock domains, and embedded CPUs.

Ad-hoc scripts - manually maintained
compile orders and test lists get outdated fast.
Unpredictable debug - one bad failing test
can take days to fix.

Change ripple = a fix in one block breaks

logic that previously worked.

Some types of testing

VFUK 2025

Unit testing

Integration testing

System testing

Retesting

Randomised / constrained testing

Directed testing

Formal verification

Functional testing

NN CYCYCYNOYNOY Y M
N N

Regression testing

What is regression testing?

(Change happens }

VFUK 2025

>< Tests are re-run)

|

Regression caught>
S

f something break

Re-running the same functional and non-
functional tests after each change.
Confirms that behaviour we already
validated still works.

When something that passed yesterday
fails today, that’s a regression.

Must be fully automated and repeatable.
Usual split: quick sanity pack and full

suite overnight.

Benefits of regression testing

VFUK 2025

Early fault detection — re-run tests after every code
or configuration change.

Foundation for ClI pipelines — Cl tools rely on
healthy regression suite.

Lower cost of defects — issues fixed at commit-time
are orders of magnitude cheaper than those found
in the lab — or in the field.

Confidence to refactor and innovate — clean up
code or add features without silently breaking
existing functionality.

Retesting vs regression testing

C Retesting)

» Focuses on a specific bug fix.

» Performed after fixing a known defect.

» Targets a specific failed test case.
» Usually manual.

= Confirms critical defects.

VFUK 2025

C Regression testing)

» Ensure recent changes haven’t broken
existing functionality.

» Performed after any code change.

» Reruns a broader set of previously
passed test.

= Often automated.

Regression testing in FPGA projects

VFUK 2025

LI
L1+

Code, config and constraints
changes

Recompile and simulation
cycles are long

Testbenches are complex and
evolve with the design
Changes in tooling and

environment add more risk

When is a test case ready for regression?

22222222

Defined purpose
Deterministic behavior
Self-checking

Clean dependencies

Passes consistently

Effective regression strategies

VFUK 2025

Prioritise core functionality and
recent changes

Run different test scopes: fast
checks, full regressions

Plan for test reuse and
maintenance

Automate where possible

What to run daily and what
to run at milestones

(' Daily regression) (Milestone / nightly regression)
= Focus on functionality that is * Include

= Stable and unlikely to change often = Large tests or full system tests

= |Important for system correctness = Randomised or coverage-driven tests

= Fast to simulate = Corner cases

» Long simulations

= Examples = When to run
= Reset and initialization = Approaching release
= FSMs = After major merges
= Control registers = During nightly / weekly CI
= Communication
= Interrupt logic = Examples

= System-level simulations
= Long randomised sequences
= Full code/functional coverage

VFUK 2025

Common pitfalls

= Qutdated test scripts

= Flaky tests: sometimes pass,
sometimes fail.

= Poorly maintained testbenches

= |Lack of ownership in large

teams

VFUK 2025

Benefits of test automation

VFUK 2025

Much faster than manual testing
Reliable results

Ensure consistency

Saves time and cost

Human intervention is not required while
execution

Increases efficiency

Re-usable test scripts

Test frequently and thoroughly

Continuous regression

VFUK 2025

Run tests each time we push code

—> we spot errors right away.

Just the needed tests run after a change
—> can save minutes / hours.

Small quick set on every push to the
server, full test at night or before
milestone/release.

Keep logs from every run

—> easy to see when a bug showed up.
Gives developers trust to commit often

without breaking old features.

What to look for in an HDL

regression tool

(Feature

) C HDLRegression

)

Simulator support

GHDL, NVC, Questa, Modelsim, Riviera-PRO

Easy setup

One pragma, one Python script

Test management

Filter by test case name or group

Test automation / Cl integration

CLI + exit codes + logs

Debug support

Waveforms, logs, color coded PASS/FAIL

Scalable

Works for units and top-level

Framework-support

UVVM, OSVVM, Vunit, or in-house

VFUK 2025

What is
HDLRegression?

= An open-source regression runner for VHDL/Verilog TB — written in Python 3.
= Ultra-easy start-up — only a pragma comment in the TB; no refactor.

» Framework independent — works with UVVM, OSVVM, Vunit, or in-house code.

» Auto-detects ModelSim, Questa, Riviera-PRO, GHDL, NVC, and drives them for you.

» Scales from quick unit tests to large, multi-library projects.

» Goal: simplicity and efficiency - focus on writing good tests.

VFUK 2025

Testbench integration
and test cases

= One pragma comment to mark
testbench.

= No renaming or restructuring required.

» Test cases defined by generics, entity-
architecture, and sequencer built-in test

cases.

VFUK 2025

--HDLRegression:TB
entity|tc_tb is
generic (

GC_TESTCASE
GC_GENERIC_1
GC GENERIC 2
GC_PATH
)

end tc_tb;

architecture |tb_arch| of
begin

p_seq : process
begin
if |GC_TESTCASE =

elsif |GC_TESTCASE

else

end if;

. string
. natural
. natural
¢ string

"UVWWM TB";
1;
2;

tc_tb is

“tc_1" |then

= “tc_2" |then

report_alert_counters(FINAL);

std.env.stop;
wait;
end process;

end architecture tb_arch;

Simple Python script

from hdlregression import HDLRegression

hr = HDLRegression()

.add_files("../src/*.vhd", "design 1ib")
.add_files("../tb/*.vhd", "test_lib")

.start()

VFUK 2025

6-12 lines of plain Python.

Import HDLRegression, list files &
libraries, and call start().

Same script runs RTL and netlist

simulations.

Use the same script to run locally
and in Cl pipelines.

Full Python language available.

Select TC to run

sim % python ../script/sim.py -ltc

HDLRegression version 0.61.2
See /doc/hdlregression.pdf for documentation.

Scanning files...

Building test suite structure...

TC:1 - tc_tb.tb_arch.random_write_and_read
TC:2 - tc_tb.tb_arch.tc_read_empty

HDLRegression version 0.61.2
See /doc/hdlregression.pdf for documentation.

Scanning files...
Building test suite structure...
Simulator: NVC

Starting simulations...
Running 1 out of 2 test(s) using 1 thread(s).

Running: test_lib.tc_tb.tb_arch.tc_read_empty (test_id:

Result: PASS (@h:0m:0s).

Simulation run time: ©h:@m:@s.
SIMULATION SUCCESS: 1 passing test(s).

VFUK 2025

Default regression mode:
runs any new tests and any
tests that failed the last time.
Run a single test case:

-tc <tc id>or

-tc <entity>.<arch>.<tc>
Use wildcards to filter:

-tc uart_tb.*.rx*

Select TG to run

» (Gather sanity tests, overnight
regressions, corner case tests,
interface tests etc. in groups.

= Define test groups in the
Sim % python ../script/sim.py -1ltg o .
HDLRegression version 0.61.2 regreSSIOn Scrlpt

See /doc/hdlIregression.pdf for document

hr.add_to_testgroup("nightly tests", "tc_tb", "tb_arch", "random_write_and_read")
hr.add_to_testgroup("daily_tests", "tc_tb", "tb_arch", "tc_read_empty")

hr.start()

<tg name>, <entity>, <arch>, <tc>

Scanning files...

?L_J%%(_Jing test suite structure... u Run a test grou p:

nightly tests

|-- tc_tb.tb_arch.random_write_and_read

|
I-—-— daily tests —tg <tg name>

|-- tc_tb.tb_arch.tc_read_empty

VFUK 2025

Fast local feedback

» |[ncremental re-run—> only tests
touched by changed files run.

= Unit-level tests finish in seconds
on a laptop.

» |nstant PASS/FAIL summary with

exit code.

VFUK 2025

Starting simulations...
Running 2 out of 2 test(s) using 1 thread(s).

Running: test_lib.tc_tb.tb_arch.random_write_and_read (test_id: 1)
Result: (6h:em:0s)
Test run: sim_errors=1, sim_warnings=0.

Running: test_lib.tc_tb.tb_arch.tc_read_empty (test_id: 2)
Result: PASS (@h:em:@s).

Simulation run time: @h:0@m:0s.
SIMULATION FAIL: 2 tests run, 1 test(s) failed.

Grows with the
project

= Auto dependency scan builds

compile order as libraries grow.

» Thread flag -t N fans out over
all cores/licenses.
= Rarely need to touch the script

during the project.

VFUK 2025

N /1
N

sim % python ../script/sim.py

End-to-end Run

See /doc/hdlIregression.pdf for documentation.

Scanning files...
Building test suite structure...
Simulator: NVC

Starting simulations...
Test run not required. Use "-fr"/"--fullRegression" to re-run all tests.

sim % touch ../src/mem_block.vhd
sim % python ../script/sim.py

HDLRegression version 0.61.2

] Scan 9 Detect u nchanged 9 See /doc/hdlIregression.pdf for documentation.

Skip = Run changed tests

Compiling library: design_lib - OK -

. Fai I i n g teStS Stay red u nti I fixed i;?):/tii:gg ;irr::ilcifisotzss.{run to: ./hdlIregression/test_2025-04-30_11.46.58.379030.

Running 2 out of 2 test(s) using 1 thread(s).
Running: test_lib.tc_tb.tb_arch.random_write_and_read (test_id: 1)

] Fu I I reg ression : Result: PASS (Oh:0m:0s).

Running: test_lib.tc_tb.tb_arch.tc_read_empty (test_id: 2)
Result: PASS (Oh:0m:0s).

-fr / --fullRegression

Simulation run tim Om:0s.
SIMULATION SUCCESS: 2 passing test(s).

VFUK 2025

GUI and waves

-g / --gui CLI options opens
ModelSim/Questa with project
precompiled and test case loaded.

Work interactively in GUI while debugging.
GHDL / NVC dumps VCD/FST files.

VFUK 2025

- HDLRegression test runner -

2
Script commands are:
&
§ 35 = Start simulation
r = Recompile changed and dependent £iles
$# ra = Recompile All and restart
pl# ro = Recompile Only
rs = ReStart
rr = Restart and Bun
$# h = Help (this menu)
J = Quit (this test run)
gc = Quit Completely (regression)
&
¢ Current test:
tc_tb.tbh_arch.random write_and read
2

U o + @ uvwm & UVVM / Pipelines / #22706

CI pipelines v N L= Merge for release

Q Search or go to...
@ Passed Marius Elvegard created pipeline for commit ade58825 (& 3 days ago, finished 2 days ago

Project For ci_v2_development_mk2
© UVVM Child pipeline (parent) branch €O 21jobs @44 minutes 30 seconds, queued for 789 seconds
& Pinned 2 Jobs 21 Tests 0
Issues 0
. . .
= Easy integration with ClI a0y
pstream
I I WI . regression
8 Manage > @ uvwMm
< #22702 © e &
" . . & Plan v Parent
= Same script, check in with rest ... > © un
47 Build ~ @ il s}
f th d I e @ vip_avalon_mm o
o) e coade. o
@ vip_avalon_st fs)
Pipeline editor
Pipeline schedules © vip_axi c
= PASS/FAIL badge from result
Artifacts @ vip_axilite [s]
O secure >
® vip_axistream fs)
L] & Deploy >
exit code P
. @ Operate >
G2 Monitor > & vip_error_injection &)
- S‘t I d I Analyze > @ vip_ethernet s}
ores I0gs and coverage as)
@ Settings @ vip_gmii s}
. @ vip_gpio s
artifacts. © o

VFUK 2025

Documentation

VFUK 2025

/ HDLRegression

HDLRegression

TENTS
Introduction
Usage

Installation

Application Programming Interface (API)

Command Line Interface (CLI)

Graphical User Interface (GUI)

Testbench

Template files

Test Automation Server

Generated output © Copyright 2021, UWM

Tips

Built with Sphinx using a theme provided by Read the Docs

View page source

Next ©

Key take-aways = Regression improves the

verification flow.

= Use Cl pipelines for running
regression on each push.

= A reliable regression tool and
self-checking TB is key.

= HDLRegression is easy to use

= One pragma in the TB.

One small Python script.

Works with any verification FW.

Fast feedback, Cl-ready, scales with your
projects.

Open-source and free on GitHub

VFUK 2025

	Presentasjon
	Slide 1: HDLRegression – A reliable and efficient tool for FPGA regression testing
	Slide 2: Inventas
	Slide 3: Topics
	Slide 4: Verification challenges
	Slide 5: Why do these problems happen?
	Slide 6: Some types of testing
	Slide 7: What is regression testing?
	Slide 8: Benefits of regression testing
	Slide 9: Retesting vs regression testing
	Slide 10: Regression testing in FPGA projects
	Slide 11: When is a test case ready for regression?
	Slide 12: Effective regression strategies
	Slide 13: What to run daily and what to run at milestones
	Slide 14: Common pitfalls
	Slide 15: Benefits of test automation
	Slide 16: Continuous regression
	Slide 17: What to look for in an HDL regression tool
	Slide 18: What is HDLRegression?
	Slide 19: Testbench integration and test cases
	Slide 20: Simple Python script
	Slide 21: Select TC to run
	Slide 22: Select TG to run
	Slide 23: Fast local feedback
	Slide 24: Grows with the project
	Slide 25: End-to-end Run
	Slide 26: GUI and waves
	Slide 27: CI pipelines
	Slide 28: Documentation
	Slide 29: Key take-aways

