UCFI: Formal Verification of
Microarchitectural
Control-flow Integrity

Katharina Ceesay-Seitz, Flavien Solt,

Kaveh Razavi

COMSEC, Computer Security Group,
ETH Zurich

Verification Futures UK, 01.07.2025

NS
ETH:zurich

m https://www.linkedin.com/in/katharina-ceesay-seitz-ba521087/

1
Published at ACM Computer and Communications Security (CCS) 2024

CPU Verification

Testing, e.g., fuzzing

CPU Verification

Testing, e.g., fuzzing,
Isincomplete

Security: need guarantee of
absence of bugs

CPU Verification

Formal verification:
* Provides formal guarantees for
all inputs

CPU Verification

Formal verification:
* Provides formal guarantees for
all inputs

* Often a CPU-specific, manual effort

Formal Property Verification

CPU
~

\

[~~~

/

TTTTT1 Formal properties,
HDL e.g.,

(Hardware | SystemVerilog
Description | Aggertions
L . .
Da"guage) describe desired

esign)

behavior

Formal Property Verification

Formal model
checker

CPU
~

Y'/”"

[~

ITTTTI Formal
properties,

e.g.,
SystemVerilog

SAT(isfiability)

Assertions solver

Formal Property Verification

CPU

Y'/”"

[~

ITTTT1 Formal
properties,
e.g.,
SystemVerilog
Assertions

Formal model *\\
checker

/ = property
(\\ . satisfied
. for all inputs

/ Formalproof:
\ Counter

SAT(isfiability) example G A
solver

SIMPLER
SOLUTION?

CPU Verification

Formal verification:
* Provides formal guarantees for
all inputs

\ HCFI - Generalized security property
Q:rlil:E a—— Easy application and reuse

* Independent of CPU's verification state

=> apply it early in the design cycle

 Captures multiple threat models

10

Definition: Architectural Control Flow

Architectural

(software) 80000000: 00010337 lui t1,0x10 o0
Program 80000004: 010eafs3 lw t6,16(t4)

Counter 80000008: 0132823 sw t6,16(t1)

(PC) 8000000c: 400bOb13 addi s6,s6,1024

Software program (assembly instructions)
80000000 < start>:

80000010:
80000014
80000018:

34319073

341020f3
0030c133

csrw mtval,gp
csrr ra,mepc
Xor sp,ra,gp

CPU

Architectural PC decides the order of instructions

If condition

PC = Branch target = A
Else

PC = Branch target = PC + 4

Software ‘if’

Branch instruction

11

Definition: Microarchitectural Control Flow (uCF)

Architectural

(software) 80000000: 00010337 lui t1,0x10 o0
Program 80000004: 010eafs3 lw t6,16(t4)

Counter 80000008: 0132823 sw t6,16(t1)

(PC) 8000000c: 400bOb13 addi s6,s6,1024

Software program (assembly instructions)
80000000 < start>:

80000010:
80000014
80000018:

34319073
341020f3
0030c133

csrw mtval,gp
csrr ra,mepc
Xor sp,ra,gp

Microarchitectural control flow (UCF)

CPU

update time

0x80000004

Microarchitectural PC
= aregister inside
the CPU 12

0x80000008 0x80001000 value

Microarchitectural Control Flow Violations

Constant Time (CT) RISC-V program

Architectural control flow

.

CSrrw| nop Iaddi Fsrrw jalr

reads
secret
data

Microarchitectural Control Flow Violations

Constant Time (CT) RISC-V program

Architectural control flow

| .l . >
CSrrw| nop Iaddl Fsrrw jalr
reads
i secret
£ Microarchitectural control flow data
= operand: 0
LI [.I : >
csrrw| nop Iaddl Icsrrw jalr

clock —

Microarchitectural Control Flow Violations

Constant Time (CT) program

Architectural control flow
—] . .
csrrw| nop faddi fcsrrw| jalr

Microarchitectural control flow

operand: 0 "y
I 1

csrrw| nop Iaddi Icsrrw jalr

>

clock _—

operand: "1 "y

_
CSrrw| nop |addi| csrrw jalr ‘

clock —_—

Microarchitectural Control Flow Violations

Constant Time (CT) program

Architectural control flow
—] . .
csrrw| nop faddi fcsrrw| jalr

Microarchitectural control flow

operand: 0 "y
I 1

csrrw| nop Iaddi Icsrrw jalr

clock _—

operand: "1 "y

I _ . Secret influences pCF
CSrrw| nop |add|| csrrw jalr

Execution takes longer = timing side channel

Delayed PC update

clock

Microarchitectural Control Flow Violations

Constant Time (CT) program

Architectural control flow

Control-flow integrity secure program

Architectural control flow

csrrw| nop faddi fesrrw| jalr csrrw nop lillegal
PC = 0x200
reads
Microarchitectural control flow attacker

operand: :0 " 4
I 1

controlled Exception

CSIrw

input

nop Iaddi Icsrrw jalr

data

clock

operand: "1 "y

_
CSITW

nop |addi | csrrw

clock

17

Microarchitectural Control Flow Violations

Constant Time (CT) program

Architectural control flow

H

csrrw| nop jaddi fcsrrw

jalr

s

Microarchitectural control flow

operand: :0 " 4
I 1

csrrw| nop Iaddi Icsrrw

jalr

clock

operand: "1 >y

_

CSITW

nop |addi | csrrw

clock

Control-flow integrity secure program

Architectural control flow

CSITW CSITW| NO illegal
-WW ‘ p‘ ? ‘ PC = 0x200

Microarchitectural control flow

operand: 0x80 g

CSIrrw| nop CSI’I’W nop

clock

Input influences pCF
by changing PC value

18

HCFI - Microarchitectural Control-flow Integrity

ISA = Instruction Set Architecture, PC = Program Counter 9

HCFI - Microarchitectural Control-flow Integrity

Two threat

models
captured

20

ISA = Instruction Set Architecture, PC = Program Counter

HCFI - Microarchitectural Control-flow Integrity

Information leakage

Two threat secret

models
captured

21

ISA = Instruction Set Architecture, PC = Program Counter

HCFI - Microarchitectural Control-flow Integrity

Information leakage
Control-flow hijack

Two threat secret

models
captured

attacker-
controlled

22

ISA = Instruction Set Architecture, PC = Program Counter

HCFI - Microarchitectural Control-flow Integrity

Information flow property

/\%ﬁ

23

ISA = Instruction Set Architecture

HCFI - Microarchitectural Control-flow Integrity

Information flow property

Information =

data flows

time & control flows

24

ISA = Instruction Set Architecture

HCFI - Microarchitectural Control-flow Integrity

Information =

data flows

time & control flows

25

ISA = Instruction Set Architecture, PC = Program Counter

Formal Verification of Information Flow

Information flow tracking with

CPU

‘rlrl}wL L‘L

taint = secret or attacker-controlled information

Taint
logic

[1]1F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

26
https://github.com/comsec-group/cellift-yosys

CelllFT Yosys [1] pass

Ty CALLLLL v celis (lip flops, [2]
.ol E = RTLIL — logiccells, ...):
- —] — * Duplicate* in-/outputs for taint tracking
NTITTIT — — « Connectthem with cell-type dependent
ARARN taint tracking logic
. Q) o) 0 AY AY!
a) State-holding — > _'_,O__> -y, or *_,
cells ' ___,I>~AJFT -
b) Combinational ! el AT ‘ O N
block = o - rand } f,and,\
c) Gate-level O kg ‘klAFT ‘AfT '
output of Yosys N . - J;M_-_-_-_a_:
R T=- Al B At- Bt.

HDL

Taint
logic

*itis possible to add multiple independent taint instrumentations. Each in-/output gets a taint representation

per instrumentation.

[1] Yosys Open SYnthesis Suite - https://gith
[2] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

27

https://github.com/YosysHQ/yosys

CelllFT

Information flow tracking with taint logic - CellIFT [1]

— taint O
=1 |cru| E | |

UJV“VL L‘L AND
— |Taint| &
—1 |logic| C

HERRR 0

Taint logic (CelllFT [1]) tracks
information flows

taint = secret or attacker-controlled

[1]F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL",
USENIX Security 2022

28

CelllFT

CPU

Taint
logic

Taint logic (CelllFT [1]) tracks
information flows

Information flow tracking with taint logic - CellIFT [1]

taint O taint 1
| |
AND AND

0 taint

taint = secret or attacker-controlled

[1]F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", 29

USENIX Security 2022

Formal Verification of Information Flow

CPU

wrlrl}

11

Taint
logic

\

Formal SVA
properties

/

30

Formal Verification of Information Flow

CPU

wrlrl}

114

Taint
logic

\

Formal SVA
properties

/

31

Formal Verification of Information Flow

: : "o

q|crul E T R

- - Formal proof ¢ [\'y"
Formal SVA / P * {\ *

VJV“VL‘L‘L . ‘

. | properties \ \

- - — Counter 2.9

— |Taint] |- 3

—1 |logic| = / example g4

Formally Verifying uCFl

REGISTERS

l

CPU + taint logic

Instruction
ADD

Taint does not reach the PC

= secret or attacker-controlled

PC = Program Counter

33

Formally Verifying uCFl

REGISTERS

l

CPU + taint logic

Instruction
BNE

Branch Not Equal

Taint reaches the PC

= secret or attacker-controlled

PC = Program Counter

34

Formally Verifying uCFl

REGISTERS

l

CPU + taint logic

Instruction
BNE

Branch Not Equal

Taint reaches the PC

MCFI violated??

PC = Program Counter

35

Instruction Classification

Control-influencing:

direct branches,
instructions with
exceptions, ...

are expected
to influence
the program counter

beg t1, t2, 20 PC
branch /\M
control control
target
If reg[tl1] == reg[t2]

Branch target = A
Else
Branch target = PC + 4

36

Instruction Classification

Control-influencing:

branches,
instructions with
exceptions, ...

are expected
to influence
the program counter

via implicit/control
paths only

beg t1, t2, 20 PC
branch W
control control
target
If reg[tl1] == reg[t2]

Branch target = A
Else
Branch target = PC + 4

not via data paths

Program Count
Program Counte

= reg[t1]

reg[t2]

37

Instruction Classification

‘ HCFI \
Control-influencing:
branches, b 1 s 20
instructions with eq tl., tz, PC Operand /\7</> PC

exceptions, ... YUy branch N

control control data

are expected

infl
Iﬁénpr:Z?:ni counter CellD FT

via implicit/control If reg[tl] == reglt2]
paths only Branch target = A
Else

Branch target = PC + 4

Program Count = regl[t1]
Program CountelN= regl[t2]

38

CelllFT

CelllFT

\

branch target B —6""-.

PC
tainted

branch target A —Ji" ./~

taint

if reg[t1] == reg[t2]

CellIFT [1]

tracks information =

* data,
control & timing flows

HCFI

Operand /\/(/)

information

Non-influencing:
arithmetic, logic, ...

[1]F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

CPU

m,wH

Taint
logic

39

CellDFT - Data Flow Tracking

New:
CelllFT

\

branch target B —6""-.

CellDFT

PC
tainted

branch target A —Ji" ./~

taint

reg[t1] ==reg[t2]

CellFT [1] CellDFT

tracks information =

* data,
control & timing flows

only tracks
dataflows

[1]F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

CPU

m,wH

Taint
logic

40

HCFI

CellDFT - Data Flow Tracking

/\%/)
CellDFT

data
 Onlytracks data flows #

* Blocks control flows
L1111l

Taint
logic

CellDFT rules implemented in Yosys pass

Cell Name Definition
State elems. with enable (EN) Q! = (EN A D") v (=EN A Qt_l)
: _ Data taint propagates
2-input mux, aldff cells [106] Y! = (=S AAY) V(S ABY
pmux cells [106] Y! = A[S]?
Comparison/reduction cells Yi=0 No taint propagates

Shift cells Yi=A'oB Data taint is shifted

41

Instruction classification

HCFI
information
NQn-lnflyenC|pg: add x4, x5, x6 W PC Operand /\7</> PC CelllFT
arithmetic, logic, ...
information
Control-influencing: o x1. x2. 20 PC /\y(/) CellDET
branches, exceptions
P VI, branch NN data
control 'target, control

Value-influencing:

& jalr ra, x1, 80 PC

jumps
VIS Jump %

data
target

42

HCFI - Verification Goals

reg. 'l

“lesrr w srrw csrrw | jalr > For communication with software

M rmrr engineers/tools:
clock . » Security classification per instruction

Is a constant time (CT) software really CT

on an actual CPU implementation?

43

HCFI - Verification Goals

reg. 'l

me For communication with software

s s engineers/tools:
clock — * Security classification per instruction,
* surrounded by arbitrary,
potentially insecure, instructions

44

HCFI - Verification Goals

CSIT m SIrw

reg. 'l

jalr

CSIrw
|

clock

For communication with software:
* Security classification per instruction

To ease debugging:

ldentify the specific instruction that leaks

45

HCFI - Verification Goals

_csrr srrw| no csrrw | jalr > pep—— For communication with software:
addi p Jaddi | OO

A rmrm * Security classification per instruction

clock

To ease debugging:
* |dentify the specific instruction that leaks

For strong security guarantees:
* considerinfluences on younger instructions

* over arbitrary, infinitely long programs

46

Identifying Insecure Instructions

CPU + taint logic

Instruction
ADDI | CSRRW

REGISTERS

Control and Status Register
Read Write

Which instruction tainted the PC?

PC

47

Identifying Insecure Instructions

CPU + taint logic
REGISTERS
Instruction
l < ADDI

Check the program counter
taint after each instruction?

Identifying Insecure Instructions

REGISTERS

PC

CPU + taint logic

Instruction
«— ADDI | CSRRW

Control and Status Register
Read Write

Check the program counter
taint after each instruction?

49

Identifying Insecure Instructions

addi influences csrrw

CPU + taint logic reg: 'l g

Instruction lesrrw nop Jaddi| csrrw | jalr
%

REGISTERS

clock _

 addi's operand leaks, but violation is
associated with csrrw
* Checking program counter taint after

PC each instruction is imprecise

50

Identifying Insecure Instructions

addi influences csrrw

REGISTERS

PC

CPU + taint logic

reg: '1 /\

Instruction lesrrw nop Jaddi| csrrw | jalr
%

clock _

 addi's operand leaks, but violation is
associated with csrrw

* Checking program counter taint after
each instruction is imprecise

* Abug may be hidden by csrrw's
specified information flow

51

Precise Taint Injection

x = (taint) logic abstraction

REGISTERS

CPU + taint logic

Instruction
b

52

Precise Taint Injection

x = (taint) logic abstraction

REGISTERS

IIIHEIIII

CPU + taint logic

Instruction
b

start

O

Instruction
Under
Verification
MUL ADD BNE
stop
taint

<
<

@

* Controlled taintinjection per instruction

* Via SystemVerilog Assumptions

53

Precise Taint Injection

REGISTERS

l

CPU + taint logic

Instruction
Under
Verification
Instruction
< MUL ADD BNE
start stop

@ = @

- Controlled taint injection per instruction
- Operand reading conditions automatically

generated via _static design analysis

(custom Yosys[1] pass)

[1]https://github.com/YosysHQ/yosys

54

Declassification of Architectural Paths

Instruction

Under
Verification
CPU + taint logic
REGISTERS
Instruction
l < MUL ADD BNE
reg t1

Will the PC be |

L~ i~
W EE
- LN

tainted?

55

Declassification of Architectural Paths

forwarded
data

CPU + taint logic

instruction
result

Instruction
Under
Verification
Instruction
< MUL ADD BNE
reg t1

* |nstruction result of 'add' forwarded to a
'branch'taints the PC.

56

Declassification of Architectural Paths

REGISTERS

l

CPU + taint logic

forwarded
data

instruction
result

Instruction
Under
Verification
Instruction
< MUL ADD BNE
reg t1

Declassification:
Block taint propagation via architectural
(forwarding and register writeback) paths

Forwarded data considered as instruction input

Yosys pass checks that declassified paths do
not reach the program counter

57

Tracking Forwarded Data

REGISTERS

l

CPU + taint logic

forwarded
data

D\ instruction
X

result

Instruction
Under
Verification
Instruction
< MUL ADD BNE

Forwarded data considered as instruction input:

* Allow operand taint to propagate if instruction
reads from forwarded data

58

Declassification of Architectural Paths

CPU + taint logic X
REGISTERS ¢ P
Instruction “esrny nop Jaddi] csrrw | jalr

E&——

l buffer

clock

No other microarchitectural flows are blocked

59

Ve I’Ifled Microcontroller-class, in-order CPUs

RISC-V
CPUs Scary

usedin Zk scalar
i‘} Opentitan Crypto
Root-of-Trust extensions
State bits 3.2k 2.0k 2.5k 2.3k

Net bits 1.6k 1.4k 4.6k 6.7k

60

Verified
RISC-V

Microcontroller-class, in-order CPUs

@
C P US owRIse Scarv
Ibex
PicoRV32)
usedin Zk scalar
1 opentitan crypto
Root-of-Trust extensions
State bits 3.2k 2.0k 2.5k 2.3k
Net bits 1.6k 1.4k 4.6k 6.7k
Cell- IFT/DFT IFT/DFT IFT/DFT IFT/DFT
< time to PROVE 17 h/8m 16m / 30s 9h/10m 14.5h /50 m
D time to FAIL 1Th/8m 37s/15s 2h/3m 11m/34m

Model checker: Cadence Jasper Formal Property Verification App

61

Verified
RISC-V

Microcontroller-class, in-order CPUs

D
C P U S oRIse Scarv
Ibex
PicoRV32)
usedin Zk scalar
1 opentitan crypto
Root-of-Trust extensions
State bits 3.2k 2.0k 2.5k 2.3k
Net bits 1.6k 1.4k 4.6k 6.7k
Cell- IFT/DFT IFT/DFT IFT/DFT IFT/DFT
< time to PROVE 17h/8m 16m/ 30s 9h/10m 14.5h /50 m
< time to FAIL 1h/8m 37s/15s 2h/3m 11Tm/34m
PROVEN instructions | 38 25 27 38 + all crypto instr.
| 3 (documented) 8 14 3 (known)

VULNERABLE
instructions ' ;;

62

New Discovered Security Vulnerabilities

Constant time violation:

CVE-2023-51974

Architectural control flow

csrrw| nop Jaddi esrrw| jalr > Two control-flow hijacks:
CVE-2023-51973
Microarchitectural control flow
30 CVE-2024-44927
. . _
csrrw| nop Jaddi fcsrrw| jalr
LT L L L L
clock —
reg:'l _ T\
>

csrrw| nop Jaddif csrrw jalr

New Discovered Security Vulnerabilities

Constant time violation:

CVE-2023-51974

Architectural control flow Two control-flow hijacks: Constant time violation + data leakage:

csrrw| nop Jaddi fesrrw| jalr CVE-2023-51973 CVE-2024-28365

CVE-2024-44927

Microarchitectural control flow

reg:0 " ™\

csrrw| nop Jaddi fcsrrw| jalr

-

64

Conclusion

* Introduced and formalized a generalized CPU security property

HCFI - Microarchitectural Control-flow Integrity

65

Conclusion

* Introduced and formalized a generalized CPU security property

HCFI - Microarchitectural Control-flow Integrity

 Automated verification method & implementation
* 4 open-source RISC-V CPUs verified
* Discovered 5 new vulnerabilities - 4 CVEs

66

. CPPYER ETH:lirich
Conclusion

* Introduced and formalized a generalized CPU security property

HCFI - Microarchitectural Control-flow Integrity

 Automated verification method & implementation
* 4 open-source RISC-V CPUs verified

e Discovered 5 new vulnerabilities - 4 CVEs

Video:
https://www.youtube.co
m/watch?v=Kxp-
SkNMt40&t

Information: Code:

Contact:
m, https://www.linkedin.com/in/katharina-ceesay-seitz-ba521087/
X @K_Ceesay-Seitz, @FlavienSolt

AT il
n"la- _.:-'. E ol -

https://comsec.ethz.ch/) comsec-group/mucfi M kceesay@ethz.ch, flavien.solt@eecs.berkeley.edu

67

mailto:kceesay@ethz.ch
mailto:flavien.solt@eecs.berkeley.edu

Taint Start Condition

Update Condition Yosys Pass

Read-from Condition = the condition in which a signal is
updated with a chosen signal's value.

Taint start

Operand's register
data read signal

Condition in which
the operand's register
data read signal is updated

/ with register data

———

Register file name

yosys update condition -read-from-signals "cpuregs" -signal name "cpuregs rsl"

CPU code (PicoRV32): Generated Read-from Condition:
always @* begin bit gen regrd rsl;

decoded rs = 'bx; .
if (ENABLE_REGS DUALPORT asslign gen regrd rsl =

RISCV FORMAL BLACKROX_BEGS ((| decoded rsl));

cpuregs rsl = decoded rslf? cpuregs[decoded rsl] : 0;
cpuregs rs2 = decoded rsZ ? cpuregs[decoded rs2] : 0;

7

69

Taint Stop Condition

Update Condition Yosys Pass

Taint stop
Operand's register

_
data read signal

Condition in which
the read data MAY be new

For example:

* enable condition of a flip flop

e "1"(True) for continuous
assignments

70

Precise Taint Injection Conditions

Instruction
G Sample Instruction Word (IW) in Under
formal setup Verification

MUL | ADD BNE

start

@ IW == UV and taint start condition E;:intially start stop
multiple @ taint @
times per < =
stop instruftion
@ Taint stop condition l - Controlled taint injection per instruction

Simple & precise
counter examples

71

Update Condition (UC) / Read-from Condition (RC)
Yosys Pass

) a,b ... other internal signals
S ... signal

'‘past’ = custom attribute

UC(s) = UC(a)

o &7 2 UC(s)=past (UC(a))

S = multiplexer(condition, a, b)

UC(s) = condition && UC(a) || !condition && UC(b)

& UC(s) = past(enable && (UC(a))

72

Find Forwarding Multiplexer Yosys Pass

* Automatically identifies forwarding multiplexers

* Checks declassification precondition: all
outgoing paths of declassified signals reach
another declassified signal or data source
without passing PC

1. Traverse outgoing paths of
forwarded data output and
check declassification
precondition

2. Ifamuxuses forwarded data

output, back-traverse

multiplexers' other input's
driving logic.

Is it directly assigned with

operand's register data read

\ i i signal?
instruction . .
Operand's register X input data o No: continue at mux

data read signal X output
o Yes: Forwarding mux

found X --> return mux
select signal

forwarded 3.
data output

mux = multiplexer ’°

Taint Injection Assumptions

clk |

start_condition a \ /

IS
—
.-’""...‘

stop_condition _," L_\G :

taint_optional E /_\ 1) 3
tainted once = no ta;irlﬂ start taint_ste{q’asserted no talirl1t start
taint_start * ?T\ *
taint_stop m :
taint_active H

taint_source %mé‘

74

Introducing
HCFI - Microarchitectural Control-flow Integrity

Microarchitectural control flow (UCF) UCFI only allows
___________ | explicitly ISA specified
Program data dependencies
Counter 0x80000004 0x80000008 0x80001000 of the |JCF

(PC)

W

ISA = Instruction Set Architecture 75

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Formal Property Verification
	Slide 7: Formal Property Verification
	Slide 8: Formal Property Verification
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Formal Verification of Information Flow
	Slide 27: CellIFT Yosys [1] pass
	Slide 28: CellIFT
	Slide 29: CellIFT
	Slide 30: Formal Verification of Information Flow
	Slide 31: Formal Verification of Information Flow
	Slide 32: Formal Verification of Information Flow
	Slide 33: Formally Verifying µCFI
	Slide 34: Formally Verifying µCFI
	Slide 35: Formally Verifying µCFI
	Slide 36: Instruction Classification
	Slide 37: Instruction Classification
	Slide 38: Instruction Classification
	Slide 39: CellIFT
	Slide 40: CellDFT – Data Flow Tracking
	Slide 41: CellDFT – Data Flow Tracking
	Slide 42: Instruction classification
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Identifying Insecure Instructions
	Slide 48: Identifying Insecure Instructions
	Slide 49: Identifying Insecure Instructions
	Slide 50: Identifying Insecure Instructions
	Slide 51: Identifying Insecure Instructions
	Slide 52: Precise Taint Injection
	Slide 53: Precise Taint Injection
	Slide 54: Precise Taint Injection
	Slide 55: Declassification of Architectural Paths
	Slide 56: Declassification of Architectural Paths
	Slide 57: Declassification of Architectural Paths
	Slide 58: Tracking Forwarded Data
	Slide 59: Declassification of Architectural Paths
	Slide 60: Verified RISC-V CPUs
	Slide 61: Verified RISC-V CPUs
	Slide 62: Verified RISC-V CPUs
	Slide 63
	Slide 64
	Slide 65: Conclusion
	Slide 66: Conclusion
	Slide 67: Conclusion
	Slide 68
	Slide 69: Taint Start Condition Update Condition Yosys Pass
	Slide 70: Taint Stop Condition Update Condition Yosys Pass
	Slide 71: Precise Taint Injection Conditions
	Slide 72: Update Condition (UC) / Read-from Condition (RC) Yosys Pass
	Slide 73: Find Forwarding Multiplexer Yosys Pass
	Slide 74: Taint Injection Assumptions
	Slide 75

