Testing and verifying
the tools of hardware
design

John Wickerson
Imperial College London

joint work with Yann Herklotz, Michalis Pardalos, Quentin Corradi,
George Constantinides, Alastair Donaldson, Emiliano Morini, and Laura Pozzi

Verification Futures Conference
01 July 2025



John Wickerson Towards more reliable EDA tools

Some EDA tools

ASIC or FPGA
high-level

SIS Verilog RTL

C program
logic

synthesis
equivalence

checker Verilog

netlist

All these tools are too buggy. With
more rigorous engineering, they can
be made more suitable for safety- and
security-critical settings.




John Wickerson Towards more reliable EDA tools

Some EDA tools

=

—

“ high-level
SR Verilog RTL

ASIC or FPGA

logic
synthesis

equivalence

checker Verilog

netlist

Yann Herkloty &

All these tools are too buggy. With
more rigorous engineering, they can

be made more suitable for safety- and
security-critical settings.




John Wickerson Towards more reliable EDA tools

High-level synthesis

1 module main(reset, clk, finish, return_val);
2 input [0:0] reset, clk;
3 output reg [0:0] finish = 0;
4 output reg [31:2] return_val = 0;
. . 5 reg [31:0] reg_3 = 0, addr = 0, d_in = 0, reg_5 = 0, wr_en = 0;
1 int main() { 6 reg [0:0] en = 0, u_en = 0;
. 7 reg [31:0] state = 0, reg_2 = 0, reg_4 = 0, d_out = 0, reg_1 = 0;
2 int X[2] = {3, 6}, 8 reg [31:0] stack [1:0];
. . 9 // RAM interface
3 int 1 = 1, 10 always @(negedge clk)
. 11 if ({u_en !'= en}) begin

4 return X[l] . 12 if (wr_en) stack[addr] <= d_in;
13 else d_out <= stack[addr];

5 }' 14 en <= u_en;
15 end
16 // Data-path
17 always @(posedge clk)
18 case (state)
19 32'd11: reg_2 <= d_out;
20 32'd8: reg_5 <= 32'd3;
21 32'd7: begin u_en <= ( ~ u_en); wr_en <= 32'd1l;
22 d_in <= reg_5; addr <= 32'd0; end
23 32'd6: reg_4 <= 32'd6;
24 32'd5: begin u_en <= ( ~ u_en); wr_en <= 32'dl;
25 d_in <= reg_4; addr <= 32'dl; end
26 32'd4: reg_1 <= 32'd1;
27 32'd3: reg_3 <= 32'do;
28 32'd2: begin u_en <= ( ~ u_en); wr_en <= 32'do;
29 addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4}; end
30 32'd1: begin finish = 32'd71; return_val = reg_2; end
31 default: ;
32 endcase
33 // Control logic
34 always @(posedge clk)
35 if ({reset == 32'd1}) state <= 32'd8;
36 else case (state)
37 32'd11: state <= 32'd1; 32'd4: state <= 32'd3;
38 32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
39 32'd7: state <= 32'd6; 32'd2: state <= 32'd11;
40 32'd6: state <= 32'd5; 32'd1:
41 32'd5: state <= 32'd4; default: ;
42 endcase

43 endmodule



John Wickerson Towards more reliable EDA tools

Testing HLS tools

e We generated 6700 random C programs and gave them to four
HLS tools (Intel i++, Xilinx Vivado HLS, LegUp, and Bambu).

26 70

5509




John Wickerson Towards more reliable EDA tools

Some bugs in HLS tools

1 volatile unsigned int g = 0;
int a[256] = {03};
int ¢ = 0;

[—

int al2]02101] = {{{0},{13},{{9},{0}}};

w

int main() {

alo]l11L0] = 1;

c = (c & 4095) " al(c * b) & 151;
3

1=N

2
3
4
s void d(char b) {
6
7
8
9

void e(long f) {
w  d(f); d(f >> 8); d(f >> 16); d(f >> 24);
11 d(f >> 32); d(f >> 40); d(f >> 48);

This code crashes LegUp 4.0 2}

1 int main() {
s for (int 1 = 0; 1 < 56; i++)

5}

16 a[i] = i;
7 e(8);

18 e(—ZL);

19 return c;

20 }

Hardware generated
by Vivado HLS from this code
outputs the wrong value



John Wickerson Towards more reliable EDA tools

v20138.3 v2019.1 v2019.2

31

36
41 6

26



Towards more reliable EDA tools

Can we have more
reliable HLS tools?



John Wickerson Towards more reliable EDA tools

Vericert

CompCert
x86

Clight = -+ — CminorSel —» 3AC — LTL — - - aarch64
|



John Wickerson Towards more reliable EDA tools

CompCert

X386
Clight = -+ — CminorSel —» 3AC — LTL — - - aarch64
Vericert

HTL —— Verilog
NG
Isertion



John Wickerson Towards more reliable EDA tools

Correctness

e We prove the following theorem:

VC,V,B, HLS(C)=0K(V) A Safe(C) = (V| B = C | B).
e Roughly:

e 1.5 person-years of effort,

e 3k lines of implementation,

e 8k lines of Coq proof.



John Wickerson Towards more reliable EDA tools

Correctness

Beware of bugs in the above code; | have only proved it correct, not tried it.

e From executing 155267 randomly generated C programs:

40379 passes (26.00%) 114849 compile-time errors (73.97%) 39 run-time errors (0.03%)
Y Y Y

e After fixing the bug in Vericert's pretty-printer, we found 0 run-
time errors.



John Wickerson Towards more reliable EDA tools

Performance

e Measured performance using the PolyBench/C benchmark.

e 27 of the 30 programs in the benchmark are applicable (the
others use floats).

e We synthesised the designs for a Xilinx FPGA and measured
their area and running time.

e We compared against an open-source HLS tool called LegUp.



L
o
o
-+
<
a
Ll
2
O
.
IS
|-
o
S
o
S
wn
-
|-
)
2
_I

John Wickerson

Performance (1st attempt)

LegUp no-opt

LegUp no-opt no-chaining

Vericert

dn897 03 sAnyE[2I SWIT} UOTINIIXY

i

dn$8a7 03 aAnjR[RI BATY

uerpaur
L
AJOSLI}
Nihs

NgIAs
wwAs
P¢-[optes
Aourssnu
1AW
duropny

L
pz-1qooel
p1-1qodel
pe-1edy
AWwIns?a8
I2AUISS
w3
[Teysrem-pAoyj
PZ-PIPJ
urqinp
uagjiop
9JUBLIBAOD
Aysafoyd
do1q

seje

e



2
o
o

-

<

a

Ll

2

0

8

)
|-
o
S
o
£
wn

-
| -
)
2

—

John Wickerson

Performance

LegUp no-opt

LegUp no-opt no-chaining

Vericert

0 < (@] — e)
O

dn8o7 03 2AryR[AI SWIT} UOTINIIXY

<H

(N ~— "
)

dn 38971 03 aanye[ar BATY

uerpaw
L
AJOSLI}
Y1hs
NZIAs
WWAS
PZ-1op1os
Aourssnu
1AW
duwopny
L
pz-1qooef
pr-1qodel
pg-1eay
Awmnsag
I9AWRF
wureg
[Teysrem-pAoyj
PZ-PIPJ
urqInp
ua3jiop
9JUBLIBAOD
Aysafoyd
3o1q

seje

e



John Wickerson Towards more reliable EDA tools

Further reading

e Vericert is fully open-source and available on Github:

ericert

https://github.com/ymherklotz/vericert



John Wickerson

Towards more reliable EDA tools

Further reading

O0PSLA 21

Formal Verification of High-Level Synthesis

YANN HERKLOTZ, Imperial College London, UK
JAMES D. POLLARD, Imperial College London, UK

sranCcQH RAMANATHAN, Imperial College London, UK
- 1 ~allege London, UK

-£ anftware into hardware, is rapidly
TTT Q nromises




John Wickerson Towards more reliable EDA tools

Where next?

e Operation scheduling

e Resource sharing
e Constant propagation, loop pipelining, ...

e Support more of the C language as input



John Wickerson Towards more reliable EDA tools

Outline

, C or FPGA
high-level

synthesis

C program

Verilog
netlist

\ENTN I N ols are too buggy. With
pus engineering, they can
be made riore suitable for safety- and

security-critical settings.



John Wickerson Towards more reliable EDA tools

1 module top #(parameter param@ = 5'h9e23848124)
(y, clk, wire@, wirel, wire2, wire3);
// *** Declarations x*x
output wire [(5'h31):(1'h0)] y;
input wire [(1'h0):(1'h0)] clk;

2
3
4
o [ 5
6 input wire [(3'h6):(1'h@)] wire0;
O I ‘ S n e S I S 7 input wire [(4'ha): (1'h@)] wirel;
8 input wire signed [(4'ha):(1'h0)] wire2;
9

input wire [(4'hb):(1'h@)] wire3;
10 reg [(3'h2):(1'h@)] reg20 = (1'h0);
1 reg [(3'h5):(1'h@)] regl9 = (1'h0);
12 reg [(3'h4):(1'h0)] regl8 = (1'h0);
1 reg [(2'h2):(1'h0)] regl17 = (1'h0);
14 reg [(4'ha):(1'h@)] regl6 = (1'h0);

e We generated about 100,000 v sigvn T4 110 et - 113

17 wire [(2'h3):(1'h@)] wire4;

random Verilog designs. s 71 i outout o

19 assign y =

20 {reg20,reg19,reg18,regl17,regl6,regl5,wire5,wire4};
21 // *** Random module items **x

22 assign wire4 = (((~wirel) ? ((((15'h9ecc51592fdeb0o4)
23 ? reg170(5'h2):(2'h2)] : (reg18 ? wire2 : wireo))
2 ? $unsigned(((-2'ha73a956341f45c0) << regl8)) :

25 wirel[(4'ha):(3'h7)1) - regl8) :

26 reg15[(4'h9):(3'h7)1) >>> $unsigned($signed((

27 regl6[(4'ha):(3'h7)] ? ((wirel && regl6) &%

28 {regl15, regl5, wire3}) : (regl8 ? (~&wire3) :

29 (-39'ha7a1419cd4ea34a))))));

30 assign wire5 = $signed(((wire2 ? (

31 (-8'h5e411249da4f335) ? (4'hb2fa97daeaedff) :

32 wirel) : (wire4 ? wire2 : wirel)) ?

33 $signed(wire3) : ({(7'hbac46141008d14)} >>>

34 (&wire®))));

35 always @(posedge clk) begin

36 for (regl5 = (1'h@); (regl5 < (2'h2)); regls =

37 (regl5 + (1'h1))) begin

38 if (((wire3 == (~(regl6 + wirel))) >=

39 {$signed(wire@[(2'h2):(1'h2)1)3}))

40 regl6 <= ($unsigned($unsigned(wirel)) <

a1 wire3[(1'h1):(1'h1)1);

a2 else regl6 <= $unsigned(regl17[(2'h2):(2'h0)1);
43 regl7 <= wire3[(1'h@):(1'h0)];

44 end

45 regl18 <= $signed(({wire@} ~* wire3));

4% end

47 always @(posedge clk) begin
a8 if (wire3[(4'h9):(3'h6)])

49 regl9 = $signed($unsigned(wirel)) <<

50 $unsigned({wirel});

51 reg20 <= ({({(~|wire3), $unsigned(regl9)} ?

52 regl6 : regl5[(2'h2):(1'h1)1),

53 (~&((wire@ ? wire3 : regl7) ~" regl18))}

54 [| ((~&(wire3[(4'hb):(4'h9)] ? wire4 : (+wireb)))));
55 end

s endmodule




John Wickerson Towards more reliable EDA tools

Logic synthesis - results

Tool Total test cases Failing test cases Distinct failing test cases Bug reports
Yosys 0.8 26400 7164 (27.1%) >1 0
Yosys 3333e00 51000 7224 (14.2%) >4 3
Yosys 70d0£38 (crash) 11 1 (9.09%) >1 1
Yosys 0.9 26400 611 (2.31%) >1 1
Vivado 18.2 47992 1134 (2.36%) > 5 3
Vivado 18.2 (crash) 47992 566 (1.18%) 5 2
XST 14.7 47992 539 _(1.12%) > 2 0
Quartus Prime 19.2 80300 0 (0%) 0 0
Quartus Prime Lite 19.1 43 17 (39.5%) 1 0
Quartus Prime Lite 19.1 (No $signed) 137 0 (0%) 0 0




John Wickerson Towards more reliable EDA tools

Logic synthesis - example

1 module top (y, clk, wl);
2 output y;

3 input clk;

4 input signed [1:0] wil;
5 reg r1 = 1'b0;

6 assign y = ril;
7 always @(posedge clk)
3 if ({-1'b1 == wl1}) r1 <= 1'b1;

9 endmodule

Vivado incorrectly expands 1 'b1l to 2 'bl1 (should be 2"'b01)



John Wickerson

Towards more reliable EDA tools

Further reading

EPCrA 20

Finding and Understanding Bugs in FPGA Synthesis Tools

Yann Herklotz John Wickerson
yann.herklotzl S@imperial.ac.uk j.wickerson@imperial.ac.uk
Imperial College London Imperial College London

London, UK London, UK
ABSTRACT . module top (y, clk, wl);

output Y;

input clk;

input signed [1:01 wi;
reg rl = 1'b0;

All software ultimately relies on hardware functioning correctly.

3

4

5

6 assign y = rl;
7

8

9

Hardware correctness is becoming increasingly important due to
the growing use of custom accelerators using FPGAs to speed up
applications on servers. Furthermore, the increasing complexity of
hardware also leads to ever more reliance on automation, meaning
that the correctness of synthesis tools is vital for the reliability of
the hardware.

This paper aims to improve the quality of FPGA synthesis tools
by introducing a method to test them automatically using randomly
generated, correct Verilog, and checking that the synthesised netlist
is always equivalent to the original design. The main contributions
of this work are twofold: firstly 2 method for generating random
behavioural Verilog free of undefined values, and secondly a Verilog
test case reducer used to locate the cause of the bug that was found. 1 INTRODUCTION
These are irnplemented in a tool called Verismith. This paper also
provides a qualitative and quantitative analysis of the bugs found in

Yosys, Vivado, XST and Quartus Prime. Every synthesis tool except

always @(posedge clk)
if ((-1'b1 = W) 1= 1'b1;

endmodule

Figure 1: vivado bug found automatically by Verismith. Vi-
vado incorrectly expands -1 b1 to -2’ b11 instead of -2’bo1.
The bug was reported and confirmed by Xilinx."

Almost all digital computation performed in the world today re-
lies, in one way oI another, on a logic synthesis tool. Computation
Quartus Prime was found to introduce discrepancies between the spec1ﬁed in RTL passes through a logi¢ synthesis teol before being
O ] qaes . unplemented on an FPGA or an ASIC. Even designs that are ex-

.o 1o that. Vivado and a development ]
L pressed in hxgher-level languages eventually get synthes1sed down
L o executed in software is carried out on

1 ‘-‘-vnnﬂ'h 2



John Wickerson Towards more reliable EDA tools

Stability

logic
synthesis

Verilog RTL 4>‘

tiny change

logic
synthesis

Verilog RTL




John Wickerson Towards more reliable EDA tools

Stability bug

95 wire foo;
96 some;

07 other; wire w95 foo;

98 stuff; wire wl00 baz;

99 here;

100 wire baz;

95 wire foo;

70 SISy wire w95 foo;

97 other; stuff; =—p — !
wire w99 baz;

08 here; —

99 wire baz;



Towards more reliable EDA tools

Can we have more
reliable logic synthesis
tools?



Towards more reliable EDA tools

John Wickerson

Verified logic synthesis

t Imperial is building a verified logic synthesis

e Andreas LOOw a
tool in HOLA.

CPP 21
Lutsig: A Verified Verilog Compiler
for Verified Circuit Development

Andreas Loow
Chalmers University of Technology
Gothenburg, Sweden

Abstract €cosystem for software development, we find tools for the
We report on a new verified Verilog compiler called Lutsig, following development methodology: (i) prove 2 correctness
Lutsig currently targets (a class of) FPGAs and is capable of theorem about your Program at the source leve] (i) use a
producing technology Mmapped netlists for FPGAg We have verified compiler to tr ansform your Program to machine
Connected Lutsig to existing Verilog development tools, and code, and, lastly, (i) tr ansport the source-level program cor-
in this paper we show how Lutsig, as a consequence of this rectness theorem down to the generated machine code by
connection, fits into a hardware development methodology composing the source-level Program correctness theorem
for verified circuits in the HOL4 theorem prover. One im- with the compiler correctness theorem. When carried out
portant step in the methodology s transporting properties inside an ITP, the development methodology is capable of
proved at the behaviora] Verilog level down to technology producing artifacts with r emarkably small trusted computing
mapped netlists, and Lutsig is the Component in the method- bases (TCBs) [20]. For e¢xample, the verified CakeML com-
ology that enables such transportation, piler [35] and its accompanying formal methods tools hosts

such a development methodology inside the I'TP -HOT A 201
Cccs Concepts: * Hardware — Hardware description lan- b

gllages and compilationf TOooim cvoeal



John Wickerson Towards more reliable EDA tools

Outline

. ASIC or FPGA
high-level

SIS Verilog RTL

C program
logic
synthesis

Verilog
netlist

»se tools are too buggy. With
gorous engineering, they can
. e more suitable for safety- and
Michalis Pardalos ecurity-critical settings.



Towards more reliable EDA tools

Testing equivalence
checkers




John Wickerson
Towards more reliable EDA tools

Testing equivalence
checkers

EEE—

SyNoPsysS

I

Q @

the RTL design '\mp\ementat'\on

confidence that
thm, thereby s'\gn\ﬂcant\y

HECTOR delivers 100%

conforms 10 the C/C++ reference algori

speeding Up signoff for d

s'\mu\at'\on-based techniques.




John Wickerson Towards more reliable EDA tools

Testing equivalence
checkers

Jo.
&
1




John Wickerson Towards more reliable EDA tools

design 1 design 2
design2 () {
return 9;

designl () { }

int a = 3;

int b = 5; _

return a + b + 1; equiv design2 () {
} checker return 42;

}




John Wickerson Towards more reliable EDA tools

Testing equivalence
checkers

sc fixed<8,3> a = 1.5; //a == 00110000
sc_int<8> b = sc_int<8>(a); //b == 00000001 (&)

//b == 00110000 (X)



John Wickerson

Towards more reliable EDA tools

Further reading

PVCon 24
Who checks the checkers? Automatically finding
bugs 1n C-to-RTL formal equivalence checkers

Michalis Pardalos Alastair E. Donaldson Emiliano Morini
Imperial College London Imperial College London Intel O Ol
michail.pardalosl7 @ imperial.ac.uk alastair.donaldson@ imperial.ac.uk emiliano.morini@ intel.com
Laura Pozzi John Wickerson
Universita della Syizzera italiana (USI) Lugano Imperial College London
laura.pozzi@usi.ch j.wickerson@imperial.ac.uk

Abstract—C-to-RTL (register-transfer Jevel) formal equivalence check- found great success at uncovering bugs in many different tools, SU
er: (ECs) a“:)ﬁw hardw;n; nikmsplem;ntations :0 be compared against —as state-of-the-art C compilers [25, 15], graphics shader compilers [3]
software speci cations. 1ha to their complete state-space coverage, . .

ECs are trusted to authorise design sign-off. Therefore, ridding ECs of and O%CnCIG compll.erg Ugé : lghoughhfuizmg fl;as .not, g) d(.)ur
bugs is a top priority. In pursuit of this goal, we have developed Equifuzz, knowl.e ge, been applied to ELS efore, it has been © ective atTin mg
a technique and tool for randomized testing (fuzzing) of SystemC-to-RTL bugs in other tools from the EDA realm, such as FPGA synthesis
ECs. Equifuzz uses knowledge Of.SyStemC Sefll_ilntics to generate rich tools [8] and high-level synthesis tools [6]. Fuzzing has also been
designs that are known to be ‘fq““’a,le“t to trivial RTL designs. It has  ysed to find bugs in verification tools other than ECs, such as SMT
uncovered 7 unsoundness bugs 1 major commercial ECs (where the EC

claimed eq ivalence incorrectly), and 5 incompleteness bugs (where the solvers [24] and software Ipodel checke.rs [26]. .
EC failed to prove equivalence between equivalent designs), all of which We have developed Equifuzz: a technique and tool for randomized

have been confirmed by the tool vendors. The fact that Equifuzz has testing of ECs that compare RTL implementations against SystemC
been able to find serious bugs in extensively tested, major commercial speciﬁcations. We focus on SystemC because it is accepted by the

ECs demonstrates that fuzzing is 2 valuable complement to the hand- . . - .
three major commercial ECs, and often used by their industrial users.

crafted tests that EC developers use as standard. ) .
Equifuzz works by generating random SystemC programs. These are
I. INTRODUCTION then compared (using the EC-under-test) against trivial RTL designs
e anch as Synopsys that are known to be equivalent. We record a potential bug if the EC
. than “equivalent’.

e le<r -1nrnverin2 16



Towards more reliable EDA tools

Can we have more
reliable equivalence
checkers?



John Wickerson

Towards more reliable EDA tools

Vera

e An equivalence checker built and proven-correct in Cogq.

e Reduces the equivalence problem to an SMT query and uses

SMTCoq to solve it.

e Preliminary results on
the EPFL benchmarks are
encouraging (44 out of

60 verify within a few
minutes).

o A subtlety: undefined
behaviour.

Number of benchmarks remaining

45 |-

40
35
30
25
20
15
10

oS

S X O NN DA
S PP S P So

Time elapsed (seconds)




John Wickerson Towards more reliable EDA tools

Outline

ASIC or FPGA
high-level

SIS Verilog RTL

C program
logic

synthesis
equivalence

checker Verilog

netlist

All these tools are too buggy. With
more rigorous engineering, they can
be made more suitable for safety- and
security-critical settings.




