
VeriCHERI: Exhaustive
Formal Security Verification
of CHERI
at the RTL

Verification Futures Conference UK - 2025

Speaker: Johannes Müller

Joint work with: Anna Duque Antón, Philipp Schmitz, Tobias Jauch, Alex Wezel,
Lucas Deutschmann, Mo Fadiheh, Dominik Stoffel and Wolfgang Kunz

Motivation

2

> Memory protection mechanisms are a key ingredient for security of the entire system stack.

> Capability Hardware Enhanced RISC Instructions (CHERI) is a promising candidate.

> CHERI is gaining traction in industry:

> ARM taped out a CHERI enhanced processor “Morello”

> Microsoft actively develops CHERI enhanced IoT processor “CHERIoT Ibex”

> Codasip includes CHERI in RISC-V processor

> Open-Source RISC-V processor designs implementing CHERI are available

→ Security verification of CHERI designs is needed,
but creating trust for the entire system stack is challenging.

Motivation

3

Related verification approaches:

> Verified security properties on a formal ISA model with an effort of 3-4 person years [1], [2]

> Manually translated a subset of the formal ISA model into SVA properties and
verified them on the HW [3]

> Introduced a reference model for the formal ISA model in RTL and
verified observational correctness of the HW [4]

→ Security verification based on a time-abstract ISA model misses non-functional security
vulnerabilities like timing side channels.

Our goal:
Prove global security objectives (confidentiality, integrity) on the timing-accurate RTL
implementation.

[1] Grisenthwaite et al., The Arm Morello Evaluation Platform–Validating CHERI-Based Security in a High-Performance System, 2023, IEEE Micro
[2] Nienhuis et al., Rigorous engineering for hardware security: Formal modelling and proof in the CHERI design and implementation process, 2020, IEEE S&P
[3] Gao et al., End-to-end formal verification of a risc-v processor extended with capability pointers, 2021, IEEE FMCAD
[4] Ploix et al., Comprehensive Formal Verification of Observational Correctness for the CHERIoT-Ibex Processor, 2025, arxiv preprint

CHERI Protection

4

> CHERI enhances RISC ISAs with fine-grained memory
protection implemented in HW

> Capabilities extend classical address pointers (plain
integers) with address bounds, access permissions, a valid
tag and an object type

> Legal memory accesses require

> valid capabilities that hold

> corresponding permissions and

> whose bounds include the accessed address

> … Memory

0x10001000

Lower bound

Upper bound

R/W/X, type, …

CHERI
capability

CHERI Protection

5

> ISA is extended by additional instructions for manipulating capabilities.

> Capability manipulations also require valid capabilities with the correct permissions

> Capability Monotonicity: new capabilities must not exceed the access rights

→ HW needs to accommodate for

> Additional CHERI instructions and

> Access control checks, and for

> Storing capabilities in the register file and memory

Attacker Model

6

We assume:

> A capability-enhanced single-core processor with memory for instructions and data.

> The processor executes mutually distrusting tasks
including an attacker task and

> A trusted entity (e.g., OS or hypervisor) to securely manage context switches between tasks.

Processor Memory

trusted

Formal Model: Modeling HW

7

> HW consists of a processor and memory modeled as FSM:
(S, S0, I, O, λ, σ)

> FSM states in S are valuations to state variables (state-holding RTL signals).
We denote by Z the set of all state variables. Z comprises:
> P : all state variables belonging to the processor

> M: all state variables belonging to the memory

Processor MemoryP M

Z

Formal Model: Modeling HW

8

> For any task running on the processor,
M can be divided into:
> Mpub : all state variables in the memory

accessible to the current task

> Mprot: all state variables in the memory
protected from the current task

> Compartmentalization of M into Mpub and Mprot
is enforced by CHERI capabilities

Mprot

accessible

accessible

protected

protected

protected

Mpub

Memory

In our model, two tasks only differ
in the compartmentalization of
M into Mpub and Mprot

Formal Model: Security Objective

9

Our goal:
Prove global security objectives (confidentiality, integrity)
on the timing-accurate RTL implementation.

We model confidentiality and integrity objectives using non-interference.

> Strong formulation of security

> Well known and widely adapted

Formal Model: Non-interference

10

P Mpub Mprot

low high

P’ M’pub M’prot

= = (≠)

P Mpub Mprot

P’ M’pub M’prot

low high

= =

Formal Model: CTL properties

11

Confidentiality non-interference CTL property for our threat model:

AG($Mpub = $M’pub ∧ $P = $P’
→ AG($Mpub = $M’pub ∧ $P = $P’))

Integrity non-interference CTL property for our threat model:

AG($Mprot = $M’prot → AG($Mprot = $M’prot))

Notations:

$M: set of values assigned to
variables in M

M’ : state set M from second
instance of same design

Formal Model: Challenges

12

Proving the two CTL non-interference properties poses two main challenges:

1. Modeling Mpub and Mprot for RTL designs, i.e.,
dividing of memory into public and protected locations in terms of CHERI capabilities

2. Covering all possible tasks, i.e.,
modeling all possible divisions of memory locations into Mpub and Mprot

Formal Model: Reduction to 1-safety

13

Our key ideas to overcome these challenges:

> We model Mpub and Mprot by their addresses:
Violation of CTL properties is only possible if processor makes a memory access to Mprot

Integrity non-interference CTL-property:

AG($Mprot = $M’prot → AG($Mprot = $M’prot))

Confidentiality non-interference CTL-
property:

AG($Mpub = $M’pub ∧ $P = $P’

→ AG($Mpub = $M’pub ∧ $P = $P’))

→Memory read access to Mprot →Memory write access to Mprot

Formal Model: Modeling HW

14

> We introduce a new symbolic address that can be
chosen freely by the solver.

> We introduce a new macro
cheri_protected(symbolic_addr), which constrains
all capabilities available to an attacker task

> Constrained capabilities are fully symbolic, except

> They deny access to the symbolic address.

→ This is how we model all possible divisions into
Mpub and Mprot and thus all possible attacker tasks.

Memory

Symbolic
address

protected

accessible/
protected

accessible/
protected

Formal Model: Reduction to 1-safety

15

Confidentiality 1-safety property:

AG(cheri_protected(symbolic_addr) → (read_mem_access → mem_addr ≠ symbolic_addr))

Confidentiality interval property:

t : cheri_protected(symbolic_addr)

implies

t: !read_mem || mem_addr != symbolic_addr

The property describes behavior in a single clock cycle

→ Scalable proofs

Formal Model: Reduction to 1-safety

16

Integrity 1-safety property:

AG(cheri_protected(symbolic_addr) → (write_mem_access → mem_addr ≠ symbolic_addr))

Integrity interval property:

t : cheri_protected(symbolic_addr)

implies

t: !write_mem || mem_addr != symbolic_addr

Formal Model: Proving Monotonicity

17

Capability Monotonicity is a fundamental concept and invariant used in CHERI:

> Access permissions can only ever decrease.

Monotonicity interval property:

t : cheri_protected(symbolic_addr)

implies

t+1: cheri_protected(symbolic_addr)

Integrity interval property:

t : cheri_protected(symbolic_addr)

implies

t: !write_mem ||

mem_addr != symbolic_addr

Formal Model: UPEC-CHERI

18

What if the confidentiality 1-safety property fails?

> Protected data propagates to state variables of the processor P

> But: not all state variables in the processor are visible to an attacker task

> We define the subset:

> Parch ⊆ P : all architectural state variables in the processor, i.e., state variables visible to an attacker task

Confidentiality non-interference CTL
property:

AG($Mpub = $M’pub ∧ $P = $P’

→ AG($Mpub = $M’pub ∧ $P = $P’))

Formal Model: UPEC-CHERI

19

Less conservative non-interference CTL-property for confidentiality:

AG($Mpub = $M’pub ∧ $P = $P’

→ AG ($Parch = $P’arch))

→ Reformulation of UPEC for our threat model

Confidentiality non-interference CTL
property:

AG($Mpub = $M’pub ∧ $P = $P’

→ AG($Mpub = $M’pub ∧ $P = $P’))

Formal Model: UPEC-CHERI

20

UPEC-CHERI interval property:

t : cheri_protected(symbolic_addr)

t : $Mpub == $M’pub && $P == $P’

implies

t+n: $Parch == $P’arch

Specific reformulation of UPEC for a symbolic attacker task:

> Property assumes cheri_protected(symbolic_addr)

> Property covers all breakout Transient Execution Attacks
(but does not target poisoning attacks)

Less conservative confidentiality
non-interference CTL property:

AG($Mpub = $M’pub ∧ $P = $P’

→ AG ($Parch = $P’arch))

Formal Model: UPEC-CHERI

21

What if the integrity 1-safety property fails?

> After a write access to Mprot enters the memory, integrity is violated

→ 1-safety property is sufficiently precise

Integrity non-interference CTL property:

AG($Mprot = $M’prot → AG($Mprot = $M’prot))

VeriCHERI Flow

22

Case Study: CHERIoT Ibex Processor

23

CHERIoT Ibex implements a variant of RISC-V CHERI tailored to IoT and real-time
applications

Source: https://github.com/microsoft/cheriot-ibex

Case Study: CHERIoT Ibex Processor

24

Case Study: CHERIoT Ibex Processor

25

UPEC-CHERI detected a vulnerability to a potential Transient Execution Attack:

> Branch to address outside of PCC bounds

> Illegal instruction fetch raises an exception

> Exception execution is delayed depending on two bits of the fetched data

> Performance counter change depending on the two bits

→By measuring the (overall) execution time, or reading the performance counter
an attacker can probe the two bits for an arbitrary protected address

Conclusion

26

> VeriCHERI detected several security issues including a vulnerability to a
Transient Execution Attack, which is not detectable by previous methods

> Formulating the security objective as single-cycle interval properties allows us to
introduce a scalable iterative verification flow

> The developed invariants are implemented as symbolic verification IPs which
may be reused for similar designs

	Slide 1
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: CHERI Protection
	Slide 5: CHERI Protection
	Slide 6: Attacker Model
	Slide 7: Formal Model: Modeling HW
	Slide 8: Formal Model: Modeling HW
	Slide 9: Formal Model: Security Objective
	Slide 10: Formal Model: Non-interference
	Slide 11: Formal Model: CTL properties
	Slide 12: Formal Model: Challenges
	Slide 13: Formal Model: Reduction to 1-safety
	Slide 14: Formal Model: Modeling HW
	Slide 15: Formal Model: Reduction to 1-safety
	Slide 16: Formal Model: Reduction to 1-safety
	Slide 17: Formal Model: Proving Monotonicity
	Slide 18: Formal Model: UPEC-CHERI
	Slide 19: Formal Model: UPEC-CHERI
	Slide 20: Formal Model: UPEC-CHERI
	Slide 21: Formal Model: UPEC-CHERI
	Slide 22: VeriCHERI Flow
	Slide 23: Case Study: CHERIoT Ibex Processor
	Slide 24: Case Study: CHERIoT Ibex Processor
	Slide 25: Case Study: CHERIoT Ibex Processor
	Slide 26: Conclusion

