
VeriCHERI: Exhaustive 
Formal Security Verification 
of CHERI
at the RTL

Verification Futures Conference UK - 2025

Speaker: Johannes Müller

Joint work with: Anna Duque Antón, Philipp Schmitz, Tobias Jauch, Alex Wezel, 
Lucas Deutschmann, Mo Fadiheh, Dominik Stoffel and Wolfgang Kunz



Motivation

2

> Memory protection mechanisms are a key ingredient for security of the entire system stack.

> Capability Hardware Enhanced RISC Instructions (CHERI) is a promising candidate.

> CHERI is gaining traction in industry:

> ARM taped out a CHERI enhanced processor “Morello”

> Microsoft actively develops CHERI enhanced IoT processor “CHERIoT Ibex”

> Codasip includes CHERI in RISC-V processor

> Open-Source RISC-V processor designs implementing CHERI are available 

→ Security verification of CHERI designs is needed,
but creating trust for the entire system stack is challenging.
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Related verification approaches:

> Verified security properties on a formal ISA model with an effort of 3-4 person years [1], [2]

> Manually translated a subset of the formal ISA model into SVA properties and
verified them on the HW [3]

> Introduced a reference model for the formal ISA model in RTL and 
verified observational correctness  of the HW [4]

→ Security verification based on a time-abstract ISA model misses non-functional security 
vulnerabilities like timing side channels.

Our goal:
Prove global security objectives (confidentiality, integrity) on the timing-accurate RTL 
implementation.

[1] Grisenthwaite et al., The Arm Morello Evaluation Platform–Validating CHERI-Based Security in a High-Performance System, 2023, IEEE Micro
[2] Nienhuis et al., Rigorous engineering for hardware security: Formal modelling and proof in the CHERI design and implementation process, 2020, IEEE S&P
[3] Gao et al., End-to-end formal verification of a risc-v processor extended with capability pointers, 2021, IEEE FMCAD
[4] Ploix et al., Comprehensive Formal Verification of Observational Correctness for the CHERIoT-Ibex Processor, 2025, arxiv preprint
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> CHERI enhances RISC ISAs with fine-grained memory 
protection implemented in HW

> Capabilities extend classical address pointers (plain 
integers) with address bounds, access permissions, a valid 
tag and an object type

> Legal memory accesses require

> valid capabilities that hold

> corresponding permissions and

> whose bounds include the accessed address

> … Memory

0x10001000

Lower bound

Upper bound

R/W/X, type, …

CHERI
capability
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> ISA is extended by additional instructions for manipulating capabilities.

> Capability manipulations also require valid capabilities with the correct permissions

> Capability Monotonicity: new capabilities must not exceed the access rights

→ HW needs to accommodate for

> Additional CHERI instructions and

> Access control checks, and for

> Storing capabilities in the register file and memory
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We assume:

> A capability-enhanced single-core processor with memory for instructions and data.

> The processor executes mutually distrusting tasks 
including an attacker task and

> A trusted entity (e.g., OS or hypervisor) to securely manage context switches between tasks.

Processor Memory

trusted
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> HW consists of a processor and memory modeled as FSM:
(S, S0, I, O, λ, σ)

> FSM states in S are valuations to state variables (state-holding RTL signals).
We denote by Z the set of all state variables. Z comprises:
> P : all state variables belonging to the processor

> M: all state variables belonging to the memory

Processor MemoryP M

Z
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> For any task running on the processor,
M can be divided into:
> Mpub : all state variables in the memory

accessible to the current task

> Mprot: all state variables in the memory
protected from the current task

> Compartmentalization of M into Mpub and Mprot
is enforced by CHERI capabilities

Mprot

accessible

accessible

protected

protected

protected

Mpub

Memory

In our model, two tasks only differ 
in the compartmentalization of
M into Mpub and Mprot
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Our goal:
Prove global security objectives (confidentiality, integrity)
on the timing-accurate RTL implementation.

We model confidentiality and integrity objectives using non-interference.

> Strong formulation of security

> Well known and widely adapted
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P Mpub Mprot

low high

P’ M’pub M’prot

= = (≠)

P Mpub Mprot

P’ M’pub M’prot

low high

= =



Formal Model: CTL properties

11

Confidentiality non-interference CTL property for our threat model:

AG( $Mpub = $M’pub ∧ $P = $P’
→  AG($Mpub = $M’pub ∧ $P = $P’) )

Integrity non-interference CTL property for our threat model:

AG( $Mprot = $M’prot → AG($Mprot = $M’prot) )

Notations:

$M: set of values assigned to 
variables in M

M’ : state set M from second 
instance of same design
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Proving the two CTL non-interference properties poses two main challenges:

1. Modeling Mpub and Mprot for RTL designs, i.e.,
dividing of memory into public and protected locations in terms of CHERI capabilities

2. Covering all possible tasks, i.e.,
modeling all possible divisions of memory locations into Mpub and Mprot
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Our key ideas to overcome these challenges:

> We model Mpub and Mprot by their addresses:
Violation of CTL properties is only possible if processor makes a memory access to Mprot

Integrity non-interference CTL-property:

AG( $Mprot = $M’prot →  AG($Mprot = $M’prot ) )

Confidentiality non-interference CTL-
property:

AG( $Mpub = $M’pub ∧ $P = $P’

→  AG($Mpub = $M’pub ∧ $P = $P’) )

→Memory read access to Mprot →Memory write access to Mprot
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> We introduce a new symbolic address that can be 
chosen freely by the solver.

> We introduce a new macro 
cheri_protected(symbolic_addr), which constrains 
all capabilities available to an attacker task

> Constrained capabilities are fully symbolic, except

> They deny access to the symbolic address.

→ This is how we model all possible divisions into
Mpub and Mprot and thus all possible attacker tasks.

Memory

Symbolic
address

protected

accessible/
protected

accessible/
protected
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Confidentiality 1-safety property:

AG( cheri_protected(symbolic_addr) → (read_mem_access → mem_addr ≠ symbolic_addr) )

Confidentiality interval property:

t : cheri_protected(symbolic_addr)

implies

t: !read_mem || mem_addr != symbolic_addr

The property describes behavior in a single clock cycle

→ Scalable proofs
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Integrity 1-safety property:

AG( cheri_protected(symbolic_addr) → (write_mem_access → mem_addr ≠ symbolic_addr) )

Integrity interval property:

t : cheri_protected(symbolic_addr)

implies

t: !write_mem || mem_addr != symbolic_addr
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Capability Monotonicity is a fundamental concept and invariant used in CHERI:

> Access permissions can only ever decrease.

Monotonicity interval property:

t  : cheri_protected(symbolic_addr)

implies

t+1: cheri_protected(symbolic_addr)

Integrity interval property:

t : cheri_protected(symbolic_addr)

implies

t: !write_mem ||

mem_addr != symbolic_addr
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What if the confidentiality 1-safety property fails?

> Protected data propagates to state variables of the processor P

> But: not all state variables in the processor are visible to an attacker task

> We define the subset:

> Parch ⊆ P : all architectural state variables in the processor, i.e., state variables visible to an attacker task

Confidentiality non-interference CTL 
property:

AG( $Mpub = $M’pub ∧ $P = $P’

→  AG($Mpub = $M’pub ∧ $P = $P’ ) )
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Less conservative non-interference CTL-property for confidentiality:

AG($Mpub = $M’pub ∧ $P = $P’

→ AG ($Parch  = $P’arch )  )

→ Reformulation of UPEC for our threat model

Confidentiality non-interference CTL 
property:

AG( $Mpub = $M’pub ∧ $P = $P’

→  AG($Mpub = $M’pub ∧ $P = $P’ ) )
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UPEC-CHERI interval property:

t  : cheri_protected(symbolic_addr)

t  : $Mpub == $M’pub && $P == $P’ 

implies

t+n: $Parch == $P’arch

Specific reformulation of UPEC for a symbolic attacker task:

> Property assumes cheri_protected(symbolic_addr)

> Property covers all breakout Transient Execution Attacks
(but does not target poisoning attacks)

Less conservative confidentiality
non-interference CTL property:

AG( $Mpub = $M’pub ∧ $P = $P’

→ AG ($Parch  = $P’arch )  )
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What if the integrity 1-safety property fails?

> After a write access to Mprot enters the memory, integrity is violated

→ 1-safety property is sufficiently precise

Integrity non-interference CTL property:

AG( $Mprot = $M’prot →  AG($Mprot = $M’prot ) )



VeriCHERI Flow
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CHERIoT Ibex implements a variant of RISC-V CHERI tailored to IoT and real-time 
applications

Source: https://github.com/microsoft/cheriot-ibex
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UPEC-CHERI detected a vulnerability to a potential Transient Execution Attack: 

> Branch to address outside of PCC bounds

> Illegal instruction fetch raises an exception

> Exception execution is delayed depending on two bits of the fetched data

> Performance counter change depending on the two bits

→By measuring the (overall) execution time, or reading the performance counter
an attacker can probe the two bits for an arbitrary protected address
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> VeriCHERI detected several security issues including a vulnerability to a 
Transient Execution Attack, which is not detectable by previous methods

> Formulating the security objective as single-cycle interval properties allows us to 
introduce a scalable iterative verification flow

> The developed invariants are implemented as symbolic verification IPs which 
may be reused for similar designs
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