
Bio-inspired CODECs using steganography

Dr Pedro Machado, pedro.machado@ntu.ac.uk, Nottingham Trent University, Nottingham, UK

Dr Isibor Kennedy, Ihianle Isibor.ihianle@ntu.ac.uk, Nottingham Trent University, Nottingham,

UK

Dr Andreas Oikonomou, andreas.oikonomou@ntu.ac.uk, Nottingham Trent University,

Nottingham, UK

Dr Srinivas Boppu, srinivas@iitbbs.ac.in, Indian Insitute of Technology Bhubaneswar,

Bhubaneswar – India

Dr Minoru Motoki, motoki@kumamoto-nct.ac.jp, National Institute of Technology (KOSEN) -

Kumamoto College, Kumamoto – Japan

▪ Overview

▪ Related work

▪ Methodology

▪ Results Analysis

▪ Conclusion and Future Work

Outline

23/06/2025

▪ Can we transmit sound embedded in the image?

Why/How?

• Consider underwater communication. Wireless signals are limited there.
Images could carry sound.

• Also, think about raster plots. They are hard to read. Embedding sound might
make them clearer.

Hypothesis

23/06/2025

Overview

⚫ Spiking Neural Networks (SNNs) are a type of
artificial neural network that more closely mimics
the way biological neurons in the brain
communicate through discrete electrical pulses
called spikes.

⚫ Unlike traditional neural networks that process
continuous values, SNNs leverage the timing of
these spikes to encode and process information,
making them potentially more power-efficient and
adept at handling tasks involving temporal data.

SNN Concepts
• Event-Driven Processing: Unlike traditional ANNs that process all data simultaneously, SNNs are event-driven.

They only fire neurons when a significant change or "spike" occurs in the input, naturally leading to sparse data
representation.

• Spike-Timing Dependent Plasticity (STDP): SNNs can utilise STDP, a biologically inspired learning rule, to
learn relevant temporal patterns and prioritise information. Allows the network to become highly efficient at
encoding only the most salient features.

• Remote Supervised Method (ReSuMe): upervised learning approach for SNNs that enables them to learn
precise spatio-temporal spike patterns by integrating spike-based Hebbian learning with a novel remote
supervision concept.

• Efficient Information Representation: Information is encoded in the precise timing of spikes, rather than
continuous values. Allows for a much more compact representation of data, as a single spike or a few spikes can
convey a significant amount of information.

• Bio-Inspired Compression: By mimicking the brain's energy-efficient and event-driven processing, SNNs offer a
novel paradigm for data compression that inherently focuses on dynamic information, potentially leading to highly
efficient encoding for media.

⚫ NEST simulator was selected for its comprehensive documentation, examples, and
simulation capabilities, using Oracle Virtualbox and Python with Jupyter Notebook for
implementation, and various NEST library packages for network creation and
monitoring.

⚫ Evaluation of the SNN's performance involved comparing the generated and desired
spike trains using the Victor Purpura (VP) and Van Rossum (VR) spike metrics.

⚫ LIF neurons were employed to build the network, and experiments were conducted to
explore their behaviour based on threshold voltage and current configurations, with
spike recorders attached to input and output neurons for comparison.

Methodology

Methodology -

Network Architectures
⚫ Encoding SNN

o Visual encoding: Neurons = n rows *

m cols * 3 channels (Red, Green and

Blue)

o Audio encoding: Neurons = 6 neurons

* num of sample * 2 channels (Left

and Right)

Methodology -

Network Architectures
⚫ Decoding SNN

o Visual encoding: Neurons = n rows *

m cols * 3 channels

o Audio encoding: Neurons = 6 neurons

* num of sample * 2 channels

⚫ 256 unique patterns to encode

the pixel values (image

encoding).

⚫ 10 unique patterns to encode

numbers from 0 to 9 (audio

encoding)

⚫ 2 out of the 10 unique patterns

used to represent the signal

(audio encoding)

Temporal encoding

Uint8 ->

values in the

range [0,

255]

Sound samples

Range

[–99,999, 99,999]

Steganography
• Concealing Information: Steganography is the art and science of hiding one piece of

information within another, in such a way that the existence of the hidden information is not
readily apparent to an observer.

• Invisible Communication: Unlike cryptography, which scrambles data to make it unreadable
without a key, steganography aims to make the very presence of the message undetectable.

• Media as Cover: Digital steganography often uses various forms of media, such as images,
audio, or video files, as "cover" for the hidden data.

• Leveraging "Dark" Pixel Values (0-9): leveraging the darkest pixel values (0-9). These are
often less perceptible to the human eye, making them ideal for subtle modifications.

• Mapping Pixel Values (0-9 to 10): applying a transformation where pixel values from 0 to 9
are mapped to a value of 10. Creates a specific range or set of values for encoding.

• Sound Slices and Frame Distance: The sound data is divided into slices, with each slice
corresponding to the duration between two frames (e.g., for 48,000 samples/second and 30
frames/second, each image accounts for 1600 samples of sound).

• Mapping Patterns to Samples (0-9): Within each sound slice, values from 0 to 9 are used to
map specific patterns, with each pattern corresponding to a sound sample. This implies a
method of encoding sound data by subtly altering the "dark" pixel values based on these
patterns.

⚫ A corresponding raster plot will be

generated by each image

⚫ To check for errors, we have calculated

the absolute difference between the

original and reconstructed images

Typical Visual output

⚫ A corresponding raster plot will be

generated by each time slice

⚫ To check for errors, we have calculated

the absolute difference between the

original and reconstructed time slices

Typical Audio output

⚫ To check for errors, we have calculated the absolute difference between the

original and reconstructed time slices

⚫ As demonstrated below, while there are errors associated to the

reconstruction process, these are not visible to the human eye.

Steganography errors

Target platforms

AMD Kria K26 SoM:
oAdaptive SoC (System-on-Module) optimised for edge AI applications.

oIntegrated Arm Cortex-A53 processor with FPGA fabric.

oSupports OpenCL via Xilinx Vitis toolchain.

Sundance VCS-3:
oHigh-performance FPGA platform for computer vision and AI.

oFeatures Xilinx Zynq UltraScale+ MPSoC.

oSupports OpenCL acceleration for real-time processing.

Why Use OpenCL on These Platforms?
oEfficient parallel processing for AI and vision tasks.

oHardware acceleration without extensive HDL coding.

oCompatibility in cross platforms (including FPGAs).

OpenCL FPGA Development Workflow

Host Code Development:

oWritten in C/C++ and interacts with

the FPGA kernel.
Kernel Development:

oDefined using OpenCL C and

executed on FPGA hardware.
Compilation:

oOpenCL compiler translates the

kernel into FPGA logic (bitstream).
Execution & Optimisation:

oData transfer between host and

FPGA, performance tuning.

Writing an OpenCL Kernel for FPGA

Defining a Kernel:
__kernel void l1(__global const float *restrict input_f_pixel_values, __global int
*restrict output_i_spike_count_l1)
{

Key Considerations:
oMemory Access: Use global/local memory efficiently.
oPipelining & Parallelism: Optimise for FPGA hardware

execution.
oOptimisation Pragmas: Use #pragma unroll and other

techniques.

Implementing OpenCL on FPGA
(Toolchains)
Use Xilinx Vitis for OpenCL-based
acceleration.
Supports AI and computer vision
pipelines.

Compilation Steps:
• Write OpenCL kernel and host code.
• Compile with FPGA-specific tools (v++ for

Xilinx).

• Generate bitstream and execute on FPGA

hardware.

Challenges & Optimisations in OpenCL

Challenges:
• Long compilation times for bitstream generation.

• Data transfer bottlenecks between host and FPGA.

• Optimisation complexity for resource utilisation.

Optimisations:
• Loop Unrolling: Improves performance by reducing

overhead.

• Memory Coalescing: Aligns memory access patterns

for efficiency.

• Kernel Pipelining: Enables continuous data flow

processing.

What next?- Encryption...
⚫We use noise to hide the original sound.

⚫ The decoding SNN will use lateral inhibition and ReSuMe to remove the noise and recover the original

audio samples.

⚫Using spike metrics to help training the decoding SNN.

What next? - Use spike metrics...

•Utilise Victor Purpura (VP) and Van Rossum

(VR) distance metrics to train a lateral inhibition

layer to recovery the original signal. Spike metrics

will help to decide when to stop training.

•Initial results shown that final decryption errors

remained below 1.2%, validating the consistency

of the SNN-based Steganography.

▪ The use of Spike metrics will help to assess when to stop training.

▪ The security key will be unique and could contain details on how to connect

the SNN, weights and connectivity.

▪ Bio-inspired computing could be adopted more widely to reduce power

consumption and increase the security.

Takeaways

⚫ Future work should address the potential increase in noise in larger neuron
populations, requiring the incorporation of noise reduction mechanisms to improve the
research's applicability.

⚫ Explore new architectures to enable the SNN to decide when to start/stop training
leverage from spike metrics.

⚫ The current approach can be expanded to consider various factors affecting the
training optimisation process in LSM, including lateral inhibition, propagation delays of
pre-synaptic neurons, and noise reduction techniques, especially in the context of
larger neuron populations.

Future work

Partners
Countries:

England, Scotland,

Portugal, Spain, Kenya,

USA, Canada, Nigeria, Japan

Bio-inspired CODECs using steganography

Dr Pedro Machado, pedro.machado@ntu.ac.uk, Nottingham Trent University, Nottingham, UK

Dr Isibor Kennedy, Ihianle Isibor.ihianle@ntu.ac.uk, Nottingham Trent University, Nottingham,

UK

Dr Andreas Oikonomou, andreas.oikonomou@ntu.ac.uk, Nottingham Trent University,

Nottingham, UK

Dr Srinivas Boppu, srinivas@iitbbs.ac.in, Indian Insitute of Technology Bhubaneswar,

Bhubaneswar – India

Dr Minoru Motoki, motoki@kumamoto-nct.ac.jp, National Institute of Technology (KOSEN) -

Kumamoto College, Kumamoto – Japan

	Slide 1: Bio-inspired CODECs using steganography
	Slide 2: Outline
	Slide 3: Hypothesis
	Slide 4: Overview
	Slide 5: SNN Concepts
	Slide 6: Methodology
	Slide 7: Methodology - Network Architectures
	Slide 8: Methodology - Network Architectures
	Slide 9: Temporal encoding
	Slide 10
	Slide 11: Typical Visual output
	Slide 12: Typical Audio output
	Slide 13: Steganography errors
	Slide 14: Target platforms
	Slide 15: OpenCL FPGA Development Workflow
	Slide 16: Writing an OpenCL Kernel for FPGA
	Slide 17: Implementing OpenCL on FPGA (Toolchains)
	Slide 18: Challenges & Optimisations in OpenCL
	Slide 19
	Slide 20
	Slide 21: Takeaways
	Slide 22: Future work
	Slide 23: Partners
	Slide 24

