
solutions to simplify.

Christian Tchilikov
July 1, 2025

Dynamic CDC Verification
Efficient Approaches for In-House Flows

linkedin.com/in/tchilikov

www.semify-eda.comPage 2

Overview

● What is Dynamic CDC?

○ How it’s different from Static CDC

○ What we are trying to verify

○ How metastability is simulated

○ Challenges, and how they scale with large designs

● Approaches for Dynamic CDC

○ Proprietary Tools vs Custom Modeling

○ Naive modeling, and semify’s improved and free in-house model

● Modeling with simulation efficiency in mind

● Example use cases

www.semify-eda.comPage 3

What is Dynamic CDC?

Dynamic CDC Static CDC

● Simulates the design (requires testbench) ● Analyzes the design structure (no simulation)

● Limited by test coverage ● Exhaustive: checks all paths

● Replaces synchronizers with models that simulate
setup/hold violations and internally capture metastable
events

● Checks for missing synchronizers and valid
synchronization methods

● Checks design functionality under different
synchronization latencies caused by metastable events

● Checks for glitch-prone combinatorial paths,
reconvergence issues, etc

● Assertions can catch data stability violations ● Designer imposes waivers/constraints based on design
intent - which may be wrong

www.semify-eda.comPage 4

What are we trying to verify?

● That the post-synthesis (silicon) synchronizers behave the same as in simulation

○ Bridge the gap between simulation and silicon

● That a design functions correctly due to varying synchronization latencies caused by

metastability

● To fill the gaps left by Static CDC:

○ That Static CDC waivers did not mask potential synchronization bugs

○ Protocol errors can be missed by Static CDC; intent of designer’s synchronization

method must be specified to the tool

○ Re-convergence analysis may exceed the limits of simple checks

www.semify-eda.comPage 5

Challenges

● Model-based Dynamic CDC can not check for missing synchronizers

○ Only verifies the functionality of the design with the already in-place synchronizers

● Dynamic CDC is limited by test coverage – testbench may not exercise all possible

scenarios

● Large designs begin to suffer - blackboxing, hierarchical switches, different clock ratios

○ Need a model to account for all of these factors and reduce manual labor

www.semify-eda.comPage 6

Synchronization Latency

● Time it takes for a signal to be seen at the output of a synchronizer relative to when it was

input (number of positive edges of destination clock before signal is seen at output)

○ Consider a 2 DFF synchronizer – what is the synchronization latency?

○ Intuition tells us 2 posedges, one for each flip-flop – but this is not always true…

○ Due to metastability, it is possible for a 2DFF synchronizer to experience

non-deterministic synchronization latencies of 1 and 3 posedges as well

○ 2DFF Synchronizers do not exhibit this variation in timing in simulation by default –

need to model it either manually or with a tool

www.semify-eda.comPage 7

Synchronization Latencies for 2DFF Synchronizer - In Silicon

www.semify-eda.comPage 8

Synchronizers in Simulation

www.semify-eda.comPage 9

Proprietary Tools vs Custom Modeling

Custom Modeling Proprietary Tools

● Requires upfront effort to develop a model ● No effort needed to develop custom DFF models - done
automatically

● Must manually replace synchronizers with custom model ● Metastability models are automatically inserted into all
CDC paths

● Must manually write assertions for protocol checking ● Automatically generates protocol assertions

● Must manually account for clock jitter ● No need to add clock-jitter features to testbench

● Entirely Free (if you create your own model or use an
existing one) ● Very expensive: $10k+/year for a license

www.semify-eda.comPage 10

Naive Modeling

● Define a window size around the posedge of the clock

● Add a randomized clock Jitter

● Data transitions occurring inside the window cause the capturing flip-flop to randomly

resolve to either 0 or 1

www.semify-eda.comPage 11

Naive Modeling – Issues

● Difficult to dynamically scale window size with clock period

○ If clock period becomes larger, and window size remains the same, the probability of

metastability decreases.

● Would need to manually define different window sizes for different clock relationships to

control pessimism – lots of manual work for large designs with multiple clock relationships

● Not pessimistic enough, want to exercise the design fully. A small window may mask bugs.

● Need a more abstract model that implies worst-case scenarios when possible

● Simulation time heavy – checking that data transitions happened within the window

requires additional calculations which slow down simulation time, especially noticeable in

large designs with many synchronizers

www.semify-eda.comPage 12

semify’s Model

● Available to use entirely for free under the MIT license at github.com/semify-eda/dymanic_cdc

● Pessimistic model - skews timing of data inputs to force metastability and assumes worst case

● Parameterizable - switches for level of pessimism, data validity assertions, synthesis/simulation

● Hierarchical enables/blackboxing without the need for recompilation. Scales with large designs.

● More in-depth technical details of the model are available in the repository

● 2DFF synchronizers used to build more complex synchronization methods (FIFOs, Handshaking,

etc) by using them on the respective control signals.

http://github.com/semify-eda/dymanic_cdc

solutions to simplify.

Contact Information

Email:
office@semify-eda.com

Website:
www.semify-eda.com

LinkedIn:
https://www.linkedin.com/company/semify-eda

Address:
semify GmbH
Neubaugasse 24
8020 Graz - Austria

mailto:office@semify-eda.com
http://www.semify-eda.com/
https://www.linkedin.com/company/semify-eda

