
Formal Verification of Security 

Properties on RISC-V Processors

2025/07/01

Verification Futures Conference 2025 UK

Czea Sie Chuah

Christian Appold (c.appold@eu.denso.com)

Tim Leinmüller



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Outline

1.Introduction

2.Methodology

3.Security Standards

4.Security-Critical Functionality

5.Formal Verification 

6.Conclusion



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Introduction



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved. 4

35 European sites:

Amsterdam 
(eHQ)

Eching

• Headquarters: Kariya, Japan

• 165 000 employees worldwide

• 190 companies belong to DENSO group

• 44 billion euro consolidated net sales

• 3,6 billion euro R&D investments

• 41 000 patents worldwide

DENSO in Germany:

• Company name: DENSO AUTOMOTIVE 
Deutschland GmbH

• Headquarters: Eching (close to
Munich)

• 820 employees

• Further branches: Aachen, Frankfurt, 
Köln, Stuttgart, Wolfsburg 

DENSO is a globally acting tier 1 automotive supplier

• One of the three largest tier 1 automotive suppliers worldwide

Product portfolio:
• Thermal systems (e.g. car air conditioning)
• Powertrain systems (e.g. direct injection pump)
• Electrification systems (e.g. steering motors)

• Advanced Driver Assistance Systems
• Sensors, Semiconductors (e.g. rain sensor)
• Factory automation (e.g. robots)

Introduction

RISC-V processor activities:

• DENSO member of RISC-V 
International

• Development and selling of own 
RISC-V processors

• 32-bit and 64-bit processors



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Introduction

5

• Processors are ubiquituous and embedded in nearly every electronic device

• Security is very important for upcoming applications, e.g. autonomous driving or
factory automation

• In past years several famous bugs and security-vulnerabilities in processors
found

• Design flaws can be exploited by attackers with drastic consequences

• Reliable pre-silicon verification of security-critical functionality needed

• Simulation not exhaustive and corner case bugs can be missed

Formal Verification required for Security-Critical functionality

• We investigated how to perform this formal verification with Jasper



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Introduction

6

• RISC-V processors targetted by attackers easier due to openness of ISA

• Dispersion of RISC-V processors strongly growing, several small companies exist

• No previous work did a detailed analysis of RISC-V specifications for security-critical
functionality

• Our Contribution helps:

1. Identification of large set of security-critical functionality for RISC-V processors

2. Derivation of properties for security-critical functionality correctness

3. Optimization of Cadence Jasper usage for verifying the properties

• Our full property set for security-critical functionality published in paper:

• Formal Verification of Security Properties on RISC-V Processors

• Published 2023 at 21st ACM-IEEE International Symposium on Formal Methods and Models 
for System Design (MEMOCODE)

Security verification guidance needed



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Methodology



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Methodology

8

Workflow

Identify security-critical functionality

from specification

Modeling of security-

critical properties

Formal verification of 

processor RTL

Properties 

fulfilled?

Compliance with 

specification and 

microarchitecture intent

Design bug?

Noncompliance with 

specification and 

microarchitecture intent

RTL fix needed

Yes Yes

No

No

Reconstruct property

• RISC-V Unprivileged specification
• RISC-V Privileged specification
• RISC-V Debug specification
• NS31A Technical reference manual

Analyze 

Counterexample

Manual
Automated + Manual
Automated

Jasper FPV App

Jasper  
Visualize + Why



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Methodology

9

• We identified security-critical functionality by investigating

• RISC-V architecture for protection mechanisms for security (e.g. PMP)

• Existing malicious attacks from literature

• E.g. attacks from following paper:

• SoK: Eternal War in Memory (2013 IEEE Symposium on Security and Privacy)

• Identified approach to enumerate possible other attacks



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Security Standards



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Security Standards

11

• Common Criteria is an international standard for independent security evaluation
and certification

• For IT products implemented as hardware, firmware or software

• It introduces seven different levels of evaluation (EAL1 to EAL7)

• EAL7 is the highest assurance level and requires formal methods for
design and implementation verification

• for extremely high-risk environments where utmost security is critical

Common Criteria requires formal verification when utmost security is critical
• We give guidance how to do this for security-critical processor functionality



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Security Standards

12

• Common Weakness Enumeration (CWE)

• A community-developed list of common software or hardware weaknesses

• For hardware it lists weaknesses around concepts that are frequently
encountered in hardware design

• There is overlap between weaknesses described in CWE and our work

• RISC-V specification describes what and how functionality should be
implemented

• some of the functionality protects against CWE weaknesses

Our properties prove security-critical functionality behavior which
protects against CWE elements

• Example CWE category where our properties help protecting against issues:

• Privilege Separation and Access Control Issues, e.g.

• incorrect defult permissions (Our Properties: Mode Transition, Exception and Interrupt)

• improper isolation of shared resources on System-on-a-Chip (SoC) (Our Properties: CSR, 
Debug Operation,  Mode Transition, PMP)



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Security-Critical  
Functionality



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Security-Critical Functionality

• We identified security-critical functionality and grouped it in 9 categories:

Instruction
Execution
Check instruction flow
through pipeline

CSRs

Comply with CSR 
access rules

Debug Operation

Comply with Debug
CSR access rules

Exception and 
Interrupt
Proper handling
required

Mode Transition

Mode transition rules
need to be met

PMP
Access control rules
for memory regions
need to be met

Control Flow

Correct setting of
program counter

Register           
Update
Correct target register
is updated

Memory Access
Value and address
memory transfers as
intended

Our properties can detect
bugs in the hardware

• malicious behavior
exploiting them can be
triggered e.g. by software
execution

14

Possible security issues, when
properties not checked:

• change of functionality (CFU)
• change of control flow (CCF)
• denial of service (DoS)
• privilege escalation (PE)

CFU, 
CCF, 
DoS

CCF, 
DoS, 
PE

CCF, PE

CCU, 
DoS, 
PE

PE CFU, 
CCF, 
DoS

CCF, 
DoS

CFU, 
CCF, 
DoS

CFU, CCF, DoS



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Security-Critical Functionality

• Control Flow category:

• Prove correct setting of Program Counter (PC)

• Each setting of PC is verified, several possibilites (one property for each)

• reset PC, standard PC increment (PC+4), interrupt, exception, due to last occuring
instruction (jal, jalr, branch, mret, debug return)

• Possible security issues when not checked:

• change of control flow (e.g. PC modification to attacker code execution)

• denial of service (e.g. disable proper instruction flow at all)

15

Property Example: Correct PC after mret instruction (FAILING, found bug)

assert property (@(posedge clk) disable iff (rst)

!firstInstruction && write_into_wb_pipeline_register && last_instruction_mret

|-> instruction_PC_to_wb_pipeline_register == mepc_register_PC); 

PC checks at writing
PC in writeback
(wb) stage pipeline
register

mepc stores trap
return PC



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Security-Critical Functionality

16

• Control and Status Register (CSR) category:

• Properties check compliance with CSR access rules

• Possible security issues when not checked:

• change of control flow (PC for exception return
modified)

• denial of service (e.g. interrupts (permanently) 
disabled)

• privilege escalation (e.g. modify stored previous
privilege level)

• E.g. 

• change of previous privilege level to gain more
rights

• change of machine exception program counter to
execute arbitrary code

Property Example: (FAILING, found bug)

• CSR write access is done only for CSR instructions with register and immediate operand as

shown in the table

• Example for mstatus CSR, used also for the other CSRs

assert property (@(posedge clk) disable iff (rst)

!(CSR_instruction && additional_Conditions_Fulfilled) |-> !(WriteEnable_mstatus_register))

CSR read and write operand behavior

bugs here



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Formal Verification



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Formal Verification

18

• Verification executed on 16-core AMD server with 2.2GHz each and 128 GB RAM

• All verification runs executed with RISC-V processor core as top-level module

• Approximate design information:

• Gates: 84000 (495000)

• RTL lines: 49000

• Did one Jasper verification run for each property category

• all properties in a category verified by Jasper in parallel

• Jasper contains formal verification engines for full-proofs and bug-hunting

• Use of several different engines in parallel for a verification run

• automatic choosing of most suitable verification engine by Jasper

Total number (Sum of Bits)



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Formal Verification

19

• We identified 1146 properties and grouped them under 9 categories

• Achieved full-proof for passing properties

• Runtime for one property:

• Control Flow: 

< 24h with blackboxing

• Other properties: < 4000s

• 3 design bugs found



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Formal Verification

20

Categories
Properties

Assertion Pass Fail

Instruction
Execution

10 10 0

CSR 394 280 114

Debug Operation 14 14 0

Exception and 
Interrupt

87 87 0

Mode Transition 13 13 0

PMP 574 574 0

Control Flow 9 8 1

Register Update 33 33 0

Memory Access 12 12 0

Total 1146 1031 115

• Bug 1 and Bug 2 occur repeatedly for
each CSR

• Bug 1:
• violation of specification, no read

to CSR for CSR instructions when
target register (rd) is register 0

• Bug 2:
• violation of specification

• no write to CSR for CSR 
instructions when source 
register 1 (rs1) is register 0 or
immediate operand is 0

• Bug 3:
• wrong PC taken in debug mode, 

when mret instruction in writeback
stage and exception occurs



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Conclusion



Christian Appold – Software R&D

© DENSO CORPORATION All RightsReserved.

Conclusion

22

• Proliferation of RISC-V processors strongly growing

• Expected that number of discovered security vulnerabilities in them will grow

• Methods to ensure high security-level urgently needed

• We identified, categorised and formally verified a large set of security-critical
properties for RISC-V processors

• Formal verification scales well for our property set

• Identified design bugs, which have not been found by other verification
approaches

• Our work gives guidance for RISC-V security hardening

• Helps to significantly increase the security-level of RISC-V processors

• Properties and presented security formal verification used in our
processor development




	Slide 1: Formal Verification of Security Properties on RISC-V Processors 
	Slide 2: Outline
	Slide 3:  
	Slide 4
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7:  
	Slide 8: Methodology
	Slide 9: Methodology
	Slide 10:  
	Slide 11: Security Standards
	Slide 12: Security Standards
	Slide 13:  
	Slide 14: Security-Critical Functionality
	Slide 15: Security-Critical Functionality
	Slide 16: Security-Critical Functionality
	Slide 17:  
	Slide 18: Formal Verification
	Slide 19: Formal Verification
	Slide 20: Formal Verification
	Slide 21:  
	Slide 22: Conclusion
	Slide 23

