
Deploying AI in DV for Smarter and
Faster IP Verification

Mike Bartley, CEO, Alpinum Consulting | Arjumand Yaqoob, Staff Engineer, Qualcomm

• AI is set to play a key role in optimizing the traditional design verification flows
and challenges. Providing a faster and smarter platform to deploy and use in
design verification while verifying designs of different complexities. We will be
presenting our proposed AI model and strategy. And will apply that to generate a
verification environment and Test Bench for an IP design to prove rapid
prototyping and efficient verification of designs.

Abstract

6/27/2025 Copyright of Alpinum Systems Ltd. 2

• AI Strategy

• UVM Test Bench Generation

• Results and Analysis

• AI Strategy – Model & Techniques

• AI Strategy – Features Implemented

• Conclusion

• Reference

• Questions

Outline

• Test generation, model is trained through various ML techniques

• Test direction the model is trained to direct something else to generate the tests,
parameterizing constraint random test generation

• Test selection is based on choosing tests from pre-generated tests on which model
is tuned to optimize the selection based on optimization, filtering and prioritizing

AI Strategy – Inputs

ML Model
Feedback

(coverage, …)
Test (with choice of sequence length)

ML Model Test Generator

Feedback
(coverage, …) Test

Parameters

ML Model

Large set
Of Tests Fewer Tests

Test Feature

• Model receive feedback based on coverage score

• Approach based on supervised learning for coverage directed tests selection with
novelty driven learn and identify stimulus different from previous

• Biases tests with higher probability of coverage and prioritize those

• Improving coverage and failure prediction

• AI assisted method for coverage feedback selection

• Training set , constraints extractions to assign weights on test scenarios

• Training data optimized the tests selection with higher coverage score

AI – Strategy Coverage Directed Feedback

Coverage Closure (Flow)

Testbenches

SV UVM

Python UVM

Verilator
• Parallel Simulations
• Opensource

Verification goal score
(coverage)

Spec Input

Questa Sim

RTL
Design

Python
Generator

Measure

Knobs
Configuration &

Parameters
Settings

Top 10 Knobs
configuration
& Parameters

Coverage achieve
Compare to target

Score (Loss function)

Machine Learning
Algorithms (e.g., Gradient

Descent, Genetic Algorithms
…) to learn better Knobs

Configuration & Parameters
Settings

RTL
Design

Tool 5: UVM TB Automation with Python scripts

Design and
Interface files Python

script for
automation Generated

UVM
testbenches

Input

Backend

OutputSignals extraction using Regex
Python package

User input

Backend System

Output (UVM testbenches)

Process

Python module
Input

• User should provide Design, Interface, Config (optional), Memory (optional) files.

Backend System

• The UVM standard code will be saved in python script.

• Python script will extract signals from design and interface files.

• By utilizing the extracted signals, the test bench components gets created.

Output

• The UVM testbench components in System Verilog format will get saved.

Examples

• FIFO

• Single Port RAM

• Dual Port RAM

• AXI….

Config file,
memory file

AI for Config files, ML for
parameter optimization

• Design I/O, Interface: Design I/O Top level design I/O and Interface read from a .SV file

• Reading Configuration Files: Configuration files specify additional details and information which guides the
python script to customize the generated components. Configs are specified in a text file

• Prio , used to provide read and write operation priorities

• Memory initialization

• Reset

• Sequencer info

• Total number of write/read transactions

• Chip select

• Test extension

• Total number of test extension

• Interface randomization

• Resource pool

• Parameterization

• Control signals for driver, monitor and scoreboards

UVM Test Bench Generation – Inputs Detail

➢ UVM TB is generated using the Python Script model

➢ Complete UVM Verification environment is generated which

including sequences and tests

➢ UVM TB overview for an SPRAM design

UVM Test Bench Generation - Output

UVM Test Bench Generation

• ~90% time reduction in the efforts needed for UVM TB generation
• Higher accuracy
• Consistent process
• Less chance of human errors

• New designs may bring unseen challenges

• AI to generate a config file
• Generated TB is entirely controlled by parameters
• Use of AI to optimise parameters
• Switch between different output formats, including Python VUM/CoCoTB, VHDL OSVVM

Tool 5: : UVM TB Automation - Benefits

Tool 5: UVM TB Automation - Challenges

Tool 5: UVM TB Automation - Roadmap

• Objectives

• Increase verification efficiency

• Improve test coverage, bug detection, and debug time

• Enable intelligent automation in verification using AI/ML

• ML Techniques and Models

• Supervised Learning:

• Learn from input-output pairs (e.g., failure patterns)

• Unsupervised Learning

• Discover patterns and anomalies in test data

• Reinforcement Learning

• Optimize test sequences via reward feedback

AI Strategy – Model & Techniques

• AI – Enhanced Verification Pipeline
• Input: Test & Random Data → ML Model
• Predict Failures & Coverage Bins
• Guide Test Generation, Direction, and Selection
• Run Simulations
• Feedback Loop: Update Knowledge Base / Generate New Tests

• Training Methodologies
• Offline Training:

• Use historical regression data for initial training

• Online Training:
• Incrementally update model after each simulation run

• Hybrid Training:
• Bootstrap with offline data, continuously improve online

AI Strategy – Model & Techniques

• Advanced Techniques

• NLP: Automatic spec extraction & assertion generation

• Smart Regression: Nearest neighbor algorithm for test reuse

• GNN: Predict connectivity weights in complex designs

• AI-driven bug & coverage exposure using adaptive test strategies

• Inputs and Model Training Data

• Input Layer: Test & Random Stimuli

• Output Layer: Coverage Bins, Failure Signatures

• Training Data: Regression logs, connectivity graphs

• Use for predictive modeling and verification decision-making

AI Strategy – Model & Techniques

• Debug Automation

• Bug isolation using AI-driven pattern recognition

• Failure triage with historical signature matching

• Clustering and root cause prediction using ML models

AI Strategy – Model & Techniques

• Key Features: AI models are set to power up and being used to

• Power Test optimization

• Bug predictions & Root cause analysis

• Post Silicon validation (Detecting Hw anomalies for faster TTM)

• AI assisted formal verification techniques to develop properties for formal
engines

• Challenges: Several challenges are also associated with this

• Model explainability

• Scalability

• Integration with legacy system

• Verification of AI HW

AI Strategy – Model & Techniques

• UVM TB Automation – Input Configuration and Parameter Optimisation
• AI and ML techniques to infer and generate the required configurations from a design

• This enhanced AI strategy based on an ML model helped create the complete
ECO system for the Verification Environment

• Enhancement to the current AI strategy and model can be added based on more
advanced ML techniques that can add value in several ways
• Bug isolation

• Test plan creation

• Bug prediction and root cause analysis

• Creation of a high-level Reference model from design I/O and design files to be used in scoreboards

• Constraint optimisation to generate different constraints dynamically

• Debugging and Triaging

AI Model – Features Implemented

➢ We are Set to reduce manual time and efforts in TB implementations and building verification
environment

➢The proposed model and infrastructure can be augmented with more AI assisted tools to
generate TB features i.e. Assertions

➢AI engine is used for feature extraction and coverage tunning

➢Automation is used for generate TB, UVCs , sequences and tests

➢ This model can be further extended to fine tune using Machine Learning based on the analysis of
following data
➢ Simulation results

➢ Debug data

➢ Regressions data

Conclusion

[1] Bartley, M., Soni, M., C Tessolve (2024) . AI strategy for DV Flow & TB AI Tool.
https://www.tessolve.com

References

https://www.tessolve.com/

	Slide 1: Deploying AI in DV for Smarter and Faster IP Verification
	Slide 2: Abstract
	Slide 3: Outline
	Slide 6: AI Strategy – Inputs
	Slide 7: AI – Strategy Coverage Directed Feedback
	Slide 8
	Slide 10
	Slide 11: UVM Test Bench Generation – Inputs Detail
	Slide 12: UVM Test Bench Generation - Output
	Slide 13: UVM Test Bench Generation
	Slide 14
	Slide 16: AI Strategy – Model & Techniques
	Slide 17: AI Strategy – Model & Techniques
	Slide 18: AI Strategy – Model & Techniques
	Slide 19: AI Strategy – Model & Techniques
	Slide 20: AI Strategy – Model & Techniques
	Slide 21: AI Model – Features Implemented
	Slide 22: Conclusion
	Slide 23: References

