
AVL 
Bringing Industry Best Practice Test-Bench Design to 

Open Source



What is AVL?

• The Apheleia Verification Library is an open-source 
python library

• AVL is built on CocoTB
• Universal simulator support

• Active user community

• Near Zero compile time overhead



Why Use AVL?

• AVL is not a UVM implementation in python

• AVL is not a minimal test-bench language

• AVL takes combines the re-use best practices of UVM 
and efficiency of python

• AVL is an engineer driven test-bench library enabling 
scalable verification environments with a focus on 
productivity – not methodology



Who is AVL Aimed At?

• AVL is aimed at designers and 
verification engineers
• Novices and students

• Industry experts

• Hobbyists

• Professionals

• Anyone who wants to spend 
more time doing verification 
and less time developing code



AVL Features

• HDL centric variables

• Constrained Random

• Familiar methodology
• Sequences

• Drivers

• Agents

• Familiar re-use
• Factory

• Phases

• TLM style ports

• Functional Coverage
• Run-time defined

• Statistical Coverage

• Visualization

• Multi-purpose logging
• Human Readable

• Machine Readable



AVL Variables

• Pythons "Duck Typing“ makes for easy 
coding and re-use but doesn’t naturally 
fit with HDL
• But it does mean you don’t need to 

parameterize classes unnecessarily

• AVL supports python’s native data 
types while providing a richer, hardware 
centric set

https://en.wikipedia.org/wiki/Duck_typing


AVL Variables
System Verilog Python AVL

shortint int avl.Int16

int / integer int avl.Int32

longint int avl.Int64

byte int avl.Byte / avl.Int8

logic / bit bool / int avl.Logic / avl.Bool / avl.Uint<N>

time int avl.Int64

real float avl.Double / avl.Fp64

shortreal float avl.Half / avl.Fp16

float avl.Float / avl.Fp32

string str str

enum Enum avl.Enum



AVL Variables

• Once defined all AVL variables behave 
like python variables
• Arithmetic operations

• Comparison

• Wrapping and sign are handled 
naturally

• Each variable can have a defined string 
format for easier debug



Constrained Random

• Flexible randomisation
• Python Random or NumPy randomization



Constrained Random

• Flexible randomisation
• Python Random or NumPy randomization

• Python-Constraints library



Constrained Random

• Flexible randomisation
• Python Random or NumPy randomization

• Python-Constraints library

• Z3 constraints



Z3 Constraints

• Z3 is an open-source constraint solver from Microsoft

• Supports bool, int, uint, enum and float numbers

• Handles wide variables 

• Integrated into avl.Vars
• Individual variable constraints

• Multi-variable implication

https://github.com/Z3Prover/z3


Distributions



AVL Methodology

• AVL follows the UVM 
methodology

• Familiar and consistent

• No need for parameterization

• Direct access
• No requirement for virtual 

interfaces



Scoreboards

• Common mistakes weaken scoreboards

• Index scoreboard provides same API, but splits items 
into multiple in-order scoreboards based on an item 
attribute

• All scoreboards provide:
• End-of-sim empty checks

• Minimum check count



Testbench Helper Functions

• Environment class provides common testbench helper 
functions
• Clock Generator defined by frequency

• Sync / Async reset generators

• Hard and Soft Timeouts

• Tickers

• Vanilla template provided
• Only need to override item type and implement driver / 

monitor run_phase



Factory

• AVL provides familiar factory features
• Override by type and instance

• Set / Get variables

• Built into __new__ method
• No need for create()



Attributes and Registration

• NO MACROS

• All local variables automatically part of print and 
compare
• Hidden variables identified by leading _ in variable name

• Copying should be done using Python’s built-in copy 
methods



Phases

• AVL provides familiar phases and objection mechanism

• User can add, insert, remove and re-order phases

• Simplified – by default
• Run Phase

• Report Phase



Ports

• Only 1 port always capable of broadcast

• avl.List extends native python list
• Adds blocking_get() / blocking_pop()

• avl.Fifo extends avl.List
• Adds blocking_push()

• Callbacks built into avl.Transaction not sequencer
• Synchronisation on item-by-item

• Simplifies sequences with multiple in-flight transactions or 
out-of-order responses



Functional Coverage

• AVL functional coverage familiar to SystemVerilog
coverage
• Covergroups, Coverpoints, Covercrosses

• Defined at run-time

• Flexible bin definition
• Value in list, range or function

• Analysed and exported using Pandas
• Simple, multi-sim merging and ranking



Functional Coverage – Statistical Bins

• Bins can also collect statistics
• Not just hit / unhit

• Min, Max, Mean and StdDev of sampled values

• Provides native support for performance measurements



Functional Coverage – Reporting

• Simple coverage reporting
• Coverage Merging

• Coverage Ranking

• Regression optimization



Visualization

• Simple Testbench Visualization
• Tree View

• Diagram



Logging

• AVL logging sits on-top of CocoTB logging

• Allows log messages to be exported into any Pandas 
supported file format
• csv, json, yml, markdown, rst, text

• Human readable and machine readable

• Trivial to group, sort, filter and prioritize messages and 
errors using Pandas SQL style conditions

• All implemented in simple class
• Messages can be modified / translated using common python 

libraries like Google Translate



Conclusion

• AVL aims to be the Goldilocks 
verification library

• Extends CocoTB to unlock the full 
power of python as a verification 
language

• Simplifies the strong methodology 
of UVM allowing development of 
UVCs



Availability

• AVL 0.1.0 is available
• https://github.com/projectapheleia/avl

• https://avl-core.readthedocs.io/en/latest/index.html

• https://pypi.org/project/avl-core/

• pip install avl-core

• 100% license free

• Developed on mid-level PC

https://github.com/projectapheleia/avl
https://avl-core.readthedocs.io/en/latest/index.html
https://pypi.org/project/avl-core/


Questions?


	Slide 1: AVL 
	Slide 2: What is AVL?
	Slide 3: Why Use AVL?
	Slide 4: Who is AVL Aimed At?
	Slide 5: AVL Features
	Slide 6: AVL Variables
	Slide 7: AVL Variables
	Slide 8: AVL Variables
	Slide 9: Constrained Random
	Slide 10: Constrained Random
	Slide 11: Constrained Random
	Slide 12: Z3 Constraints
	Slide 13: Distributions
	Slide 14: AVL Methodology
	Slide 15: Scoreboards
	Slide 16: Testbench Helper Functions
	Slide 17: Factory
	Slide 18: Attributes and Registration
	Slide 19: Phases
	Slide 20: Ports
	Slide 21: Functional Coverage
	Slide 22: Functional Coverage – Statistical Bins
	Slide 23: Functional Coverage – Reporting
	Slide 24: Visualization
	Slide 25: Logging
	Slide 26: Conclusion
	Slide 27: Availability
	Slide 28: Questions?

