

the problem

AI is costing the world

Datacenters are predicted to reach **1000 TWh** (equivalent to Japan) by 2030.

Is there a better way to run AI?

Edge AI

Running AI models on smaller, energy-efficient devices.

the problem

Edge AI hardware has a utilisation problem

(Leading MLPerf Edge benchmark submission)

The **potential** for AI hardware has been rising YoY.

But the **actual** utilisation is **diminishing**, leading to:

the solution

To address poor utilisation, Heronic is leveraging **AI** and **automation** is the key to finding the best **architecture** for AI acceleration

Heronic

Specialised to specific workloads

Accelerator Architecture

ARCHITECTURE PRINCIPLES

Systolic Array Dataflow

MAC Allocation	Homogeneous	
Hardware Compilation	Overlay	
Software Execution	Instructions	
Parameter Storage	Off-Chip	
Feature-map Storage	Off-Chip	
Pipelining Layer		

© Heronic Technologies

ARCHITECTURE PRINCIPLES

.

Heronic (Streaming Dataflow)

MAC Allocation	Heterogeneous	
Hardware Compilation	Bespoke	
Software Execution	Hostless	
Parameter Storage	Hybrid	
Feature-map Storage	On-Chip	
Pipelining Network		

HOST:

FPGA IO:

EXAMPLE WAVEFORM

C

ONUC

DSE Transforms

email: info@heronic.ai

BESPOKE HW BLOCKS

PMEM = Parameter Memory
SWE = Sliding Window Engine
MVE = Matrix-Vector Engine

What does our HW architecture look like?

LAYER LEVEL PARALLELISM

PMEM = Parameter Memory
SWE = Sliding Window Engine
MVE = Matrix-Vector Engine

- Allocate resources to different layers
- Expose a resource-performance trade-off
- Leads to heterogeneous design

LAYER LEVEL PARALLELISM

Convolution Hardware

NI = Input Parallelism
Integer < # Channels</pre>

NO = Output Parallelism Integer < # Filters

K = Kernel Parallelism
Integer < # kernel size ^2</pre>

QUANTISATION

PMEM = Parameter Memory
SWE = Sliding Window Engine
MVE = Matrix-Vector Engine

Quantisation

- Change the wordlengths and quantisation methods per layer
- Accuracy vs resource trade-off
- Fine-grain control of model compression

MLCommons Benchmark

MLPERF TINY

A benchmark run by MLCommons for AI running on embedded systems.

- Lowest latency for 3 benchmarks out of 24 submissions
- 8 accelerators designed in 2 months
- Fastest FPGA submission of all time

ML Commons

MLPERF TINY - RESULTS

*includes idle SoC power which is not used

MLPERF TINY - RESULTS

- Better performance, energy and accuracy characteristics
- No modifications needed

	FINN	Heronic
Device	XC7Z020	XC7Z020
Quantisation	Custom (1-bit)	INT8
Model	Custom (CNV)	ResNet8

Object Detection

OBJECT DETECTION

Targeting latest generation YOLO models

Challenges:

- Large number of parameters
- Heterogeneous architecture
- Deep skip connections

OBJECT DETECTION

- DSE can find **pareto-optimal** points
- Less constrained on-chip memory
- Higher memory bandwidth utilization
- Denser compute
- Design automation means a wider range of models, and SOTA support

OBJECT DETECTION

Better than Nvidia (for certain cases)

- **Lower Latency** than GPU (up to 7x faster)
- Similar energy per inference (-10 mJ, +40 mJ)
- **Deeply pipelined,** so output arrives fast
- Not bottlenecked by
 off-chip memory bandwidth

Thank you for listening

Alex Montgomerie

alex@heronic.ai

Chief Executive Officer

