Using AlI/ML to Improve DV Productivity
DVClub Bristol

Steve Hobbs d .
April 9, 2025 cadence

Where Does AlI/ML Fit with Hardware Design and Verification

Development

- Spec to RTL, testplan, verification environment

- Model creation: Constraints, assertions,
coverage
Debug

- Bug isolation
- Failure triage

 Tool efficiency
- Solving high-complexity algorithms such as
formal, convergence, etc
* Verification efficiency
- Compute reduction with improved quality
- Bug exposure
- Coverage closure

Fine-tuned LLMs / copilots

Specialized pre-trained
models

Specialized pre-trained
models

—
—
—
—

Locally generated models
focused on the specific
verification challenge

cadence

What Verisium SimAl Does

User
testlist

L

random variables, randomize
output layer:
coverage bins and

input layer:
calls, and tests

hidden layers: depth a factor of bin

Uses regression data
- Randomization activity for each run

— - Coverage data for each run
« Can use one session or many sessions
 Builds a machine learning model with
| - Tests and random data as the input layer

o

Coverage bins and failure signatures as the output

failure signatures

layer

rareness and other aspects of environment L4

—

SimAl
testlist

L

Synthesizes regression instructions with
- Which tests to run

- Applying a runtime constraint suggestion for each run

Goal can be
- Regression efficiency

o Bug hunting
- Coverage maximization

cadence

How Verisium SimAIl Has Evolved

Started with goal of replicating the coverage of a random
regression with minimal seeds

Expand the range of problems Verisium™ SimAl can attack
and its usage throughout the design/verification cycle

o Bug Hunting: Stress hard-to-reach scenarios, either rare
coverage bins or rare failure signatures

- Coverage Maximization: Target unhit bins by means of
structural information of the coverage space, with special
emphasis on cross-coverage

o Bias of Input Sequences: Ensure the randomization space is
fully explored, with particular emphasis on the cross-
combination of relevant random variables

Handling new goals and dealing with extremely complex
environments lead to architectural changes

o Iterative (reinforcement) learning
o Scalability improvements

Bug Hunting
Original Al
Failure

Rate

—

New
Bug

50X greater failure rate
20% more unique bugs

Input sequence biasing

Solution
Space

Sleld . .
Exploration . o °,
e Sotae
SRR
.o)

User Testlist

test1 | C o m

test2

Ilf\ li

pute Efficiency

SimAl Testiist

Coverage Maximization

Hole I\

\ Related hits to

target

New bins covered
2X fewer simulations

cadence

How Verisium SimAIl Works

« Verisium™ SimAl takes the data from regressions with many simulation runs and synthesizes a new
regression targeted to verification goal
» Uses an iterative framework to update runs with new instructions

Verisium SimAl

| \ | 4 : ™ —
' ! q ! { Xcellum Correlator Verification
5
1 1

Goal
Collect va

UCM/UCD

pus-juoi

Incremental Synthesize

Actions
Backdoor

Compute

Customer’s Compute Farm

cadence

Challenges

* Size of problem

O

O

O

O

Tens of thousands to hundreds of thousands of simulation runs
Tens of thousands to hundreds of thousands of random variables
Millions of coverage bins

Not large in the sense of what LLMs train on, but a large amount of data to build a local ML
model.

 Other concerns

O

O

Off-the-shelf big data tools don’t apply
Customers have tight requirements on CPU and memory usage

« Solutions

O

O

O

Create custom ML algorithms (similar to but different from off-the-shelf solutions)
Parallelize everything (collecting data, building models, synthesizing regressions)

Optimize Python libraries for heavy operations (like matrix manipulation) — two orders of
magnitude reduction in memory

Optimize data being stored and worked on
cadence

Verisium SimAl for Performance
Generate efficient sets of focused runs

Verisium™ SimAl
Testlists

User Testlist

test1

« Take one or more sessions as input
- [Focuses on all targets, bins and failures, or

- Focus on specific areas

* Prunes tests that don’t aid in
achieving goal

* Adds more runs of most
relevant test

* Adds run specific constraint
instructions to focus runs

test3 .
Regression
ML Model Synthesis

Al Generated Constraints

test4

« Used for
o Nightly runs using weekend regression as
input
o High churn target areas
- General stressing of target area

Al Generated

cadence

Example Using Verisium SimAl to Stress Failure Area

Generate
Nightly* regression ;
testlist, ex 6000 runs \1 SImAI
regressions
100
|Train on all sessions Testlist for targeting all
failures — 50 runs
90
7))
-o% 75 % Runs Hitting Failure: Original vs. ML Extremely rare
o 5.00% failures
50 4.00%
3.00% . .
New failures hit
2.00%
25 1.00% I

0.00% ™ 1 -

\‘Z’\ \Q(’L & & cy — S = x - \‘?\ & e\g 2
0 ¥ &\) ¥ "(}\\\) ¥ &\) ¥ 't?‘\) ¥ 'Z}\\\) ¥ '2-\\\) < 'b\\\) ¥ &\) < ’b\\\) \[b\\\)& \ICS\\)& \,b\\\)\
1 2 3 4 5 6 m Original Rate =ML Rate

Day
« Verisium™ SimAl regressions typically 30% of the original run count
* 15t Verisium SimAl regression CPU time 30%-50% of original regression, including training and generation
* Increasing efficiency as training amortized across further regressions

cadence

Example of Verisium SimAl for Coverage Maximization

* When regression is largely saturated

o Use Verisium™ SimAl to explicitly try to hit uncovered bins
o Each iteration learns what worked and what didn’t

o Can be used for bug hunting, using holes as interesting targets

Iteratively)2
trained 2, Iteration 2

/%
QS

Types metrics hits holes

functional 43484 510

code 96879 1162

| +—T"11"" Difficult but
//—/ """ 1T possible to hit bins

cadence

Verisium SimAl in Project Use

Re-learn from collected data
of previous SR and full runs

o

g Incremental dataset collection

= |

D c (8\

al 2 7

@) 3 o
2|8 g8 Opt — Optimized runs
E § zf[s 2| = S IEREE =B =B E § =SB Exp — exploration runs

Day

« Early project
More full regressions, possibly daily — use optimization and exploration runs or other augmentation runs to generate more scenarios targeted
to corner cases or other important areas, target difficult failure signatures to improve coverage of an error condition

o

« Middle project
- Optimization and exploration runs become daily regression with periodic runs of full regression
o Fill out CPU budget with bug-hunting runs

« Late project
- Optimization and exploration runs become primary regression with some augmentation from original regression

o Increase bug hunting
Use ML to help hit particularly difficult bins and fill out cross-coverage bins or other bins that require large numbers of runs to hit

o

cadence

4 > 4 >
4 > 4 > 4 »
4 > 4 » 4 > 4 >
~ 4 > 4 > 4 > <4
4 > 4 > 4 > 4 >
> 4 > 4 > <4
4 »r <4 > 4 >

Any Questions?

© 2025 Cadence Design Systems, Inc. All rights reserved. c 5 d e n c eo

cadence

https://www.cadence.com/go/trademarks

