

An Al-Assisted Connection Weight Prediction for Regression Testing of Integrated Circuits

Author(s): Abishaan Ravikumar¹, Xiaohan Yang², Rajendra Prasad², Alexander Rast¹ & Abusaleh Jabir¹

0

¹Oxford Brookes University, Oxford, United Kingdom ²Infineon Technologies, Bristol, United Kingdom

Speaker: Abishaan Ravikumar

Advanced Reliable Computer Systems Group School of Engineering, Computing, and Mathematics Oxford Brookes University, UK

November 2024

CONTENTS

OXFORD BROOKES UNIVERSITY

- Motivation.
- Related Work & SMART Regression Testing.
- Test Scenario & Connection weight.
- Data Analysis & Preparation.
- Proposed Approach for Weight Prediction.
- Results & Evaluation.
- Conclusions.

MOTIVATION

- Integrated Circuits (ICs) combine logic and electronic components in a single unit to perform programmed functions.
- IC verification is the activity that determines the correctness of the design.
- IC verification is extremely resource-intensive.
- Costs of tests and verifications are significantly increasing with increased design complexity.
- As a result, in a highly complex system it is not possible to tests the entire design with the test set each time any modification is made to the design.
- For this we need **Regression Testing**!

66 In 1994, the Pentium FDIV bug occurred due to an error in Intel's division algorithm (FPU), causing incorrect results in specific cases. Intel missed this in their testing, leading to a costly chip replacement process of about \$475 million. * **99**

OXFORD

BROOKE

• Early and timely bug detection in ICs — ensures its functional correctness, design reliability, and quality.

• The complexity of integrated circuit design is determined by factors such as transistor count, functionality, interconnect density, and design architecture.

* Encyclopedia Pub. "The Intel Pentium FDIV Bug." Encyclopedia Pub, https://encyclopedia.pub/entry/32969#:~:text=This%20flaw%20in%20the%20Pentium,about%2061%20parts%20per%20milli on. Accessed 6 Oct. 2024.

WHAT THE CLIENT GETS — TriCore[™] architecture

TriCore[™] architecture overview and key features

TriCore[™] is the first unified, single-core, 32-bit microcontroller DSP architecture optimized for real-time embedded systems. TriCore[™] Instruction Set Architecture (ISA) combines the real-time capability of a microcontroller, computational power of a DSP, and high performance/price features of a RISC load or store architecture in a compact re-programmable core.

The architecture supports both 16-bit and 32-bit instruction formats.

Key features of TriCore[™] ISA:

- 4 GB of address space
- · 16-/32-bit instructions for reduced code size
- · Branch instructions (using branch prediction)
- · Low interrupt latency with fast automatic content switch using wide pathway to on-chip memory
- · Zero overhead loop capabilities
- Dual, single-clock-cycle, 16x 16-bit multiply-accumulate unit (with optional saturation)
- Optional Floating-Point Unit (FPU) and Memory Management Unit (MMU)
- · Extensive bit-handling capabilities
- Single Instruction Multiple Data (SIMD) packed data operations (2x 16-bit or 4x 8-bit operands)
- Flexible interrupt prioritization scheme
- Byte and bit addressing
- · Memory protection and debug support

Explore how TriCore[™] is the ideal platform for automotive applications.

https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/?term=tricore&view=kwr&intc=searchkwr*

A PRACTICAL DESIGN

Blocks connected toblocks under test.

THE CHALLENGE

• Verifying IC designs involves subjecting millions of test scenarios, depending on complexity.

OXFORD

• How do we select a small number of tests from a very large test pool for very fast targeted testing of the design changes ?

RELATED WORK

- Simulation-based verification provides a robust framework for testing designs across diverse scenarios*.
- Regression Testing verifies circuits incrementally, focusing on sections of the circuit that have been modified or undergone design changes.

* Y. Li, W. Wu, L. Hou, and H. Cheng, "A study on the assertion-based verification of digital ic," in 2009 Second International Conference onInformation and Computing Science, vol. 2, 2009, pp. 25–28

SMART REGRESSION TESTING

UNIVERSITY

ntineon

OXFORD

BROOKES

- SMART regression leverages the Nearest Neighbours algorithm for test selection.
- Test selection based on geographical closeness between design blocks.
- It requires accurate measure of connection strength between interconnected blocks known as "connection weights."
- We propose an Al assisted method for predicting connection weights between design blocks.

OXFORD

BROOKES

UNIVERSITY

Infineon

technologies

- For a regression test scenario, the tests need to be distributed within all the connected blocks.
- Test distributions are influenced by "connection weights."
- Connection weights lie between **0** and **1**.

GRAPH NEURAL NETWORK FOR WEIGHT PREDICTION

- OXFORD BROOKES UNIVERSITY
- GNN operates on graph data structures.
- The novel approach replaces the manual method of updating the knowledge bases for regression testing.
- The message-passing neural network collects features from adjacent nodes to improve node representation within the graph.

PROPOSED APPROACH FOR WEIGHT PREDICTION

- The objective is to create feature table and establish connections for the IC design under test.
- This is then used to train the GNN model which predicts the connection weights for test selection.

• ATTRIBUTES FOR CONNECTION WEIGHT PREDICTION

- The number of incoming and outgoing connections.
- The number of cover points. i.e. critical points in a design that's need to be tested.
- Whether a block is self-contained or not, shows the existence of connection to itself.
- Block's intrinsic weight, indicating its priority with respect to the rest of the connected blocks.

Desigr Block	B1	onnection weight:	B1 - B2	2	Design Block 2
	c	onnection weight:	B2 - B1	1	1
	{ <i>CP</i>	SF	In	Out	<i>IW</i> }
Blocks	Cover points	Self-Contained	In	Out	Intrinsic weight
B1	78	0	6	10	0.64
B2	450	1	4	6	0.50

OXFORD

MODEL EVALUATION

- The model was tested on a 535K μm^2 design using 28nm technology.
- The design contains FPU, decoder, load/store units, fetch modules, bus interface units, and an ALU, etc.
- A total of **33K** test cases were considered, encompassing both good and bad tests.

O

										1	
	Code Coverage		BUS Interface Unit (BIU)								
			Full Regression		Rand1		Rand2	Rand3	Proposed		
Expression		89.84%	66.10		% 71.42%		69.55%	84.75%	1		
	Total		94.62%	80.23%		% 83.48%		79.95%	91.59%		
R.Te		st Constraint* F		ull Reg R		and Test	SR. Rand W	SR. Prop	osee		
T.Time or Cyc		15,400k	2 Days		50 mins		50 mins	50 mir	ns		
No Tests			3k	30k		100		100	100		
Coverage %		98%	94%			80%	84%	91%			

* S. Sokorac, "Optimizing random test constraints using machine learning algorithms," 2017 Design and Verification Conference and Exhibition US (DVCon), 2017, pp. 583–588.

37th IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems

An AI-Assisted Connection Weight Prediction for Regression Testing of Integrated Circuits

Abishaan Ravikumar*, Xiaohan Yang[†], Rajendra Prasad[†], RajaNataraj Sivaraj[†], Alexander Rast*, and Abusaleh Jabir* *School of ECM, Oxford Brookes University, Oxford, UK. E-mail: {19232440, arast, ajabir}@brookes.ac.uk [†]Infineon Technologies, Bristol, U.K. Ltd. E-mail:{Xiaohan.Yang, Rajendra.Prasad, RajaNataraj.Sivaraj}@infineon.com

			Branch		Expression		Toggle		
B3	Block Average	Block Covered	Average	Branch Covered	Average	Expression Covered	Average	Toggle Covered	name
SR 100 tests for B3	92.09%	84.67% (221/261)	90.24%	81.04% (171/211)	89.49%	79.48% (368/463)	41.35%	62.84% (93/148)	i tc18 idle
Proposed	98.62%	97.32%	98.29%	96.68%	96.02%	92.22%	96.71%	79.73%	i tc18 idle
Proposed with Distribution	98 22%	96 55% (252/261)	97 80%	95 73% (202/211)	95 91%	92 01% (426/463)	92.86%	78 72% (116 5/148)	i tc18 idle
Distribution	50.2270	50.5570 (252/201)	57.0070	55.1576 (202/211)	55.5176	52.0170 (420/405)	52.0070	10.12 /0 (110.0/140)	

B4	Block Average	Block Covered	Branch Average	Branch Covered	Expression Average	Expression Covered	Toggle Average	Toggle Covered	name
SR 100 tests for B4	75.18%	71.79% (832/1159/79)	71.91%	67.70% (677/1000/69)	73.43%	69.50% (1187/1708/26)	66.56%	75.61% (775/1025)	i tc18 pmbi
Proposed	89.75%	90.60%	87.85%	89.10%	88.05%	85.83%	93.98%	95.41%	i tc18 pmbi
Proposed with Distribution	96.11%	96.55% (1119/1159/79)	95.39%	96.00% (960/1000/69)	91.83%	90.46% (1545/1708/26)	93.74%	95.32% (977/1025)	<u>i tc18 pmbi</u>
6									

	38	0.99	Shutdown Trap
Distribution	<mark>48</mark>	0.54	Smart Lockstep
	39	0.47	DLMU
	38	0.97	Shutdown Trap
SR Targeted	48	0.51	Smart Lockstep
	39	0.49	DLMU

CONCLUSIONS

- Our approach is showing noticeable improvements over the random cases, which is quite popular for simulation-based verification.
- Considerable accuracy improvement over a full regression test is also observed, where a full regression test required 27K tests (vs 100 tests) to achieve 89.52% expression coverage (vs 84.75%) over a 2-day run (vs about 50 mins).
- In conclusion, our AI-assisted weight prediction for regression testing shows promising results, and efforts are ongoing to automate other stages of regression testing using AI technology.

THANK YOU FOR YOUR ATTENTION

ANY QUESTIONS ?

0

DATA ANALYSIS

- We utilised data from custom designs that included design specifications and connection information between design blocks.
 - 1. Construction of feature table: Refine and organise relevant information to construct a feature table for the design blocks, each represented as nodes in GNN.
 - 2. Correlated the integrated circuit (IC) design to create a foundational connectivity table.
 - 3. Reconstruct the connectivity table to include all possible connections between design blocks, accommodating all combinations and permutations of connections.

This approach ensures comprehensive mapping of interconnectivity within the design.