
cocotb 2.0: Modernize
your testbenches for
even more productivity 
 
Philipp Wagner 
Kaleb Barrett 

DVClub Europe 
Oct 8, 2024  

1 

phw@ibm.com  
philipp@fossi-foundation.org  
@imphil on GitHub 
@MrImphil@mastodon.social 

About Philipp 

2 

mailto:phw@ibm.com
mailto:philipp@fossi-foundation.org

Why cocotb 2.0? 
● Needed API breaking changes 

○ Replacing footguns 
○ Refining public API 
○ General code cleanup 

●  

● Break as little backwards
compatibility as possible 
○ NOT like Python 2 to Python 3 

3 

Project Automation 

4 

Python Runner 
What is it? 
● Designed to build most HDL designs 
● Runs cocotb simulations 
● Replacement for Makefiles 
● Based on cocotb-test

○ 

Why prefer Python? 

● Python > Make language 
● Better cross-platform support 
● pytest ecosystem 

Python Runner 
5 

Python Runner 

Python RunnerMakefile
6 

Python Runner 

7 

Test Discovery and Generation 

8 

Test Discovery Changes 
What changed? 

● cocotb.test decorator no longer returns Test
objects 

● Tests are placed in special attribute in module
where they are defined 

Why? 

● Allows reusing test definitions 

● Import test into different modules without
adding the test to the module 

Potential Incompatibilities 

● Custom test generation utilities 

 

9 

cocotb.parametrize()
What is it? 

● Write test once, generate many related
tests 

● Replacement for TestFactory
● Inspired by pytest.mark.parametrize 

Why replace TestFactory? 

● Lists options near test function
parameters 

● Generates better tests names
● Familiar to pytest users

10 

cocotb.parametrize()

cocotb.parametrize()

TestFactory

11 

COCOTB_TEST_FILTER

What? 

● A regular expression filter for selecting tests 
● Replacement for TESTCASE Makefile variable or testcase argument to

Runner.test()
● 

Why replace current methods? 

● More expressive than current methods
● Works well with cocotb.parametrize
● Regular expressions are well understood 

12 

Run all parametrized tests 

COCOTB_TEST_FILTER

TESTCASE

13 

Run only tests where poll_rate == 50 

14 

Modeling Types 

15 

New Modeling Types 
What are the new modeling types? 

● Set of types to deal with common HDL values 
○ Logic: 9-value logic scalar type 
○ Range: right-bound-inclusive integer range 
○ Array: list-like, arbitrarily-indexed, immutably-sized 
○ LogicArray: Array of Logic + bitwise ops 

● Replacement for BinaryValue
 

Why replace BinaryValue?  

● Bugs 
● Fundamentally assumes 0/1 values 
● No indexing/slicing 

16 

Array
● Like Python list
● Immutable size 
● Uses Range to describe arbitrary indexing 

17 

LogicArray
● Similar to Array
● Constructs values into Logic
● Supports bitwise operations 
● Convertible to/from int, str, bytes,

sequences of Logic

18 

Incompatibilities 
● binaryRepresentation removed 

○ Use from_signed, from_unsigned, to_signed, to_unsigned

● bigEndian removed 

○ Use from_bytes, to_bytes, takes byteorder 

● Arithmetic operations removed 

○ Convert to int first 

○ Future work: Signed and Unsigned modeling types 

● COCOTB_RESOLVE_X removed 

○ Equality between ints and Xs no longer ValueError 

○ Use is_resolvable to check for Xs before converting to int or bytes 

19 

Handles 

20 

Value Type Changes 
What changed? 
● Signal values are now LogicArray, not

BinaryValue 
● Array signal value are now Array, not list 

○ 

Compatibilities 
● Equality with existing types 
● .binstr, str()
● .signed_integer , .integer, int()
● .buff
● .is_resolvable
● bool(), conditionals 

21 

Value Type Changes 
Incompatibilities 

● No more BinaryValue
● Indexing on arrayed signals uses

HDL indexes 

22 

New [] Indexing Syntax 
What? 

● Get child objects in design hierarchy 

● Alternative to dot syntax 
 

Why? 

● Dot syntax limited to Python identifiers 

● May conflict with Python object attributes 
○ 

When to use over dot syntax? 

● Extended identifiers 

● Name collisions 

23 

Other Handle Incompatibilities 
● Handle classes refactored and

renamed 
● 

● Support for indexing into packed
objects removed 

○ Wasn’t consistently supported 

○ Edge triggers weren’t consistent 

○ Setting value wasn’t consistent 

○ Index values instead 

○ Or use unpacked objects 

24 

Concurrency 

25 

cocotb.start_soon()

What is it? 

● Way to run multiple independent
threads of execution concurrently 

● Replacement for cocotb.fork()

Why replace cocotb.fork()? 

● Schedule re-entrancy causing bugs 
● Inconsistent handling of Exceptions

26 

cocotb.start_soon()

Incompatibilities 

● Runs soon, not immediately 
● In those cases use cocotb.start()

Read more about the differences at
https://fossi-foundation.org/blog/2021-10-20
-cocotb-1-6-0.  
 

27 

https://fossi-foundation.org/blog/2021-10-20-cocotb-1-6-0
https://fossi-foundation.org/blog/2021-10-20-cocotb-1-6-0

Task.cancel()
What is it? 
● Stops a Task from running 
● Task.cancel() replaces Task.kill()
● Inspired by asyncio and trio 

Why replace Task.kill()? 
● Scheduler re-entrancy causes bugs 
● Doesn’t allow Tasks to “clean up” 

How does it work? 
● Schedules CancelledError to be

thrown into cancelled Tasks 
● Use context manager and try-finally

blocks 

28 

TaskManager 
What is it for? 

● Structuring asymmetric concurrency 
● Inspired by SV’s fork/join, trio’s

nurseries, asyncio’s TaskGroup 
● Easy to use correctly 
● Hard to use incorrectly 

○ 

When to use it? 

● When your test or components need to
do multiple things at the same time. 

● Use cocotb.start_soon() to run
independent components (Drivers,
Monitors, etc.) 

29 

coming soon 

TaskManager 
● Create child Tasks 

○ @fork decorator 

○ start_soon, start 

● Implicit “Join all” if context ends 
●

● await Tasks 

● Cancel Tasks 

● Catch Exceptions in Tasks 

30 

coming soon 

TaskManager 
● Use ExceptionGroups 

● Use except* syntax from Python
3.11 

31 

coming soon 

TaskManager 
● Canceling recursively cancels

children Tasks 
● Prevents leaking Tasks 

32 

coming soon 

Additional Changes 

33 

Public API Guarantees 
● Properly define Python public API

using Python idioms 
● Can make guarantees about stability

of API 
● Semantic Versioning 

34 

Documentation 
● API reference documentation

complete 
● If it’s documented, it’s part of the

public API 
● Guaranteed by running pydocstyle in

CI 

35 

Typing 
● Check your cocotb tests

with type checkers 

● Better suggestions in
editors 

● Guaranteed by running
mypy in CI 

36 

Migrating to cocotb 2.0 
1. Upgrade to the latest cocotb 1.x. 
2. Resolve all deprecation warnings. 
3. Upgrade to cocotb 2.0 (or a current

master version) 
4. Fix remaining issues. 

/path/to/02.fifo/test_fifo.py:111: DeprecationWarning:
Using `task` directly is prefered to `task.join()` in all
situations where the latter could be used.`
 await read_thread.join()
 2025.00ns DEBUG cocotb.fifo
WRITE: Wait for 1 clock cycles
 2025.00ns DEBUG cocotb.fifo
WRITE: wait
 2025.00ns DEBUG cocotb.fifo
READ: Wait for 0 clock cycles
/path/to/site-packages/cocotb/types/logic_array.py:807:
FutureWarning: The behavior of bool casts and using
LogicArray in conditionals may change in the future. Use
explicit comparisons (e.g. `LogicArray() == "11"`) instead
 warnings.warn(
 2025.00ns DEBUG cocotb.fifo
READ: FIFO empty, not reading
 2025.00ns DEBUG cocotb.fifo
READ: Wait for 3 clock cycles
 3025.00ns DEBUG cocotb.fifo
WRITE: wait for falling clock edge
 4025.00ns DEBUG cocotb.fifo
WRITE: Wrote word 1 to FIFO, value 0x0
/path/to/02.fifo/fifo_test_common.py:134:
DeprecationWarning: `.integer` property is deprecated. Use
`value.to_unsigned()` instead.

 

37 

A migration guide will be released together
with cocotb 2.0. Tell us your migration
experience by opening a GitHub Discussion
item at
https://github.com/cocotb/cocotb/discussions.  
 

https://github.com/cocotb/cocotb/discussions

Remember 

● Verification is software. 

● cocotb 2.0 is around the corner.
Start testing it now! 

● cocotb is not just verification in
Python – it can turbo-charge your
chip development. 

www.cocotb.org  
GitHub: cocotb 
LinkedIn: cocotb 
Twitter/X: @cocotbnews 
 

38 

http://www.cocotb.org
https://github.com/cocotb/cocotb
https://www.linkedin.com/company/cocotb
https://twitter.com/cocotbnews

