
SIMPLE YET POWERFUL:
OPEN-SOURCE HDL

SIMULATION WITH COCOTB
HAYDER AL-HAKEEM

WÄRTSILÄ FINLAND OY

DVCLUB EUROPE | 08 OCT 2024

PRESENTATION OBJECTIVES

• How to integrate a free and
open source verification
environment for simulating
HDL with Python?

• Why and when is python a
good choice for simulating
HDL?

• DEMO: Simulating a DUT with
AXI-Lite bus using CocoTB

GENERAL PURPOSE PROGRAMMING LANGUAGES FOR
VERIFICATION

• Verification is the process to ensure that the
implementation fulfils the technical requirements and
specifications.

• HDL testbenches script stimulus and verify outputs.

• They make heavy use of software-like language features
which are not synthesizable.

• HDLs have been extended with features to support
verification but they are still not as powerful and flexible
as general-purpose programming languages.

BENEFITS

• The main reference should be the complete and non-ambiguous requirements which both
the designer and verification engineer interpret the same way.

• Writing the tests without relying on the HDL implementation code avoids repeating the
same mistakes.

• HDL will be tested in similar scenarios to how it will be used by drivers and applications code.

WHY PYTHON AND COCOTB?

• Python:

• Has the largest package libraries to simulate any CPU/software use case.

• Is popular and easy, invites driver developers to join the verification effort.

• Cocotb:

• Enables Python code to access ports and internal signals in the DUT.

• There is a wealth of BFMs in the Cocotb-bus repository.

• It works well with most commercial and free simulators and is in active development.

• Vivado Xsim is still not supported yet.

DRAWBACK

• No visibility for testbench signals in the simulation trace.

• Strong language but still catching up with methodology

• pyuvm and uvm-python are not widely used like UVM or OSVVM/UVVM

• SystemVerilog can be faster depending on the simulation case:

• A study of UVM compared to pyuvm: “The execution times of the Python testbench on
commercial simulators were 8 to 21 times longer than those of the SystemVerilog testbench
in tests with AHB-Lite write operations and random stimulus.” [reference]

• However

• The more expensive cost is the developer’s time which python saves

• Simulation execution time for our work was not an issue as all our tests finish within few
minutes.

• Certain parts of computationally-heavy testbenches can be accelerated by writing C
extensions to python

https://oulurepo.oulu.fi/bitstream/handle/10024/42326/nbnfioulu-202307042828.pdf?sequence=1&isAllowed=y

FREE AND OPEN SOURCE VERIFICATION
ENVIRONMENT AROUND COCOTB

DUT

Python tests

VPI/VHPI

VCD/GHW

SETTING UP THE TOOLS
• WSL is free and strongly integrated with Windows, it offers better performance and easier files and

network sharing with the host compared to virtual machines. It works seamlessy with MS VSCode and
has lots of extensions to support HDL and python development

• For the simulator and wave viewer all that is needed is:

• # apt install ghdl-gcc libghdl<same_simulator_version>

• # apt install gtkwave

• To install Cocotb:

• # pip install Cocotb cocotb-bus cocotb-coverage

• Teros HDL: One stop shop to install all the extensions you need!

• Error checking via the simulator or a language server & Style checking.

• Auto-generate Testbench, Instace, templates ..etc

• Code Formatter, schematic and state machine viewer, documentation generators and more

• # pip install teroshdl

• # then install VSCode extension.

WHAT IS COCOTB

• “Cocotb is a COroutine based COsimulation TestBench environment for verifying VHDL and
SystemVerilog RTL using Python.”

• It will allow the HDL code to
bind with python code using
the VPI or VHPI
implementation of the
simulator.

• What do we get? full access to
the DUT VHDL ports and
internal signals from python

HOW TO RUN A COCOTB SIMULATION WITH BASH

• Bash script calling the simulator directly

• Full control over build and simulation

• Switching simulators isn’t easy

• Steps:

• Build your files and elaborate top entity with the
simulator as usual

• Export the python testbench path and module
name

• Get the file path for the Cocotb shared library for
your simulator

• Call the simulator with --vpi pointing to the
Cocotb shared library

Full Details in webinar: “Ways to run Cocotb: makefiles, cocotb-test, or your custom setup”

https://resources.aldec.com/acton/media/23474/ways-to-run-cocotb-makefiles-cocotb-test-or-your-custom-setup-eu?sid=TV2:p1nqk3CCs

HOW TO RUN A COCOTB SIMULATION WITH TEST
RUNNERS

• Makefile

• Portable between simulators

• Difficult syntax

• Python runner

• Recommended by Cocotb

• Leverage the power of python to setup the
simulation and post-process the results

BASICS OF A COCOTB TESTBENCH

• dut:
• An object pointing to the top-level entity instance
• All ports and internal signals of the DUT are accessible using

the dot operator

• @cocotb.test:
• A decorator to mark a Callable which returns a Coroutine as a

test.
• Cocotb will automatically pick up and run tests present in the

python module.

• Async def
• Used to declare a “coroutine”; an asynchronous function
• We can think of it like the VHDL processes/ Verilog always

block running concurrently inside the testbench

BASICS OF A COCOTB TESTBENCH

• await & start_soon:

• An await will run an async coroutine and wait for it to complete.

• The called coroutine “blocks” the execution of the current coroutine.

• start_soon() runs the coroutine concurrently, allowing the current coroutine to continue
executing.

TRIGGERS

• Not built-in:

• Test if signal is stable or certain value

• Common triggers:
• RisingEdge(), FallingEdge()
• ClockCycles()
• ReadOnly(), ReadWrite(): if you need a specific

simulation delta cycle phase

DEMO OBJECTIVES

• How to structure a Cocotb simulation project.

• How to write a python test runner.

• How to perform transaction-based tests with Cocotb-bus AXI-Lite BFM

• How to write a concurrent checker for a DUT output

DUT DESCRIPTION

• One output pin (PWM)

• AXI-Lite Bus interface

• Four registers

• Hard-Coded ID hex value, RO

• Adjustable PWM period and duty-cycle (in clock ticks) R/W

• Counts the total number of PWM ticks since last reset. R/O

PROJECT STRUCTURE

File/folder Description

pwm.vhd The PWM generator

pwm_v1_0_s00_axi.vhd Vivado generated 4 registers AXI4-Lite slave interface

sim_build The default folder where cocotb places compiled HDL
entities

pwm_pkg.py Register offsets, constants and reusable coroutines

test_runner.py An instance of cocotb test runner with required
simulator configurations to setup the simulation

test_pwm.py A file containing the tests only (separating the tests
from the architecture and setup)

pwm_probe.py Concurrent checker class that measures PWM duty
and cycle and the number of PWM cycles since reset

TESTS DESCRIPTION

THANK YOU FOR LISTENING!

• Live DEMO

• Q&A

	Default Section
	Slide 1: Simple Yet Powerful: Open-source HDL simulation with Cocotb
	Slide 2: Presentation Objectives

	Why python
	Slide 3: general purpose programming languages for Verification
	Slide 4: Benefits
	Slide 5: Why Python and Cocotb?
	Slide 6: Drawback

	Building the environment
	Slide 7: Free and Open source verification environment around Cocotb
	Slide 8: Setting up the tools

	Cocotb Basics
	Slide 9: What is Cocotb
	Slide 10: How to run a Cocotb simulation with Bash
	Slide 11: How to run a Cocotb simulation with Test Runners
	Slide 12: Basics of a cocotb Testbench
	Slide 13: Basics of a cocotb Testbench
	Slide 14: Triggers

	DEMO
	Slide 15: DEMO Objectives
	Slide 16: DUT Description
	Slide 17: Project Structure
	Slide 18: Tests Description
	Slide 19: Thank YOU for Listening!

