
©Tessolve 2023 Confidential 1

Chip Design Test Engineering Hardware Design Embedded Systems

Formal Verification

Savita Suresh Lohar Eswaran Krishnan

©Tessolve 2023 Confidential 2

Agenda

• Top-Level Module Selection

• Lack of Assumption

• Simulation uncover scenarios covered

• Long run time assertions

• Multiple hierarchy used SVA divided into multiple SVA

• Catching RTL Bugs with Jasper

• Coverage

• Memory Issues with Jasper - Solution

©Tessolve 2023 Confidential 3

•Top-Most Module

•Sub-Module

Top-Level Module Selection

©Tessolve 2023 Confidential 4

•Top-Most Module:
 This approach involves selecting the highest-level module in your design hierarchy as the top-level

module.
 This module typically represents the entire system. Verifying properties at this level allows you to capture

system-level behaviours and interactions.

•Sub-Module:
 To focus on a specific sub-module within your design hierarchy as the top-level module.
 This approach is useful when you want to verify properties related to a particular functional block or

subsystem in isolation.
 It helps analyzing specific behaviours or interactions without the complexity of the entire system.

Top-Level Module Selection

©Tessolve 2023 Confidential 5

• Assertions represent properties that the design should satisfy under specific conditions or scenarios.

• Assumptions represent characteristics of the design, inputs to the design, or behavior of the environment in
which the design operates

• When assertions fail, it means that the properties being verified rely on certain conditions or behaviors that
are not explicitly assumed or verified

Lack of Assumption

©Tessolve 2023 Confidential 6

• Let consider below Assumption was not provided by Designer

 assume_cachedirty: assume property (
 rg_cachedirtymin < rg_cachedirtymax);

 assume_onehotack: assume property (
 $onehot(ack_ch1,ack_ch2,ack_ch3));

• Most of the checkers related to this cache functionality will fail in jasper FPV.

• This was not designing issue; we have to check all the input signals and condition related to cache dirty
functionality then we come to know that we were lacking an assumption.

Lack of Assumption

©Tessolve 2023 Confidential 7

• To address assertions failing due to a lack of assumption

Identify the assumptions implicitly required by the properties being verified.

 Explicitly define these assumptions as part of the verification constraints.

 Ensure that the assumptions accurately reflect the expected behavior of the design or environment.

 Verify that the design satisfies these assumptions under all relevant scenarios.

Lack of Assumption

©Tessolve 2023 Confidential 8

• Let's consider a scenario where the cache is being accessed by multiple CPUs concurrently

property cache_coherence;
 @(posedge clk) disable iff (reset)
 // If a write operation occurs (write == 1),
 // then any subsequent read operation (read == 1) on the same address
 // should see the updated data (data_out == write_data).
 (write) |-> (read ##1 (data_out == write_data));
endproperty

• during simulation, we may have a test scenario where CPU 1 writes data to a specific memory location,
followed by CPU 2 reading from the same location.

• Simulation might verify this successfully if the timing is right and the testbench stimuli trigger the necessary
events in the correct order

Simulation uncover scenarios covered

©Tessolve 2023 Confidential 9

• There could be scenarios that simulation might miss, such as rare timing-related race conditions or
interleaving between CPU accesses that are not covered by the testbench

• These scenarios could lead to potential cache coherence violations that may go unnoticed during
simulation.

• For example, FPV identify scenarios where CPU 1 and CPU 2 access the cache simultaneously, leading to
unexpected cache states or data inconsistencies that violate the cache coherence property

• By leveraging FPV alongside simulation, verification engineers can complement the strengths of both
methodologies, ensuring comprehensive verification coverage and exposing the potential issues that might
be undetected

Simulation uncover scenarios covered

©Tessolve 2023 Confidential 10

• Analyzing the interaction and behavior of different hierarchies requires the FPV tool to explore a vast state
space, contributing to longer verification times.

• Let consider typical DDR memory controller, consists of high-performance bus arbiter, controller core with
cache support, scheduler and phy controller.

• Example: Cache miss request

 property ddr_read_req_check;
 @(posedge clk) disable iff (reset)
 (Axi_cmd_queue.rd_valid && cache.nohit ##[0:1] cache_ctrl.miss) |-> ##[0:2] scheduler.ddr_access_req
 endproperty

Long run time assertions

©Tessolve 2023 Confidential 11

• By dividing the properties into smaller SVAs targeting specific hierarchies or components, we can simplify
the verification process and focus on verifying one aspect of the design at a time.

• This approach allows us to manage the complexity of verifying properties across multiple hierarchies more
effectively and lead to faster verification times.

• Example: Cache miss request

 property ddr_read_req_miss_check1;
 @(posedge clk) disable iff (reset)
 (Axi_cmd_queue.rd_valid && cache.nohit |-> ##[0:1] cache_ctrl.miss)
 endproperty

 property ddr_read_req_miss_check2;
 @(posedge clk) disable iff (reset)
 (cache_ctrl.miss) |-> ##[0:2] scheduler.ddr_access_req
 endproperty

Multiple hierarchy used SVA divided into multiple SVA

©Tessolve 2023 Confidential 12

• Formal verification ensures correctness by mathematically proving that a system or software meets its
specifications, eliminating ambiguity and interpretation errors.

• It can uncover subtle bugs and vulnerability that may not be easily detectable through traditional testing
methods, leading to more robust and reliable systems.

• Insert assertions into RTL code to capture design bugs, these assertions act as checks during formal
verification to detect violations of desired properties.

• Analyze coverage metrics to ensure that your formal verification tests cover sufficient portion of the
design's functionality. This helps in detecting corner-case bugs that might otherwise go unnoticed during
the simulations.

• When formal verification detects a violation or fails to prove a property, use debugging features provided by
the verification tool i.e. hunt command

Catching RTL Bugs with Jasper

©Tessolve 2023 Confidential 13

• Coverage gives formal users metrics to measure progress and achieve signoff

• Extracts and displays valuable progress metrics, even for bounded (incomplete) proofs

• Helps avoid over-constraining the DUT

• Like simulation coverage, Jasper formal coverage provides support for both code and functional coverage,
including covergroups.

• Formal-specific coverage types provide data on what coverage is being exercised by the formal testbench
(“Stimuli Coverage”), and well as the completeness of the formal checks (“Checker Coverage”).

• Jasper coverage has ability to generate custom reports and file formats such as HTML and Text.

Coverage

©Tessolve 2023 Confidential 14

Coverage

Sample coverage

©Tessolve 2023 Confidential 15

• In Formal verification, based on design size formal tool will exercise the design exhaustively with required
more memory which leads to memory issues

• While capturing the coverage percentage of bigger design there are possibilities to get the memory issues
and tool will not be able to collect the entire coverage database, again which leads to incomplete of data.

Memory Issues with Jasper - Solution

©Tessolve 2023 Confidential 16

• User can avoid memory issue by specifying the required memory size based on the design's complexity as
follow,

• set_proofgrid_shell {/common/N1GEtool/RBS/bin/bs -n 8 -J %jg_session_id -M 32000}

where –M specifies the memory size

Solution

©Tessolve 2023 Confidential 17

THANK YOU

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

