club

Imperas

Generation and Configuration of Functional
Coverage and Verification IP for RISC-V
Processor Verification

Simon Davidmann (simond@imperas.com)

WWWw.imperas.com

© Imperas Software, Ltd.

28-Nov-2023

The Design and Verification Club
(Europe and India)

Generation and Configuration of

Functional Coverage and Verification IP for |mperas

RISC-V Processor Verification
Abstract:

The open standard RISC-V instruction set architecture (ISA) offers developers new freedoms and flexibilities
to develop domain-specific processors

RISC-V offers every SoC team the possibility to design an optimized processor, but this also implies that SoC
design verification teams will need to address the challenge and complexity of processor verification

A key metric for design verification (DV) is functional coverage

Given the number of extensions in the RISC-V ISA, and instructions per extension, just writing the functional
coverage modules is challenging.

With over 1,000 instructions in the ISA, functional coverage for a fully featured processor could require > 100,000 lines of SystemVerilog
Writing this by hand is certainly time-consuming and resource intensive, and is vulnerable to errors.

We report here on a methodology for auto-generation of the functional coverage modules for RISC-V
processor DV.

(c) Imperas Software, Ltd. 27-Nov-23

Agenda Innperas

The new world... every team develops a RISC-V based SoC
The challenges of verifying RISC-V CPUs

Scope of DV: domain specific, extensions, individual project customization
Functional Coverage — a key measurement of progress & quality
Automation (and riscvISACOV) to the rescue
Case study with open source CVW core
Summary

(c) Imperas Software, Ltd. 27-Nov-23

The new world... RISC-V based SoCs |mperas

Why RISC-V, why now?:
Changes in commercial/business model with existing ISAs, e.g. MIPS, Arm
New electronic products being defined by software requirements

Cost, timescales, and complexity are driving collaborative development approaches and
open source

What in RISC-V is so attractive?

It gives designers freedom
Open standard, Evolving quickly, Configuration and extensibility, Focus and scalability
Domain specific processors

(c) Imperas Software, Ltd. 27-Nov-23

What is the cost of these freedoms?

Imperas

Need a highly capable model of CPU
Complete (support the full ISA standard), and evolves with standard
Fully verified, supported/maintained, adopted by many
Controllable, analyzable
Methodologies and capabilities for extension & configuration
Work with industry solutions (virtual prototypes, debug, verification)
High performance: fast speed and low memory footprint => high capacity, throughput

Very sophisticated tooling needs to be available
Software defined electronic products need virtual platforms

Need much more capable verification for ISA and its configuration / extension
Imperas keynote @ RISC-V Summit December 2022

Application processor needs ~10**15 verification cycles (Arm data)
== 15,000 SW simulator years (SystemVerilog)
== 30 HW simulator years (FPGA/accelerator)

Custom instructions and state significantly add to the complexity...

(c) Imperas Software, Ltd. 27-Nov-23

ImperasFPM |m@eras

(Fast Processor Models)

2008 — Imperas developed world class processor modeling &
simulation solutions for many ISAs for virtual prototyping and Nl e=d—
software development

Based on open standard OVP APIs (OVPworld.org)

Models written in C, with source available q r m p.’,‘wefpu
A good, growing, and profitable business ™

ARC ENESAS
System architecture exploration ! ‘
Software development

Processor hardware verification RISC-\/"°

2016 Imperas started looking at RISC-V
Developed first commercially supported RISC-V models
RISC-V adopters started using Imperas as reference for:

(c) Imperas Software, Ltd. 27-Nov-23

I
Imperas Fast Processor Models + %

Simulator Architecture I[ﬁmperas

Imperas develops and maintains Base Model

O Base Model implements RISC-V specification in full
Reference Model--- O Base Model built using Test Driven Development
| methodology
O Built using public open standard OVP APIs matured over 15
o 0 different ISAs
= g o= . - O Simulator is separate from the model; supports the
£ g L 85 User Extension: modelling B PP
RISC-V OIS ©° 35H custom O Fully user configurable to select which ISA extensions
— QO O o 5 5 . . .
Base Model (TR P = 2 instructions O Fully user configurable to select which version of each ISA
R exténsion
2 n o o 2 & CSRs . . ,
= N o= £ O For processor IP vendors, have pre-defined configuration
@ plus vendor custom instructions
Imperas Simulator Imperas provides methodology to easily extend base model
%/Iusdtolm instructions added using same APIs as in Base
ode
» RISC-V Base Model is used in all Imperas RISC-V O Sep_aEate source files and no duplication to ensure easy
maintenance
processor models O 100+ page user guide/reference manual with many
» By commercial users examples
> By academic users O User extensions source can be proprietary or open source

license
» By users of the Imperas free ISS riscvOVPsimPlus

» RISC-V Base Model is used by > 150 organizations

Processor DV & SW Development |[ﬁ_’m|peras

Ceapsdeialens - OBase model implements RISC-V specification in full

custom OFully user configurable to select which ISA
instructions extensions/versions

& CSRs Olmperas provides methodology to easily extend base
| model

Imperas OVP RISC-V Models are used for I

RISC-V
Base Model

Vendor-
specific config
file + custom
instructions

20 «»
€ E
O o«
O ©
— o
I+
S R
S N

SystemVerilog top level
Testench Application Software

& Operating System

Simulation
control

VAP Tools

imperas

riscvISACOV
functional
coverage

Q
Q
0
0
Q
Q
Q
Q
U
0
0
Q
Q
D

RISC-V
Reference Model

0
ry

...
Periphéral
LA

Iinperas
RISC-V
Reference Model

Configuration

RISC-V Core
RTL
(DUT)

State
comparison

Iozmmdunmd

RVVI TRACER

RVVI-TRACE

Pipeline
synchronization

Scoreboard

Pass/Fail
Determination

(c) Imperas Software, Ltd. 27-Nov-23

Agenda Innperas

The new world... every team develops a RISC-V based SoC

The challenges of verifying RISC-V CPUs

Scope of DV: domain specific, extensions, individual project customization

Functional Coverage — a key measurement of progress & quality

Automation (and riscvISACOV) to the rescue
Case study with open source CVW core
Summary

(c) Imperas Software, Ltd. 27-Nov-23

Verifying a RISC-V CPU Innperas

DV methodology starts with Verification Plan of what is needed
This includes thousands of specific items to test
Functional coverage is a mechanism to measure what has been tested

SystemVerilog language includes testbench syntax for this:
Coverpoints: individual items to measure and count into bins
Covergroups: collection of related points to measure at sampling events

SystemVerilog simulators perform the counting and report results

Verification Task Group © OpenHW Group October 2022

Functional Coverage - IM[@eras

Types required for a RISC-V CPU

For a RISC-V CPU there are different types of functional coverage required:

Standard ISA architectural features
unpriv. ISA items: mainly instructions, their operands, their values
priv. ISA items, CSRs, Interrupts, Debug block, ...
=> these are standard and the ‘same’ for all RISC-V processors — it is the spec...

Customer core design & micro-architectural features
pipeline, multi-issue, multi-hart, ...
Custom extensions, CSRs, instructions

=> these are design specific and very customer bespoke — they are proprietary
they will be about pipeline etc. specific issues
they will include items like pipeline issues/hazards etc...
these will always need to be added by customer for each core/design

Yes, you will need functional coverage for all this...

Verification Task Group © OpenHW Group October 2022

RISC-V CPU Functional Coverage -

In context... |mperas

RISC-V Instructions (Standard ISA architectural feature)

There are many different instructions in the RV64 extensions:
Integer: 56, Maths: 13, Compressed: 30, FP-Single: 30, FP-Double: 32
Vector: 356, Bitmanip: 47 Krypto-scalar: 85
P-DSP: 318
For RV64 that is 967 instructions...

And for each instruction there will need to be written SystemVerilog covergroups and coverpoints...
Maybe 10-100 lines of SystemVerilog for each instruction...

10,000-100,000++ lines of code to be written...

and be correct and working...
For the non-priv. instructions etc...

=> And ... It is not design specific, nor specific to your core...

Verification Task Group © OpenHW Group October 2022

RISC-V CPU Functional Coverage (2) |[ﬁf]][@eras

Tedious and error-prone to write by hand...

For each design...

It is unnecessary to re-develop — it is the same for all ISA compliant cores

There needs to be collaboration...
There needs to automation...

=>that is the focus of Imperas’ riscviISACOV (https://github.com/riscv-verification/riscvISACOV)

enable the developing of functional coverage VIPs that can be used for many different core
configurations/implementations

Verification Task Group © OpenHW Group October 2022

Agenda Innperas

The new world... every team develops a RISC-V based SoC
The challenges of verifying RISC-V CPUs

Scope of DV: domain specific, extensions, individual project customization

Functional Coverage — a key measurement of progress & quality

Automation (and riscvISACOV) to the rescue

Case study with open source CVW core
Summary

(c) Imperas Software, Ltd. 27-Nov-23

-
riscviISACOV
SystemVerilog functional coverage IM@)eras

https://github.com/riscv-verification/riscvISACOV

O Use a machine-readable version of the imperas
RISC-V ISA to auto generate reusable ﬂ
covergroups and coverpoints . — aﬁ —)
= 220,000 lines of source iImperas
" 2,100 covergroups, 11,200 coverpoints SCyISh - systemterlog coveage f'SA:?V
“ 136 extension options
“ Hazards, CSRs, CSRcompares, PMP, MMU
" 6 levels of coverage detail Systemuerlog functiona] coverage code
® Base compliance -> DV privilege mode extended
O Use open standard RISC-V Verification SECVER | g Imperas
Interface RVVI-TRACE data to sample the o | BH e I E| e ‘ (e Cx
generated covergroups (DUT) 2 coverage

=> measures how much verification is done

Page 15 (c) Imperas Software, Ltd. 27-Nov-23

Agenda Innperas

The new world... every team develops a RISC-V based SoC
The challenges of verifying RISC-V CPUs

Scope of DV: domain specific, extensions, individual project customization
Functional Coverage — a key measurement of progress & quality
Automation (and riscvISACOV) to the rescue

Case study with open source CVW core

Summary

(c) Imperas Software, Ltd. 27-Nov-23

CPU DV example: OpenHW CVW

7l a2y P) orenw 1UIPETAS

PROVEN PROCESSOR IP ——

CVW: 5 stage, in-order, single issue RISC-V 32/64 bit application core in new textbook
“System-on-Chip Design”: Harris, Stine, Thompson, Stine (Elsevier 2025)

Prior to starting to work with Imperas Fast Processor Model (ImperasFPM) & ImperasDV:
RTL passed all RISC-V International Compatibility tests (riscv-arch-tests)
RTL passed custom tests, especially for privileged unit
75.2% code coverage per Siemens EDA’s Questa
Created many more directed tests: Raised code coverage from 75.2% to 91.9%

Verification methodology: program & memory signature compare

RTL successfully boots Linux (500M+ instructions), in SystemVerilog simulation, and on an FPGA

Completeness (riscvISACOV)

Boot Linux:
38% of 200 covergroups (instructions)
2% of 1.5M coverpoints/bins
(11% of the MMU coverage...)

(c) Imperas Software, Ltd. 27-Nov-23

I
CPU DV example: OpenHW CVW — =
using ImperasFPM + riscvISACOV risevisAcov |[fﬁﬂ|peras

ImperasFPM:
(Imperas Fast Processor Model)

SystemVerilog top level

O Stimulus: Testbench /

“ Pseudo-random test programs
Simulation
control

Inperas
RISC-V
Reference Model

Imperas
riscvISACOV

functional
coverage

generated by riscv-dv*

O Verification:

. S ———
|Same prog]';am run Ongvlw and riscv-dv trace2cov
mperas reference mode T cvwatyriscy | 5l & _
Instruction B <
. Core Y = I State
* Internal state of CVW and reference | >rem RTL = $ trace2api 2 eTIeErsa
continuously compared (L) 4 = .

Pipeline
synchronization
Pass/Fail
Determination

trace2log
“ Mismatches reported immediately

“ External interrupts handled by

ImperasDV

ImperasDV:
full asynchronous event continuous compare lock-step

*https://github.com/chipsalliance/riscv-dv i

Page 18 (c) Imperas Software, Ltd. 27-Nov-23

CPU DV example: OpenHW CVW —
results of using Imperas solutions

Fix Pull Description
Request

5 44
46

47 48
49 54
50 54
55.58, 93
65

59 128
66 69
70 74
106 149
120 146
142 149
145 149
148 170
203 208
392 304

Page 19

fence.i doesn’t flush DS to instruction memory properly
Load page fault occurs on misaligned load

ecall incorrectly increments minstret

CSRs updated too soon during pipeline stall

DS flush not suppressed during hardware page table walk, leading
to improper instruction page fault

Single-precision inputs treated as double-precision for NaNs, fsgnjn,
fclass

Decoder does not cause exception for an illegal instruction

Load miss at same time as spilled instruction fetch with ITLB miss
does not wait for load miss to finish

Floating-point mstatus.FS improperly enabled on reset

c.fld produces wrong MTVAL (uncompressed not compressed
opcode)

SIE/SIP should be zero unless mideleg bits are set

scounteren reset to inconsistent value

lllegal bits in PMPADDR bits 63:54 are not detected

Interrupt incorrectly taken while 1S and DS are stalled

Wrong MEPC on trap when switching to user mode with bad PMP

During concurrent DTLB and ITLB misses, ITLB entry is corrupted,
causing Linux to occasionally crash. Very complex bug.

(c) Imperas Software, Ltd.

.
mperas

ImperasDV async-lock-step
continuous compare
verification methodology
found significant bugs

Recently used Imperas
riscvISATESTS for MMU and
found more bugs

27-Nov-23

Processor Verification Requires
Methodology, Models, Tools, Verification IP Im[@eras

Doing signature compare, or post-simulation trace-compare, is not a sufficiently
comprehensive methodology to provide complete functional coverage

Booting Linux (or running other software) is similarly incomplete
Success in processor verification requires a high-quality model of the processor

Success in processor verification requires innovative technologies and
methodologies — automation helps scale

(c) Imperas Software, Ltd. 27-Nov-23

Agenda Innperas

The new world... every team develops a RISC-V based SoC
The challenges of verifying RISC-V CPUs

Scope of DV: domain specific, extensions, individual project customization
Functional Coverage — a key measurement of progress & quality
Automation (and riscvISACOV) to the rescue
Case study with open source CVW core

Summary

(c) Imperas Software, Ltd. 27-Nov-23

Automating the generation of the testbench |mperas

Functional Coverage measuring components

Generation of verification components can produce significant benefits to DV
teams

Requires machine readable formats as input to generators

Imperas has created generation technology and results have been in use in 3
generations since 2020 with OpenHW cores & commercial users

Imperas roadmap to make more generated RISC-V verification components
available in 2024

(c) Imperas Software, Ltd. 27-Nov-23

Summary Im@eras

RISC-V freedom enables domain-specific processors
It is this freedom, and not the free, that is driving/accelerating RISC-V adoption

With all the RISC-V implementations, custom instructions and configurations
will be used — and will need modeling & verifying

Verification is an exponential, and endless, problem
balance between the “cost of finding bugs” (the verification costs)
Versus
the “cost of not finding bugs” (the impact costs of bug escapes)

Automation (like riscvISACOV) helps build the DV environment that can
provide significant time to market, effort, and quality results

(c) Imperas Software, Ltd. 27-Nov-23

club

Imperas

Generation and Configuration of Functional
Coverage and Verification IP for RISC-V
Processor Verification

Simon Davidmann (simond@imperas.com)

WWWw.imperas.com

© Imperas Software, Ltd.

28-Nov-2023

The Design and Verification Club
(Europe and India)

e
Imperas

Page 25 (c) Imperas Software, Ltd. 27-Nov-23

I
Backup slides Ilnnperas

Page 26 (c) Imperas Software, Ltd. 27-Nov-23

.
mperas

* Coverpoints & covergroups in SystemVerilog source in testbench

SystemVerilog functional coverage overview

Testbench

* Connects via interfaces into core through ‘tracer’
Functional
coverage

* Core execution events trigger sampling of coverpoints to collect
data on state of core

interfaces

* SystemVerilog simulator & tools from e.g. Cadence, Synopsys,
Siemens EDA, Metrics create coverage data files, collate, and then
provide coverage reports

SystemVerilog

Coverage data files
& reports

covergroup add cg with function sample(ins_t ins);
option.per instance = 1;

cp rd : coverpoint get gpr name(ins.ops[0].key, "add") { F m fW]_U!gZCDV [C—18.08% 273 [3981 (6.86%)
4 9 g coverpot ot (sns.0p(0] val) 4 3 obj add =T 74.79% 113 /126 (89.68%)
St S & cp_rd 100% 32 / 32 (100%)

ip_rsl . coverpoint get gpr name{ins.ops[l].key, “add") { % cp_rddslgn 100% 3-"‘3{1%}
cp_rsl sign : coverpoint int'(ins.opsi1].val} { &8 {P_rﬂ 100% 32 / 32 (100%)
ot Bl il & cp_rs1_sign C—] 33.33% 1/3(33.33%)
bins pos = {[1:$]};
(]:p_r52 . coverpoint get _gpr name(ins.opsi2].key, “add"} { & Cprs2 100% 32 /32 (100%)
€p_rs2 sign : coverpoint int'(ins.ops[2].val) { % {P_FSE_SIFEH =j 66.67% 24{3{6&5?%}
e e {_[5: e . e.g. Cadence Xcelium IMC coverage report GUI
e.g. SystemVerilog covergroups/coverpoints
(c) Imperas Software, Ltd. 27-Nov-23

.
mperas

RISC-V Machine readable definitions

RISC-V
privilege and un-privilege

machine readable
definition
(Imperas internal)

* There are several categories of items that need considering
* ISA extensions and groups with version revisions
* Instructions with format and coverage definitions
* CPU state / Control and Status Registers (CSRs) with field and coverage definitions
* Interrupt and Debug modes and coverage definitions

* Configurability of the items in these categories
* Context awareness of dynamic settings of these categories
* Specification capability of ‘user choice’, ‘implementation defined’

Page 28 (c) Imperas Software, Ltd. 27-Nov-23

