Verification Futures
Conference

Austin Marriott South

Thursday 14 September 2023

Sponsored by
— cadence Imperas

A HERO ELECTRONIX VENTURE

4 ,5\pouLos

BREKER"

Participating Companies Media Sponsor

ARM ©BROADCOM' = Y £y semiwiki
RE NESAS ERICSSON "

intel) [N
L/ o 2\ SigmaSense ‘L-U]

= SynthWorks ' tenstorrent
A HERQ ELECTRONIX VENTURE v

—

Chip Design

Test/Product T E S S 0 LVE

Engineering
A HERO ELECTRONIX VENTURE

Offerings

Embedded Systems

Hardware Engineering
Engineerin
" Tomorrow’s

Solutions
Your Capable Partner Today

Robust Infrastructure
Test Floor | Reliability &
STPI Smart Lab

e = =
‘_/_'_ = ik Expert Engineering Team
— = S —° 90% Technical Staff
& = =—o
e— = s—o
— z g}. gog Quality Processes
T Upto 30% Cycle

lﬂ $ l lH ¢ lﬂ Time Reduction

CoE
Technologies

ARM, RISC-V Subsystem and 5G and High High Performance Automotive
Analog Block Development Frequency RF Solutions Compute Solution Compliance Solution

Automotive Data Centre/ Industrial/loT Avionics Semiconductor
Enterprise

www.tessolve.com | Email: sales @tessolve.com

08:30

09:25

09:30

10:15

10:30

11:00

11.30

12:30

Agenda (AM)

Arrival: Breakfast and Networking

Welcome: Mike Bartley, Tessolve Semiconductor Ltd

Keynote Speakers
Vivek Vedula, ARM Ltd

User Top Verification Challenges

10:15 Alex Duhovich, Ericsson
Bahadir Erimli, Cadence Design Systems
Refreshments and Networking

Multi-Track Session

Track 1 - User Presentations on Formal Verification [Lonestar Ballroom -
Salon A+B]

11:30 Mike Bartley, Tessolve Semiconductor Ltd
11:40 Divyang Agrawal, Tenstorrent, Inc

12:10 Suneil Mohan, Intel Corporation

Track 2 - Training Session 1 [Lonestar Ballroom - Salon C]

11:30 Doug Smith, Doulos

Track 3 - UVM for AMS Verification [Lonestar Ballroom — Salon D]

11:30 Peter Grove & Steven Holloway, Renesas

Lunch and Networking

Agenda (PM)

13:30 Larry Lapides (Imperas Software Ltd.)
14:00 Adnan Hamid (Breker Verification Systems)
14:20 Balram Naik Meghavath (Broadcom Ltd)

14:40 Hemendra Talesara (Bitstar Technologies)

15:00 Refreshments and Networking
15:30 Multi-Track Session
Track 1 — Latest Topics in Verification [Lonestar Ballroom — Salon A+B]
15:30 Aditya Devarakonda, NXP Semiconductor
15:50 Bill Tiffany, SigmaSense LLC

16:10 Benjamin Delsol, UVMGEN

Track 2 - Training Session 2 [Lonestar Ballroom — Salon C]

15:30 Doug Smith, Doulos

Track 3 — VHDL Verification [Lonestar Ballroom — Salon D]

15:30 Jim Lewis, SynthWorks Design Inc

16:30 Event Closes

Floor Plan

Magnolia
Bluebonnel
| one Star Salon D
Ballroom
Longhom
__________ £
Stairs E
Salon A Salen B Salon C 'E
:
Sycamore B Capitol
B _S;caTm_)m_ B -+ Business Center Prefunction Area
Alamo
Sycamore A Front Desk M Club

Entrance/Exit

o

Wranqler

Flevators

Lobby

Bar & Restaurant
Entrance/T xit

Notes

Mike Bartley

Tessolve Semiconductor Ltd
Senior Vice President — VLSI Design

Welcome Message

Biography

Dr Mike Bartley has over 30 years of experience in software testing and hardware
verification. He has built and managed state-of-the-art test and verification teams inside a
number of companies (including STMicroelectronics, Infineon, Panasonic and start-up
ClearSpeed) and also advised a number of companies on organisational verification
strategies (ARM, NXP and multiple start-ups).

Mike successfully founded and grew a software test and hardware verification services
company to 450+ engineers globally, delivering services and solutions to over 50+ clients in
a wide range of technologies and industries. The company was acquired by Tessolve
semiconductors, a global company with 3000+ employees supporting clients in VLSI, silicon
test and qualification, PCB and embedded product development in multiple vertical
industries.

Mike has a PhD in Mathematics (Bristol University), and 8 MSc’s in various subjects
including management, software engineering, computer security robotics and Al. He is
currently studying (remotely) for an MSc in Blockchain and Digital Currency at the
University of Nicosia, Cypress

Tessolve would like to thank the sponsors and participants of the
2023 Verification Futures Conference

A HERO ELECTRONIX VENTURE

Notes

Vivek Vedula

Arm Ltd
Technical Director

Safety and Security challenges in hardware
IP development

Keynote Speaker

Abstract

Ensuring the trustworthiness in computing is increasingly becoming a challenge in the inter-
connected world relying on electronic systems. Security and safety provide assurance that
these systems are resilient to malicious attacks and malfunctioning components,
respectively. Given the diverse and rapidly evolving market demands, the requirements for
both new features and performance significantly increases the probability of security- and
safety-related design flaws to remain undetected. This talk will describe the challenges
during IP development in efficient identification of relevant risks, and their effective
mitigation for safe and secure computing.

Biography

Vivek Vedula leads the SDL methodology architecture and development for hardware IPs at
Arm. Prior to this, he held several roles at Intel, NXP and Oracle Labs spanning the areas of
formal verification, post-silicon validation and HW-SW co-verification. Vivek holds a PhD
degree in Electrical and Computer Engineering from the University of Texas at Austin.

Slides will be shared during presentation.

ARM

Notes

Alex Duhovich

Ericsson
PEU Silicon — IP Verification Methodology Lead

Ericsson’s Challenges of IP Development and Verification
for Products with a Long Shelf Life

Challenge Paper

Abstract

Ericsson develops ASICs for radios which have a long shelf life and an even longer life cycle.
It’s hard to have IP roadmaps with on-time requirements to allow for IP-centric planning and
execution. This presentation will outline some of the challenges Ericsson IP teams have been
facing in their quest to IP driven in a product driven market.

Biography
- 20+ years of ASIC/SoC design and verification experience
- BSEE from Drexel University, MEEE from University of Maryland College Park
- Most of career spent in the telecommunications industry
- Started at Ericsson in 2017
- Methodology lead since 2021

ERICSSON

Notes

Ericsson’s Challenges of IP
Developmient and Verification for

Products witt. @ Long Shelf Life

Alex Duhovich — PEU Silicon IP Verification Methodology Lead

w

20+ Years, mainly in Telecommunications Industry
(Hughes, Ericsson)

* Bachelor’s in EE from Drexel in 2000

+ Master’s in EE from University of Maryland College Park
in 2015

* At Ericsson since 2017

+ Started in IP verification -> Team Lead -> Verification
Methodology Lead

* Email: alexei.duhovich@ericsson.com
* LinkedIn: https://www.linkedin.com/in/aduhovich/

Purpose:
To create connections that make the unimaginable possible

Vision:
Aworld where limitless connectivity improves lives, redefine:
business, and pioneers a sustainable future

History:
140+ years of delivering ground-breaking solutions and
innovative technology for good

Leader in Technology:
Leading provider of Information and Communication
Technology (ICT) to service providers
227.2b.SEK (~ $ 27b) in Sales
54,000 patents

w

Solutions take many form factors

- T, |
I o F X v ’
e
. ; Vork pole
ol ;um;v!v! | Mlgm
f Stet ity

=
(A lii o
¥ 1
- %E =
Indoor Enterprise | [Sandiim: lingoor Mocso |

Private netwark

Ericsson Silicon Portfolio

z z
= z

Digital front-end,
PIM cancelation
ond eCPRI

Lo 2pcesed W Lopr L procesng 8 Beomierming prceserg 8 Do boré-and procease

L\

—
k}‘?j Product-centric development

Long product shelf lives lead to requirements
creep

Challenges

Requirement quality gaps lead to planning
challenges and schedule slips

General increasing complexity challenge with
|j verification: Methodology scaling, Power,
Security

IP requirements based on product
Requirements come in at the start of a project

Product
Centric
Development

Product lives of ~10 years

Customer expects longevity

ng Product

Shelf Lives Products are overdesigned to support
future standards

be right the first time.

Requirements quality varies at the start of the
project

Requirements creep happens

Planning
Challenges

Initial planning often inaccurate

Replanning is disruptive

Causes schedule slips, missed scenarios/use cases

Design complexity increases exponentially

Workforce cannot keep up

Increase of
Complexity

Constrained-random verification doesn’t scale

Most time spent on debug and coverage closure:
These are hard to predict.

Power and Security are becoming extremely
important

IP Centric Development

Architecture mindset

shift: IP Roadmaps with Reuse and featufe
. superset mentality for
forward looking

N design and verification
requirements

Methodology and process Infrastructure update to
update for feature-based, |:_|i support this way of
agile development working

Planning for the Unknown

\-
(Increased visibility of development data: Early warning system

P
(Robust documentation and tracking of requirements
AN

e
(Using past data to predict the future and plan appropriately

Building risk into schedules

/

Hedging Your Bets

Infrastructure expansion and efficiency improvement for
better engineering turn-around-time: LSF, Compute, Storage

u Simulation and Regression time improvement: Looking for
opportunities to improve performance

\.\\ Leveraging EDA state of the art solutions to improve
- development, debug and coverage closure times

Q&A

\\

Bahadir Erimli

Cadence Design Systems
Group Director — Verification Application Engineering

Engines, Logistics and Al

Platinum Sponsor

Abstract

As the verification problem continues to grow, the key metric that many verification teams
must closely consider is “Total Verification Throughput.” While verification engines like
simulation, formal, emulation and so on have a key part to play in total verification
throughput, additional concepts like verification logistics and the utilization of Al can have
significant impact and potentially benefit as well. This presentation will introduce the
concept of verification logistics and how Al is, and will be, applied.

Biography

Bahadir Erimli is a member of the Cadence Worldwide Field Operations team where, as a
Group Director he leads the Verification Applications Engineering team primarily in
California including Silicon Valley. Before joining Cadence nearly 12 years ago, Bahadir held
a number of senior engineering positions at consume and biotech semiconductor
companies. Bahadir is based in San Diego, and holds a Bachelor’s degree in Electrical
Engineer from Middle East Technical University in Turkey, as well as advanced degrees in
electrical engineer from Caltech.

cadence

\ = cadence >

Verisium AI-Driven”
~fr Verlﬁcatlon

~ -

Leverhge b|g data ‘nd Al to 0| t|m1ze

Engines, Logistics, and Al

Verification Futures Austin

Bahadir Erimli
Group Director, Verification Application Engineering

cadence’

5 Generational Trends...All Anchored Around Compute

Datacenter / Cloud

5G / Communications
HW Accelerators

Autonomous Vehicles

Industrial loT

cadence’

The Scale of the Problem is Outpacing Engineering Resources

Transistor Count

More Annual
Design Increasing
Over the Over the

Next Decade

Next Decade

(<=10nm)

Not Enough
Engineers

Engineering Talent Shortage Now
Top Risk Factor

FEBRUARY 25,2019 BY: MARK LAPEDUS

Plus new (additional) requirements! E.g. power aware verification, functional safety verification

cadence’

Total Cost of Silicon — Industry Trend

IBS, Global Semiconductor
Industry Service Report
July 2022

cadence’

66
Amateurs talk about strategy...

...professionals talk about logistics.

(most commonly attributed to)
Omar Bradley
General, United States Army

9

cadence’

Package Throughput = Engines x Logistics

Prep time: 10mins 30mins Few hours
Speed: 25mph - 60mph 600mph
Reach: Front door Warehouse Airport

cadence’

Verification Throughput = Engines x Logistics

X86 or Arm®-based server Custom Processor FPGA
Compile Time: Minutes Few Hours 1-2 Days
Speed: 100Hz 1MHz 5MHz+
Reach: IP Debug SoC Debug Software Debug

cadence’

Verification Throughput = Engines x Logistics

c o i o

=
=
i
e mEEE ==
X86/Arm X86/Arm Custom Silicon FPGA X86/Arm

I

cadence’

Xcelium Mixed Signal Simulation

Analog Mixed Signal (AMS) Digital Mixed Signal (DMS)

Unified Debug, Testbench, and Coverage

cadence’

Domain-Specific Hardware for Simulation Acceleration

Simple left-to-right ASIC-style full
stream processing Place and Route

Custom Processor

‘ ‘ %j 8
Switch
fabric
Debug Fast predictable compile Highest
Engine] Flexible debug Performance

cadence’

Engines x Logistics with Verisium Manager

Job scheduling

Multi-site multi-project global
verification management

o o

- [T w—
U2 S S, ¥

Formal and Static Simulation Emulation Prototyping

cadence’

Engines x Logistics for Functional Safety

[_J Midas™ Safety Platform

]

vManager™ Safety T
Fault Campaign Management = -

L T |

Fault Reachability Fault Simulation Fault Emulation

fuwre
{
|

cadence’

o

L

il

[T
g

cadence

QoR QoR QoR QoR
Capacity Capacity Capacity Capacity
Runtime Runtime Runtime Runtime
Coverage Coverage Coverage Coverage
Tool A Tool B Tool C Tool D "t

cadence’
User Perspective
Meet PPA Goals
Meet Coverage Goals
Tool A
Tool A
Tool A
cadence’

Next-Generation EDA

7~ Al-Driven Design and Verification
SN Multi-engine multi-run learning and optimization

Big Data Platform

Custom
Tools

cadence’

Cadence EDA 2.0 Solutions

Virtuoso®
Studio

Custom Design

Verisium™

Verification

Cerebrus™
Implementation

Allegro’ X Al
pca

Multi-pt

Cadence JedAl Data Platform

System
Tools

Custom
Tools

System
Tools
System
Tools

Optimality™

F75 o

time to market

urhan

cadence’

Cust

Verisium Al-Driven Verification

rime

Manage test runs and
coverage closure

% Verification Time

Xcelium™)
Simulation

Aut

source code Pi

repository

PERFORCE.

+Omoug
Testhenah deseipment & pareing
L —

=t

Cadence JedAl

Data and Al Platform

risium

Verisium

tomer Case Study

toDebug Current Flow Verisium Flow Speed-up

Al on log files

FRLALTLN Auto oroup tests failng or same reason

Al on source code

TSI Rank check-ins most likely to cause bugs

Al on wave dumps
Auto root cause signals and time of bug

Dual-view debug
Compare Rev n and n+1 sims side-by-side

TS 70" suiag

MEDINTEK
cadence’
Al-Driven Simulation Performance Regression CPU Cycles
2500
1500

Randomized CTITT:

TestSuite DII ’

Run N [ERNEN) N s Esmms 50 I
2] — E— — N [| . [|
— i — Exanpie 1 xampie 2 Exampes
=Original s (Toycls) = Xcelum M i (Teyces)
Up to faster
Same coverage Regression Coverage
Xcelium ML

Randomized MBI - L 15000

Test Suite o—r 10000

Run N+1 == oo

‘ Example 1 Example Example 3
= rignal coverans #Xcalum ML coverins
cadence’

Al-Driven Formal Proof

Jasper™ Proof
Master
Al-Driven Formal Proof

Proof Caching Proof Orchestration

Proof Profiling
Data
* Use Machine
Learning to find the
best proof algorithm
settings

+ Keep engine-level
settings that
worked before

+ Reuse existing
result if constraints
and COl
unchanged

Proof Success Rate

Smat Proot
s0% % 12x

A
B 69% 69% 10%
c 12% 25% 21X
D 44% 83% 19%
E 57% 94% 16X

68% 69% 10X

:

cadence’

Extending the Reach of Verification IP I i

Interface and Memory VIP System VIP . 1

Testbench [l Performance System
Generator Analyzer Scoreboard
Palladium
) 3 Protium
+ Industry’s broadest portfolio
+ Verify compliance and cover

the corner cases with TripleCheck « System-level tests up and running in a day

« Highest performance with « Validate PCle® for Arm SBSA
C-based kernels

+ Boot Linux and Windows over PCle

cadence’
Cadence Verification Solution
Verisium™
en Verific:
o 2 S B B0
[R |
Interface ory — Syst
Simulation Emulation Prototyping Virtual Platform
Xcelium™ | Protium Helium
cadence’
cadence’

cadence

Track Session

User Presentations
Lonestar Ballroom — Salon A+B

FLOOR PLAN

Magnolia
Bluebonnet
| one Star Salon D
Ballroom
Longhorn
__________ g
Stairs E
Salon A Salen B Salon C 'g
S
i a
Sycamore B Capitol
Sycamore A -+— Business Center Prefunction Area
Mo
Sycamore A .
Y Wrangler hront Desk M Club
Entrance/Exit
Flevators
Lobby Bar & Restaurant
| Entrance/T xit

We would be grateful if you could move to the track session as quickly as possible.

Notes

Mike Bartley

Tessolve Semiconductor Limited
Senior Vice President - VLSI

10 years of Verification Challenges

User Paper

Abstract

Verification Futures has been running for more than 10 years and in that time more than 25
verification managers have given their views on their main challenges in verification. This
talk will summarise those challenges and the main solutions organisations have put in place.

A HERO ELECTRONIX VENTURE

Notes

T=SSOLVE

Verification Futures Austin 2023

12 years of challenges = 100+ challenges from 30+ experts

Chip Design Test Engineering Hardware Design Embedded Systems
. . T=SSOLVE
HlStOr'C Sum mary A WERO ELECTAONIX VI NTLIRE
2022 Wilson Research Group IC/ ASIC functional verification trends
Challenge Mentions
Complexity 12 (=) Non-mover Design complexity stabilising
Debug 12 —
Resources 12 ——
Integrating Methods, © 70% projects use UVM
Languages and Tools 10 NOn-moVer A\ other methods <10%
Completeness 10
Safety verification 9 fF Ontherise 449 of IC/ASIC projects
Scalability 8 are safety-critical Fig. 9. Where KIASIC verification enginers saer theit ime.
Mixed Signal 7
Power Verification 6
Productivity 5
Reuse 5
HW/sw 5 . 58%of IC/ ASIC projects add
Security verification 5 b ontherise security features to their designs
Using AI/ML in verification 4 4@ New entry
o (-]
. . - . T=ESSOLVE
Al/ML Experiments in IP Verification A emo ssctioms v
Verif Flow
Requirements Feature Coverage Test B Tests onstraints Coverage
| Specification List bench Agents - Dat

ML
(various)

Coverage Coverage
planning

Constraint
generation

Notes

Divyang Agrawal

Tenstorrent, Inc
Sr. Director, RISCV Cores

RISCV CPU Verification - Opportunities and Challenges

User Paper

Abstract

The highly configurable nature of RISCV ISA makes it uniquely suited for a hierarchical
verification methodology covering both architectural and microarchitectural complexity.
This technical talk will focus on how Tenstorrent leveraged on the lessons from x86 and ARM
to build a modular and scalable CPU verification framework. It will also preview how design
complexity has to be tackled looking at silicon as a starting point. And ultimately why robust
open source RISCV verification collateral is essential for broader adoption of the ISA from
microcontrollers to high performance datacenter class products

Biography

Divyang Agrawal is a Senior Director at Tenstorrent where he works on RISCV Cores focusing
on design verification, emulation, architectural tools and methodologies. He has previously
worked on x86 and ARM architectures. Prior to Tenstorrent, Divyang worked at AMD where
he held leadership roles within AMD's CPU Cores team working on several generations of
high-performance cores. He also led the CPU Power Management IPs and Silicon Validation
for all AMD cores. Divyang has a BTech in EE from Nagpur, India and an MBA from University
of California at Berkeley

Slides will be shared during presentation

' tenstorrent

s

Notes

Suneil Mohan

Intel Corporation
SOC Design Engineer

Validation of Hybrid Architectures

User Paper

Abstract

Intel’s 12*" generation processors (code named Alderlake) introduced a new asymmetrical
design that combines a mix of Performance Cores (P-cores) and Efficient Cores (E-cores),
delivering scalable, efficient, multi-threaded performance in a single package. The validation
challenge for this asymmetrical design spanned both Pre Silicon and Post Silicon phases. To
meet the challenge of validating thoroughly the new asymmetrical design, our validation
methodology had to be overhauled; this ranged from updating existing test generators all
the way to developing new testing methodologies. In this presentation, we will cover key
aspects of our asymmetrical design validation methodology in both Pre and Post Silicon
phases, the strategies we adopted and the challenges that we had to overcome.

Biography

Dr. Suneil Mohan received his BE from Anna University in India in 2006 and PhD from Texas
A&M University in 2012. He is a senior validation engineer in the Intel E-core team with deep
expertise in both Emulation and Post silicon validation. He is currently the Post Silicon debug
lead for the E-core team. He has worked on multiple generations of the E-core product line
including those that are part of the most recent 13" Generation Intel® Core™ processors. In
addition, he has experience working on the 1ISO26262 standard.

Notes

Verification Futures Conference 2023 US

Hybrid Architecture Validation

Suneil Mohan

intel.

Agenda

« Introduction to Intel Hybrid
architecture

* Pre-Silicon challenges and
solutions

« Post Silicon functional
validation methodologies

» OS Based Verification

« Functional Validation Sign Off

© Intel Corporation. Intel, the Intel logo, and other Intel marks are
trademarks of Intel Corporation or its subsidiaries. Other names and
brands may be claimed as the property of others

Intel Corporation

Intel Performance Hybrid Architecturewe

Designed to deliver efficient high-compute performance in a large dynamic power and performance range

Performance-cores

« Larger, high-performance cores
designed for speed while maintaining
efficiency.

* Tuned for high IPC (instructions per
cycle) and high turbo frequencies.

* Supports hyper-threading

Intel Corporation

Efficient-cores

* Smaller, with multiple E-cores fitting
into the physical space of one P-core.
* Designed to maximize CPU efficiency,
measured as performance-per-watt.

* Ideal for scalable, multi-threaded
performance. Does not support hyper-
threading

intel

3

Pre-Silicon Verification

« 3-prong approach
« Each CPU team performs dedicated
IP validation (Simulation, Emulation
& FPGA environments)
* SoC validation team performs
« Integration
+ Hybrid Validation
« Periodic, Consistent check-ins
between each Core and the SoC

Intel Corporation

SoC Validation
Team
E-Core

Validation <)

CE

Core
Validation
Team

intel

.

Extensive Pre-Silicon Microcode Validation

« Built a combined Microcode

. [
simulator model. Microcode

Combined

« Allows validation of interaction

+ Microcode
before Simulation/Emulation Simulator

models are built Model

« Faster turnaround of short

experiments for validation

Intel Corporation intel

s

Post Silicon Validation

« Similar approach to Pre Si val SoC Validation
« Each CPU team performs Nostoil
dedicated IP validation
« SoC validation team performs
* Integration , \
« Hybrid Validation

 Periodic, Consistent check-ins
i E-Core Post Si P-Core Post Si
between each core family and Validation) Validation
the SoC Team Team

Intel Corporation intel

IP Validation teams (E-core and P-core)

Experts in their uArch

Validate their IP in isolation

Support SoC / Hybrid / Integration Debug

I

Intel Corporation intel

7

SoC Validation team

Validate Hybrid Integration

Run Hybrid Workloads

Verify Key Performance indicators

Coordinate debug with the appropriate IP team

Intel Corporation intel

i

OS Based Verification

What if Synthetic Workloads are not stressful enough?

« External Software may have corner ~ 1. Analyzed Open-Source OS scheduler

case behaviors that are not always SENED CEE R () (2l S,

modelled. 2. Ran Task Switching OS Scheduler code
on the combined microcode simulator
* External Software may do things that model to understand the behavior

e e capEiEly o Hpee 3. Built a randomized OS task switcher for
* Need to see how random task Post Silicon validation

switching might behave

Intel Corporation intel. ¢

Functional Validation Sign off

Pre-Silicon Post Silicon

« Pass rates for synthetic test content. + Acceptable pass rates for synthetic
« All failures accounted for, test content

understood and dispositioned * All failures accounted for,

- Coverage data analysis complete. understood and dispositioned

« Power and Perf data collected, + Power and Performance data
analyzed and within expected meeting projections
ranges. « 100% pass rate for the OS task

switching tests.
« Thread Director working as expected

Intel Corporation intel. 10

References and Additional Resources

[1] E. Rotem et al., "Intel Alder Lake CPU Architectures," in IEEE Micro, vol. 42, no. 3, pp. 13-19, 1 May-
June 2022, doi: 10.1109/MM.2022.3164338.

[2] How 13th Gen Intel® Core™ Processors Work:
https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html|

S. Khushu and W. Gomes, "Lakefield: Hybrid cores in 3D Package," 2019
Lakefield IEEE Hot Chips 31 Symposium (HCS), Cupertino, CA, USA, 2019, pp. 1-20,
doi: 10.1109/HOTCHIPS.2019.8875641

W. Gomes, S. Morgan, B. Phelps, T. Wilson and E. Hallnor, "Meteor Lake and
Arrow Lake Intel Next-Gen 3D Client Architecture Platform with Foveros," 2022
IEEE Hot Chips 34 Symposium (HCS), Cupertino, CA, USA, 2022, pp. 1-40,
doi: 10.1109/HCS55958.2022.9895532

Meteor Lake

Intel Validation Lab “I've never had so much fun - intel development center deep dive,” YouTube, 25-May-
2022. [Online]. Available: https://youtu.be/BtFdraQWVIM [Accessed: 16-Jul-2023]

Intel 12 Gen Validation I saved the best for Last - Intel Design Center Development Motherboard,” YouTube,

Platform 06-Jul-2022. [Online]. Available: https://youtu.be/pyVZ05SOO0Ic [Accessed: 16-Jul-2023]

Intel Corporation intel. 1

Q&A

Intel Corporation intel. 12

intel.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Other names and brands may be claimed as the property of others.

Track Session

Training Session - 1
Lonestar Ballroom — Salon C

FLOOR PLAN

Magnolia
Bluebonnet
| one Star Salon D
Ballroom
Longhorn
__________ g
Stairs E
Salon A Salen B Salon C 'g
S
i a
Sycamore B Capitol
Sycamore A -+— Business Center Prefunction Area
Mo
Sycamore A .
Y Wrangler hront Desk M Club
Entrance/Exit
Flevators
Lobby Bar & Restaurant
| Entrance/T xit

We would be grateful if you could move to the track session as quickly as possible.

Notes

Doug Smith

Doulos
Engineer / Instructor

What Can Formal Do For Me?

Gold Sponsor

Abstract

We know formal can prove things, but where do we apply it? Did you know you can use
formal to generate simulation testbenches for covering coverage holes or have it visualize
your design without writing a single line of testbench code? Formal can be used for
identifying metastability, X propagation, fault propagation and detection, equivalence, and
so much more. In this tutorial session, we'll have a look at the many ways formal helps out
your design verification process.

Biography

Doug Smith is a verification engineer and instructor for Doulos based in the Austin Texas
area with expertise in UVM and formal technologies. He has been using formal technology
for several decades, performing formal verification on many kinds of designs and formal
applications. Likewise, he has provided formal application support at both Jasper and
Mentor/Siemens EDA. At Mentor/Siemens EDA, he served as a formal specialist and
verification consultant, where he provided both formal consulting and developed an
automotive functional safety formal app for performing formal fault campaigns. At Doulos,
he delivers training in verification methodologies like UVM, SystemVerilog, and formal
technology.

Doug holds a masters degree in Computer Engineering from the University of Cincinnati and
a bachelors degree in Physics and Biology from Northern Kentucky University. Currently, he
resides in Paige Texas with his wife and family on a small farm where he raises bees, cows,
horses, chickens, and pigs and loves driving a tractor.

+\ DOULOS

[;\ Global

poutos Training Solutions

ESL & Verification Methodology

» SystemVerilog » UVM
» SystemC » TLM-2.0 » Formal

Hardware Design (ASIC / FPGA)

» VHDL » Verilog » SystemVerilog
» Tcl » AMD » Intel FPGA

Arm & Embedded Design

» Arm Cortex A/R/M Series » C » C++
» RTOS » Linux » Yocto » Security

Al & Deep Learning

<4

» Edge Al » Deep Learning
» Python

Practice — Share — Learn
Simulate your hardware description code

playground in a web browser for free

Call +1-888-GO-DOULOS to discuss your training needs
www.doulos.com

DOULOS WEBINARS

owHOW

www.doulos.com

A

DOULOS

What Can Formal Do For Me?

®» What is formal?
® Where can formal be used?
¢ Applications for formal

® Wrap-up

What is Formal?

“Formal verification uses mathematical formal methods to
prove or disprove the correctness of a system’s design
with respect to formal specifications expressed as
properties...."

(Using Formal Methods to Verify Complex Designs, IBM Haifa Research Lab)

Formal ...
Is mathematical and algorithmic
Proves the correctness of a design
Guarantees the implementation meets requirements

Requires no testbench or stimulus

DOULOS

Simulation vs Formal

Simulation
Tests the design

Testbench generates all stimulus and performs checking
Test input stimulus

Formal
Proves the design meets the requirements
Requirements become formal target

Formal generates all input

Formal input

DOULOS

Testbench
checker

Assertion
targets
//'

What Can Formal Do For Me?

[AR - TR .

® What is formal?

DOULOS

= Where can formal be used?

® Applications for formal

° Wrap-up

Formal Throughout the DesigniCycle

Architecture
+

Design
Planning

Verification

Sign-off

DOULOS

Post-silicon

Architectural Automatic Model Coverage Post-silicon
modeling design checking debug
checking Assertion
Processor Interface quality Verifying
z ISA Design VIP ECOs
g compliance exploration Test plan
8 Reachability generation
Verify spec CDC/RDC
Equivalence
§ 6
What Can Formal Do For Me?
AR - TR .
® Whatis formal?
® Where can formal be used?
= Applications for formal
® Wrap-up
DOULOS
7
Applications for Formal
AR - TR .

= Design exploration
Automatic design checking
Model checking
Reachability
Equivalence
Sign-off

Post-silicon

DOULOS

Design Exploration

DOULOS
unique case (State)
Zero: if (Buttons[l]) NextState = Start;
Start: begin
WatchRunning = 1;
if (!Buttons) NextState = Running;
end
Running: begin
WatchRunning = 1;
if (Buttons[1l]) NextState = Stop;
end
Stop: if (!Buttons) NextState = Stopped;
Stopped: if (Buttons[l]) NextState = Start;
else if (Buttons[2]) NextState = Reset;
Reset: begin
WatchReset = 1;
if (!'Buttons) NextState = Zero;
end
endcase
cover property (State == Stopped);
9

Formal Generated Trace

DOULOS

cover property (State == Stopped) ;

eystall W [\ [[\ I |
nsysReset
WatchRunning |~
WatchReset
[guttons||oD) G) &) G
) T | 3 Yoromed

Design visualization with ...
8 No testbench

No testcase

10

Auto Trace from Coverage App

DOULOS

= Select line to reach

n

Draw a Scenario

DOULOS

= f 2 3l o 5| 5
ST e

Draw trace

Current:1» -
e | 1 2 f
cryst | &5 A
T Buttons \anges to Constraint and Replot]
c BeieweEaamMasBE R trb-ul THod évo e
o &
5 b El El 4 5 o 7 £
£l e T e e T e T e T e WY o WY |
am == —
E c e T e U B |
E [
> ot et
> watchmumming —
e i E— e — ——
e
- | Generate wave

12

Applications for Formal
AR - TR .

Design exploration

= Automatic design checking
Model checking
Reachability
Equivalence

Sign-off

Post-silicon

DOULOS

13

Automatic Property Checking

DOULOS

Array bounds

Arithmetic overflow
Priority and unique case
Set and reset both active
Reachable X assignment
Deadlock / livelock
Incomplete sensitivity lists
... and others

14

"I\

DOULOS

Array Bounds Check

logic [7:0] address;
logic [0:3] array;

int k, n;
assign n = address >> 6;

always @ (posedge clock)
if (write)
array[address] <= data_in; Bounds check fails |
else if (read)
data_out <= array[n]; Bounds check okay
else

data_out <= array[k]; Bounds check may fail or not

c_k: assume property (@(posedge clock) k >= 0 && k < 4);

Auto

a_1: assert property (@(posedge clock) write |-> address < 4); 15

"I\

DOULOS

Arithmetic Overflow Check

logic [7:0] address;

always @ (posedge reset or posedge clock)
begin
logic [3:0] sum;
if (reset)
sum <= 0;
else

sum <= sum + address; Arithmetic overflow may fail or not

end

Auto

assert property (@(posedge clock) disable iff (reset)
sum + address < 16) ;

16

Unique Case Check

logic sel, cl, c2,

always @ (posedge clock)
unique case (sel) full_case and parallel_case both okay
0: out2 <= 0; |
1: out2 <= 1

endcase

always @ (posedge clock)
unique case (sel) full_case and parallel_case both fail
cl: out3 <= 0;

c2: out3 <= 1;

endcase

Auto

assert property (@(posedge clock) cl | €2);
assert property (@(posedge clock) !(cl & c2));

DOULOS

17

Other Automated Checking

DOULOS
Clock-domain crossing (CDC)
Reset-domain crossing (RDC)
Low-power UPF checks
Glitch checking
... and others
§ 18

Applications for Formal
AR e S N

Design exploration

Automatic design checking
= Model checking

Reachability

Equivalence

Sign-off

Post-silicon

DOULOS

19

Model Checking

Formal uses SVA for checking requirements

assert property (!(WE & OE));
assert property (Size <= Max);

property incr_size;
int sz;
3 (Wr, sz = Size) ##1 'Ready[*1:$] ##1 Ready |-> Size == sz + 1;
i endproperty

assert property (incr_size);

N

DOULOS

20

Capturing a Specification

DOULOS

After a start pulse, stop must go true on the next or second clock,
and must remain true for exactly two clocks

stop I\
N VI I W S

Example traces X
4Ll

X

assert property (start |-> ##[1:2] stop [*2]);

21

Prove Protocol Correctness
DOULOS

start ST/ T |

start_k 6 7 0 bit [2:0] start k, stop_k;
always @ (posedge clk) begin
stop 'aauNan if (start)
start k <= start k + 1;
P il il
stop_k 6 7 0 if (stop)
k=6 / stop_k <= stop_k + 1;

k=7 ‘, end

property overlap start_stop; new variable for each

bit [2:0] k; :
H s, 1 & Corrss 14 instance of property
g |=> ##[1:4]
stop && (stop_k == k)
endproperty

{ local variable assignment ‘

assert property overlap_start stop;
8 22

End-to-End Checking

DOULOS

PWDATA —>l Register tx_data
PENABLE — BN interface tx_valid

Formal
Scoreboard

expected_valid actual_valid
3 expected_data actual_data

clock—>
5 reset—>

23

Applications for Formal
[AR e S N

Design exploration
Automatic design checking
Model checking

= Reachability
Equivalence
Sign-off

[.\ Post-silicon

DOULOS

24

What Is Reachability?

.y .
[\

DOULOS

Reachability — given any legal stimulus, is it possible to reach a
scenario or line of code?

SHOFeT-@

cover property (State ==

Stopped) ;

Many Applications
DOULOS
Deadlock X-propagation
Livelock Connectivity
Vacuous assertions Registers
Liveness Security
26

DOULOS
Does something eventually happen?
assert property (a |-> s_eventually (b));
ok LI LI LT LI
a I
b) ?
1
Hard (impossible) to
prove in simulation
27

X Propagation

V /\

DOULOS

Non-resettable flops

cover property ($isunknown(dataout));

currara e

|
= XP_outputs:ieq_ad_dataout | FEET

E 1 1
ik f 1 7 !
st

|
=g,04_dstaouti1]
eq.e0 3 dataoula)

e

28

From the spec

Memory

DMA
Controller Controller

=

DOULOS

Network Interconnect

H Bridge]

H

sng [esouduad

Signal From
H PCLK Processor Interconnect 0
PWRITE Processor Interconnect 0
sigl Processor Graphics 3 o

.PCLK == i BCLK) ;

assert property (

assert property (graphics.sigl == $past (processor.sigl,3));

29

DOULOS

DMA
Controller

Encryption
Engine

Memory

Pr r
Controller [P70°¢55°!

on-Chip
oA Graphics

sng [esoUth

Storage

z Limited key access?
Keys unreachable from other paths?

= Provable by formal

§ 30

Register Testing

0x0 Control
0x4 Address

DMA

Proc: r
00eSSOr B Controller

Network Interconnect

sng esayduad

From the spec

H Config soc.dmactl 0x0 RW
Address soc.dma.addr 0x4 RW
z Count soc.dma.count 0x8 RW

assert property (sel && addr == 0x0 |-> soc.dma.ctrl == ...

31

Applications for Formal
AR - TR .
Design exploration
Automatic design checking
Model checking
Reachability

Equivalence

Sign-off

Post-silicon

DOULOS

32

RTL

module selAB (

input logic clk,

input logic QA, selA, QB, selB,
output logic Q

always @ (posedge clk)
begin
if (seld) Q <= QA;
if (selB) Q <= QB;
end

endmodule

Logic Equivalency Checking

Gate level

DOULOS

Are they functionally the same?

RTL versus gate-level netlist

Netlist versus netlist

Only works with recognizable equivalency points (signal names)

33

.

Sequential Equivalency Checking

Dynamic, not static like LEC — advances the clock

Shows equivalency between different implementations

Equivalency at the port-level

RTL <-> RTL, RTL <-> HLS (SystemC/C/C++)

DOULOS

34

Many Applications

VHDL <-> Verilog translation

Incremental feature updates
(chicken bits)

ECO fixes

Data path verification

DOULOS
C to RTL equivalence
Functional safety
Fault injection
Safety mechanism insertion
35

Fault Injection

Design

SEC can traverse through state better than model checking

Simply check if outputs are affected by the injected fault

36

Functional Safety

RTL RTL

original faulted

violated? violated?

SECWAerror undetected? SEVEWY error detected?
Mechanism Mechanism

int fault;

always @($global_clock) begin
violation = injected && (original.output != faulted.output);
detected = injected && ('original.error && faulted.error);

// Inject fault (Tcl pseudo code)
cut faulted.signal -cond { fault == 1} ...

Direct formal to a value
// Find residual fault(s)

cover property ((fault == 1) && violation && !detected);

DOULOS

37

Data Path Verification

// C algorithm
f_product = £f16 mul (f_multiplier, f multiplicand);

= 2

// RTL

module fmul #(...) (input logic [SIZE-1:0] multiplier,
input logic [SIZE-1:0] multiplicand,
output logic [SIZE-1:0] product,

State space too large for model checking

May only be able to verify with formal using SEC

DOULOS

38

Applications for Formal
[AR e S N

Design exploration
Automatic design checking
Model checking
Reachability
Equivalence

= Sign-off

Post-silicon

DOULOS

39

Areas Formal Helps Sign-off

Achieving coverage closure in simulation

Creating simulation testbenches to hit coverage holes
Measure assertion quality

Formal coverage

Testplan generation

5 Reachability

DOULOS

40

Coverage Exclusions for Simulation

Formal finds unreachables and generates exclusions

<formal tool> generate exclude exclude_file.tcl

coverage exclude -scope

{/tb_axid4lite 2 apb4/dut/u_master_interface/u_apb_master_s

c} -srcfile .../src/vlog/apb_master_sc.v -linerange 88 -
item s 1 -reason "EU“
coverage exclude -scope

{/tb_axid4lite 2 apb4/dut/u _master_interface/u_apb_master_s

c} -srcfile .../src/vlog/apb_master_sc.v -linerange 106 -
item s 1 -reason "EU"

Simulation eee

Filter coverage

DOULOS

a1

Testbench Generation

Generate stimulus to target coverage holes
<formal_tool> generate testbenches

module replay_vlog;

initial begin
#1;
force axidlite_to_apb4.use_lclk_i = 1'b0;
force axidlite to_apb4.PRESETn_i 1'b0;
force axidlite_to_apb4.PREADY i = 1'b0;
force axidlite to_apb4.PSLVERR i = 1'b0;
force axidlite_to_apb4 .PSELx i _csr = 1'b0;

Simulation eee

Fill coverage

DOULOS

42

RTL Mutation Coverage

Detected

(assertion fails) ~ Non-activated assert

assume

KRR =

Non-detected
(no assertions fail)

DOULOS

43

Formal Coverage

Assertion density — are there enough?

Cone-of-influence (COI) coverage

Proof core coverage i Mel_'ges with
simulation coverage

Code coverage

Proof core coverage

Functional coverage
Cover properties

Synthesizable covergroups

Assertion quality
Mutation coverage

DOULOS

a4

Applications for Formal
AR - TR .

Design exploration
Automatic design checking

Model checking

Reachability
Equivalence
Sign-off
[.\ = Post-silicon
DOULOS
45
oy i . C
Post-Silicon Debug
DouLos

Formal can reproduce post-silicon results for debug

Design
l m Post-silicon inputs / outputs
= |

Constrain formal to pin values

assume property (pins == ...);

cover property (state == ERROR);

What Can Formal Do For Me?
[AR e . N
® What is formal?
® Where can formal be used?
® Applications for formal
» Wrap-up
o\
DOULOS
47

PO

DOULOS

Formal complements your simulation flow
Formal verifies scenarios hard or tedious in simulation
Formal can be part of any verification planning and effort

Why would you not take advantage of what formal can do?

48

Thank you for attending
[AR - TR .

We hope you found this information helpful!

A

DOULOS

49

fo\

DOULOS www.doulos.com
— N P o

SoC Design & » SystemVerilog » UVM » Formal

Verification » SystemC » TLM-2.0

FPGA & Hardware » VHDL » Verilog » SystemVerilog

Design » Tcl » Xilinx » Intel FPGA (Altera)

Embedded Software » Emb C/C++ » Emb Linux

» Yocto » RTOS » Security » Arm
Python & Deep Learning g

arm

Notes

Track Session

UVM for AMS Verification
Lonestar Ballroom — Salon D

FLOOR PLAN

Magnoli
Bluebonnet
| one Star Salon D
Ballroom
Longhe
__________ g
Stairs E
Salon A Salon B lon 'g
5
Capitol &
Sycamore B “apito
B _S‘y_'C('J—I'I’N_)I c | A -+— Business Center Prefunction Area
amo
Sycamore A .
e Wrangler Front Desk M Club
Entrance/Exit
Flevators
Lobby Bar & Restaurant
| Entrance/T xit

We would be grateful if you could move to the track session as quickly as possible.

Notes

Peter Grove & Steven Holloway

Renesas
Distinguished Member of Technical Staff &
Member of Technical Staff

Renesas’s Submission to the UVM-(A)MS working group

User Paper

Abstract

Explanation on how UVM can be applied to DMS/AMS using a concept of a MS Bridge
module. The focus will be on an AMS Device-Under-Test, but the concepts work for DMS.
The audience will be guided over subtleties of AMS simulators and a known limitation with
the proposal and possible solutions. There will be a walk though of how this was applied to
a Mixed signal block. The audience should not take way the current implementation until an
official release of UVM-AMS has been made. The current contents of the presentation and
example code has been shared to the EDA community to feed into a white paper on the
topic. Steven will cover the UVM aspects and Peter will go over mixed signal parts.

DMS — Digital-Mixed-Signal also referred to as Real-Number-Modelling
AMS — Analog-Mixed-Signal
MS — Mixed Signal

Biography

Peter Grove

Peter has worked in the industry starting back in 2001 when he joined a small company
called Wolfson MicroElectronics, where he was project lead for more than 15 production
devices. Since then Peter has only worked at one other company, Nujira, before joining
Dialog (now Renesas) at their Edinburgh office. Peter has been with Dialog since
2014. Peter’s background has been main digital design, but has over the years taken charge
of many large mixed signal devices that are in volume production and been exposed to
enough analogue design work to appreciate the issues they face in verification. Peter has an
eye for looking for ways in which techniques can be done to improve chip level coverage,
simulation runtime improvement to name a few.

RENESANS

Peter is also in a unique position that during his days at Wolfson he was a key player in
defining their schematic/Layout tool set with integrated revision control. This has allowed
Peter to gather a large number of skills not just in design work but in all the backend flows
and EDA tools, understanding different netlist types and how the tools work.

Peter’s technical interests are mixed signal and analogue verification methodologies, design
flows. Peter alsois an Acellera SystemVerilog-AMS committee chair, UVM-AMS member/key
contributor making sure the ‘users’ feedback on the language is considered and not what
the vendors just want to support.

Steven Holloway

Steve has 20+ years’ experience of digital verification including eRM, OVM, UVM and formal
property checking. He has led the verification of large-scale consumer SoC projects. He
joined Dialog Semiconductor in 2011 and previously worked for Doulos, NXP and Trident
Microsystems. He joined the Technical Ladder in 2015.

Steve has presented at multiple external conferences including a panel session at DVCon US.
He participates in industry standards bodies and has contributed code to the Accellera UVM-
AMS working group

RENESAS'S
CONTRIBUTION TO
ACCELLERA UVM-(A)MS

14™ SEPTEMBER 2023

PETER GROVE / STEVENHOLLOWAY'
MEMBERS OF TECHNICAL STAFF
RENESAS ELECTRONICS CORPORATION

S G cerarmo: SRENESAS

B |

Agenda

= Why UVM-MS

= Verilog-AMS Simulator DC OP / Transient behavior

= UVM MS Bridge to analog resource (UVM->AMS/DMS Connection)
= UVM-MS Phasing Requirement

= UVM messaging from AMS files and $root cells

RENESAS

WHY UVM-MS B
e

= UVM is the industry standard methodology for reusable metric driven verification
= UVM-MS is the standardisation of analogue/mixed signal extensions for UVM UV M
+ Allows UVM to be more mixed-signal aware) -
= Improved verification of analogue/mixed-signal designs
= Same degree of thoroughness for both analogue and digital parts
= Originally named UVM-AMS but focus is to support any MS system; DMS, RNM, Spice or a mixture
= Metric-driven verifi 1 suits following objecti: due to verification space size
= Verifying analogue performance under large set of digital configurations

= Digital control system transitions interacting with analogue functions
= Dynamic control between analogue & digital circuits under wide range of conditions.
= Finding problems with A/D interaction in unexpected corner cases

= Randomisation is not mandatory and benefits are gained even when using directed tests

+ Standard methodology Il
accelera

= Rich debug & messaging scheme integrated with simulator
SYSTEMS INITIATIVE

RENESAS

2023 Renss cronisCaporaton A s ke

& |

UVM-MS REQUIREMENTS

= Apply UVM methods and techniques to AMS circuits and systems while allowing DMS/RNM.

= Enable a single environment to work whether it is DMS/RNM or AMS by changing the abstraction of the DUT.
= Extend the use of UVM components, and extensions thereof, into the physical layer enabling AMS verification.
= Allow predictable coordination of stimulating/measuring a signal

= Adhere to the sequence/sequence-item mechanism used by UVM

= Independent of the abstraction level of the AMS signals (electrical, RNM, UDT, etc.)

= Eliminate the need to rely on conversion elements to change the abstraction level of the DUT signals.

= Use existing language standards; SV and Verilog-AMS

= Changes take years to get agreement.

202 Reness Ectonis Caportin A it resred G e HORE

RENESAS

Agenda
= Why UVM-MS
= Verilog-AMS Simulator DC OP / Transient behavior

= UVM MS Bridge to analog resource (UVM->AMS/DMS Connection)

= UVM-MS Phasing Requirement

= UVM messaging from AMS files and $root cells

2023 Ronss EcronisCaporaton A s ke

s aRENESAS

VERILOG-AMS SIMULATOR DC OP

DC Op — Steady State operating point of all the nodes/branch currents
* Understanding of UVM-MS DC OP is important;
= Knowing bl

Il exectte
+ To avaid race conditions between digita blocks:

+ Toavoid process initalizationissues.

+ Knowing the effects of DC Op on certain AMS fifers as they are different to the transient response,

+ .. transition, absdelta, ahove, cross, absdelay, Laplace.

+ Skipping DC op will cause odd results and vendor specific.

+ Enable UVM DUT configuration prior to analog circuit iniialization (OC Op).

+ E.g. Make a Cap open for a particular test hor

configurations.
+ Assistin debug when DC OP fails as there is often nothing in the waveform files to debug,

+ Use @(iniial_step) Ssirobe() statement o print out values vaifdef

+ Using #0 is not good practice s it shows poor coding and understanding of the simulator(s) schedular.

= Must raise a UVM objection before DC OP otherwise the simulation finishes.

e nRENESMAS

VERILOG-AMS SIMULATOR SCHEDULING - TIME 0

. - All defined in LRM’s so nothing new!
. . Variable Initialization
All variables apply declaration

initial values and class
constructors called. e.g.
real my_var .25
ams_class my_class=new();

Executed before analogue
matrix formation. Allows

C alias and
$analog_port_a
commands plus analog
variable initialization.

Analog initial block(s)

Allinitial blocks executed
till they consume time.

Order of initial blocks non-
deterministic. UVM phases
(< run_phase) included .

Digital initial block(s)

Iterative process to
find stable operating

§ 4 point.
DC Operating Point at time Zero

2023 Renss cronisCaporaton A s ke

s aRENESAS

VERILOG-AMS SIMULATOR SCHEDULING - TRANSIENT

Some digital to
analogue event.

@cross, above,
timer or internal
© M 2 o time-step

Analog

Digital >|

+ Analogue engine always leads.
«+ Digital to analogue events cause matrix re-evaluation and timestep backtrack.
* Most simulators see any digital var in the analog block as a D2A to monitor.

s s RENESAS

VERILOG-AMS BEST PRACTICES

Variables Variables
Real, integers, Real, integers,
strings, logic, ...

Analog Digital
Simulator Simulator
/ Engine / Engine

Variables are ‘owned’ by one engine, but can be read by another.

AMS can't access digital variables that are dynamic. (Everything in the matrix is fixed at time 0)

Generally avoid ‘string’ datatypes in Verilog-AMS as support is flaky and the LRM is not clear.

OOMR to analog owned variables not allowed — they are not part of the analog matrix.

RENESAS

& 2 Renses s Carporton A g e PP

B |

Agenda

= Why UVM-MS

= Verilog-AMS Simulator DC OP / Transient behavior

= UVM MS Bridge to analog resource (UVM->AMS/DMS Connection)
= UVM-MS Phasing Requirement

= UVM messaging from AMS files and $root cells

MIXED SIGNAL BRIDGE & ANALOG RESOURCE

+ MS Bridge (SystemVerilog) to connect the UVM layer to the analog resource.
+ The analog resource could be DMS/RNM/AMS based on DUT pin abstraction,

* Proxy Features (mandatory,

< Can’t contain wires needed for logic strength by some digital type 10’s only logic/reg are valid.
Push analog resource controls using function calls.
Push-Sync contain registers for end of transition detection or other synchronisation from resource control.
Pull analog resource values via functions calls.
Monitored ‘reals’ for monitored continuous signals.

REF_VDD
o

MS Bridge (SV) l

« SystemVerilog Interface (optional) digital signals as they are currently
+ Enable logic strength/ports on wires. Ana\aq;es?me
+ More suited to allow reuse of existing IF with a MS Bridge. proxy froowc) (MSDMS)_| 1o pyys
+ PLUS/MINUS/REF_VDD/REF_VSS set as ‘interconnect’ in MS Bridge.

+ Allow shared DMS/AMS/RNM analog resource.

SVIE fcoom) —o Minus
+ REF_VDD/REF_VSS for SV IF logic level to electrical conversion.
+ OOMR's work around datatype limitations on AMS modules 10’s. J
REF_VSS
[—————— — RENESAS

EX |

ANALOG RESOURCE - WHAT DOES IT LOOK LIKE

Ensure OOMR, port, paramaters from MS Bridge to analog_resource abstractions are the same!
: 5%

) (inout. interconn , inout interconnect MINUS);

import uun_pka: it
import uvm_ms_pkgiit;

rce (LS, MINS): AMG “teeus, MINUS; DMS

Required for
UVM messaging

function real
eturn FLUS-M)
endfunction B

o1tage (tnput dugry

function real oo
gin

oltage (input dummy) ;
wsi 7

ge = v (PLUS, MO

ena -
endunction ~——
Verilog-AMS functions
must have input!

EX |

ANALOG RESOURCE - DOES WHAT?

= For logic signal the analog_resource must convert the logic to the DUT pin abstraction.

= Proxy can be used to control the properties of the conversion element. Logic to UDN/Real/Electrical

= For logic DUT pin abstraction it is a short. alias in = out;

= Classical RNM would drive real numbers from UVC sequence/driver within the agent. - 2 1
= In AMS this would generate to many D2A events or not give enough finesse to the signal
= Place the signal generator is located in the domain of the DUT I/O it will connect to. %\
= A generator could be made of many components; ramp noise, sinewave, logic conversion. N

= Asine wave is made up of 4 properties; frequency, phase, amplitude, and DC bias.
= UVM transaction encodes the properties of the sine wave as real values in the uvm_sequence_item
= Properties passed to analog_resource to generate the sine wave.

= Still honors the UVM paradigm of having a relatively simple interface for the test writer

= Change from classical UVM sequencer/drivers for UVYM-MS/\

& 2 Renses s Carporton A g e PP

PROXY CLASS

Proxy is designed to be a “thin layer” between UVM and the analog resource implementation

Alternative style of connection between UVM classes and SV static hierarchy

Proxy class derived from uvm_ms_proxy which is derived from uvm_report_object

Embedded class definition placed inside SV bridge module — called “MSProxy” — concrete class

* Class instance must be called __uvm_ms_proxy for messaging to work.

A handle to the embedded proxy class is obtained by hierarchical reference and placed in the
uvm_config_db for access by UVM components. Same as SV Virtual IF!

Implementation of proxy APl methods in bridge module in turn execute analog resource “core”
methods — hence “proxy” pattern.

UVM-MS AGENT BLOCK DIAGRAM

uvm_ms_agent ms_bridge (SV)

« Proxy MUST always be present and instanced as __uvm_ms_proxy — more later on this!
* SV IFis optional but must be placed in ms_bridge.
« Agent could use override using the UVM factory to extend the pure digital solution to a mixed signal one.

RENESAS

2 s EctonisCarporton A gt e PP

& |

Instance of analog

MS PROXY “HOOK-UP”

Proxy Template (API) Proxy instance in bridge module
class cay exte @

ds v module cap bridge

[———

resource
HSProwy extends cap_proxy
function void setCapacitance(real val, real tr, real tf);
I_core.setCapacitance (val, tr, tf);
endfu ~
Implement Calls function in analog resource to

endelass

ensure no race/synchronization
proxy”); ISSUES.

oxy= new(*_u

UVM config setting
module th; Must be called__uvm_ms_proxy*
cap_bridge i cap bridge (.PLUS(cap_nods), .MINUS (and));
initial begin

wvm_config_dbt (cap_proxy) :sset (mull, “uvm test_top.en

run_test ("uvn_ans_test") ;
end

endmodule Register proxy in config_db

-« RENESAS

EX |

PROXY €-> ANALOG RESOURCE RE‘?VDD

MS Proxy Class Analog Resource (AMS/DMS)
function void setRamp(input real val,tx); real thtR, target;
Pugh void'(i_core.setRamp(val,tx)y; — | - .
endfunction [function integer setRamp(input real val, tx);
begin ——0 PLUS
function real getVoltage(); tf Tnm tr= (lx; target = val;
Pul '::'”" }-"f’e‘ge‘v“‘age(”) ed T If target is different its
endfunction
- endfunction _seen as a D2A event
real V_PLUS_MINUS; ™ \\ O MINUS
s analo
-~ V(PLUS,MINUS) <+ transition(target,0,tr,tf);
| function real getvoltage(input dummy);
~|_begin
“getVoltage = V(PLUS,MINUS); Interpolated value
end
endfunction
Monitored real V_PLUS_MINUS; Analog generates update
assign i_proxy.V_PLUS_MINUS = i_core.V_PLUS_MINUS; | always@(absdelta(V(PLUS,MINUS),))}LUS,M\NUS = V(PLUS,MINUS);
REF_VSS
[————— s s UENES/AS
* Transition filter in AMS is used to convert discrete signals to a continuous time one.
Inpor 1o mansition flter _ Start/Stop have
tolerances!
frou——
/ \ Respous of
/ \ ith ramsiton ties specified
—d
* Use some AMS code to detect if the transition filter has completed. Useful feedback to agent
vdc_tran = transition(vdc, 0,vdc_tr, vdc
eot_vde = (abs(vdc_tran - vdc) < tol) ?
* Use function calls from UVM to the Analog Resource to ensure stack has completed
= Updated eot_vdc in proxy as part of this function stack
= Use @(eot_vdc) to block further agent execution until request has completed.
* Can't use #delay) in UVM agent as it requires analogue timestep to update eot_vdc!
= Might not happen if the new value of vdc was the same as the last or transition tolerance is big
* UVM agents can use sync items in the proxy to implement reactive behaviour to AMS conditions
» e.g. blocking call to voltage ramp which returns when target is reached

PROXY - PUSH ANALOG RESOURCE WITH E
SYNCHRONIZATION (PUSH-SYNC)

proxy.setCapacitance(ixn.farads, b trise, txn.tfal);
wait(proxy.cap_eot);/| VAMS handshake in proxy

g
/ reg cauj/ \
inctoh vold setCapatTasce(real

al real tr,real t);
void| 1)

lue is updated before function returns

endclass
AMSProxy i_proxy = new()

always begin |_proxy.cap_¢6i = i_core.cap_Sby, @(_core.cap_eot);end

reg cap_eot;
—" analog begin

T)
cap_tran = ransition(cap, 0,caPNI, cap_tf);
‘analog_l

always@(absdelta(andiog_clk.1,0,
cap_eot= (abs(cap_tran-cap) <

)/

s aRENESAS

EX |

MS BRIDGE FOR LOGIC SIGNAL

REF_VDD

resouzee (inout i

~output wize dou0)

MS Bridge (SV) \ o
h DUT is logic
Analog Resource
Proxy froowdy (AMSOMS__| | fnction svtomatic intege -t)
edtuncrion !
odute amaion resource (input seal VDD, Vs, eutpat seal dout)
SVIF feoowd) L e
fanction bimaels otagen S sesenyc.y, DUT 18 RNM/IDMS
T v
P eodtuncrion

- dours

« Abstraction of analog_resource to match DUT 10
+ OOMR, IO, Parameters align.

« More powerful than using conversion elements. DUT is AMS
+ Dynamic or static supplies. function automatic integer sotlogicSupply(...)
+ Control all aspect. s legicoupply = 1701

« Examples to be provided!

Agenda

= Why UVM-MS

= Verilog-AMS Simulator DC OP / Transient behavior

= UVM MS Bridge to analog resource (UVM->AMS/DMS Connection)
= UVM-MS Phasing Requirement

= UVM messaging from AMS files and $root cells

2023 Ronss EcronisCaporaton A s ke

RENESAS

& |

UVM PHASING REQUIREMENTS FOR AMS

= MS Bridges will have parameters.

= UVM should have a means to read/modify/write params before simulation consuming time
= Implement methods getParameters() / setParameters() in proxy

= Use existing UVM phases to guarantee read/modify/write order

build

connect Read parameters values from ‘SV+VAMS’ module (Instrument/Passive) into the
agent's configuration.

Modify agents parameters based on test reuirements

Apply agents parameters to ‘SV+VAMS' module (Instrument/Passive)

Must consume some time to allow DC OP to happen before agents drive sequence

items so that system works. run_phase() in the base test

to have a if($realtime <= 0.0) #1step; to cause a DC OP to happen.

RENESAS

ANALOG RESOURCE CONFIGURATION

= Analog components tend to be placed with initial values as parameters. E.g. A decoupling cap on a LDO output.

= Allow the MS Bridge to have parameters that are copied UVM configuration in connect_phase.
= Test cases can override the configuration, which are then set in the analog resource in start_of_simulation_phase.
= This is pre DC OP so you can do step changes to analog values!

module ns_bridge #(parameter real res val= |0, .)
(inout interconnect PLUS, MINDS);

il For DMS this could have
empty functionality!

import un_pk

import i s

o module analog_resouce (PLUS, MINUS);
inout PLUS,

import res pkg
Class sProxy extends template_proxy:

function res_confis

< readpath

Coturn (cta) ¢
endfunction: getParaneters

ath))
Parameter assigned to variable so

setParameters can override them.
Variable used in rest of code not

write

function void setparamete
i core.rseriss = cfg.r.

endfunction: setrarancters

nalog_resource i_core #(.FeS.VAl(FSL¥AL), ...) (.PLUS (PLUS), .MINUS (4INUS)) ;

2023 Renss cronisCaporaton A s ke

RENESAS

& |

AMS START-UP & UVM PHASING

= AMS models will have parameters!

= UVM should have a means to read/modify/write params before simulation consuming time
= Use UVM phasing to guarantee read/modify/write order

end_of_elaboration

f \
Read VAMS params into UVM cfg Set VAMS initial values before t=0
virtual function void virtual function void
my_driver: :connect_phase (..) my_driver: :start of simulation phase(.);
fg. copy (proxy.getParameters ()) ; roxy. setParamaters (c£g)

P
endfunction : connect_phase endfunction : :_of_simulation_phase

sta

(Optional) Modify params from UVM test
virtual function void my_test::end of elaboration_phase(.);
env.agent.cfg.rseries = led; // 10k rseries in this test
endfunction : end of elaboration phase

202 Reness Ectonis Caportin A it resred G e HORE

RENESAS

AMS STARTUP IN UVM RUN_PHASE()

Raise test

objection

virtual task my_ams_test::run_phase (uvm_phase phase);
phase.raise_objection(this); // Prevent termination in DC OP
Ensurestimeis _+if (srealtime <= 0.0) $lstep;
consumed
“uvm_info ("TEST", "AMS DC-OP finished", UVM_MEDIUM)

my_seq.start (my_seqr); // Launch sequence(s)

phase.drop_objection(this); // Test termination
endtask: my_ams_test

& 2 Renses s Carporton A g e a6 e

Agenda

= Why UVM-MS

= Verilog-AMS Simulator DC OP / Transient behavior

= UVM MS Bridge to analog resource (UVM->AMS/DMS Connection)
= UVM-MS Phasing Requirement

= UVM messaging from AMS files and $root cells

UVM MESSAGING REQUIREMENT

=Need to filter and control generation of messages from analog resource
= UVM offers this control for components in UVM hierarchy
=But analog resource is not part of the UVM component hierarchy. It's a module!
=However, if we extend the MS proxy from uvm_report_object
= set_report_handler() can redirect handling to the enclosing UVM MS monitor
= messages from MS bridge (and below) can use the proxy context
= ‘uvm_info_context(. , ., ., ro) takes reporting object to provide context
= Messaging macros called from analog resource can use upscoping (see later)

= Recommend to include %m in the UVM message body to get a physical path.

RENESAS

2 s EctonisCarporton A gt e s e

& |

MS MESSAGING CONTEXT

virtual function void uvm ms_monitor: :connect_phase (uvm phase phase);

proxy.set_report handler(get_report handler) ;
endfunction : conne®,phase

uvm_ms_agent ms_bridge (SV)
- -

‘uvm_info_context(...,_uvm ms_proxy) |

UVM_INFO @ 0.000 ns: uvm_test_top.env.ms_agent.monitor [MS MONITOR] Incorrect bias voltage: 0.125V

RENESAS

UVM MESSAGE REPORTING FROM ANALOG RESOURCE.

+ UVM reporting system designed for class based structure registered with uvm_report_object

* UVM reporting macros not supported in Verilog-AMS modules.

» Lets use the up-scoping system to solve this for us. (LRM 6.8)

+ “include “uvm_ms.vamsh* in Verilog-AMS file (analog resource)
= localparams to define UVM Verbosity levels as integers to match UVM enum's
* Provide macro’s “uvm_ms_infolwarning|error|fatal](...) to call function in MS bridge
+ “include “uvm_ms.vdmsh* in SystemVerilog file (analog resource) don't forget to import uvm_pkg!
= Provide macro’s ‘uvm_ms_infolwarninglerror|fatalj(...) to call function in MS bridge
* “include "uvm_ms.svh* in SV file (MS Bridge)
= Void functions that wrap ‘uvm_ms_*() reporting macros into functions of the same name.

= Provide macros ‘uvm_ms_[infolwarninglerror|fatalj(...)

* Within analog block, many solutions so here is one (calling of digital functions not allowed.)

= Use absdelta to trigger on toggle and read string to call up-scoping function

[————— s s UENES/AS

UVM MESSAGE - VERILOG-AMS ANALOG BLOCK

Example — many other ways

analog begin
if((I_PLUS > 1.0) && 'I_thr_triggered) I_thr triggered = 1;

else if(I_PLUS < 0.9) I_thr_triggered = 0;
end
Convert the detection in the analog block to a UVM
string message;
always@ (absdelta(I_thr_triggered, ,0,0,1)) begin

ormat (message, ", I_PLUS) ;
if(I_thr_triggered) ‘uvm_ms_info(P__TYPE,message,UVM_MEDIUM)
end e

——— Upscope function call
= Use analog domain to detect the issue and toggle a integer.

= Integer is detected by absdelta to then report the message via the Digital Engine.

= Note this will not be reported if there is a convergence failure!

& |

UVM MESSAGE
Analog Resource

string message;

$sformat (message, "The Current is above the threshold @ %eA",I_PLUS);
‘uvm_ms_info (P__TYPE,message, UVM_MEDIUM) ;

1 Hence the proxy name
requirement!

N
IS
SV Bridge, /
function void uvm_ms_info(string id, string message, int verhosityilevel,/.étrlnq uvm_path) ;
‘uvm_info_context (id, message,uvm_verbosity' (verbosity level),_uvm_ms_proxy)
endfunction: uvm_ms_info

= Use *_context reporting macros to direct message to relevant component

UVM_INFO ../../includes/uvm_ams.svh(26) @ 52001.098068ns: uvm_test_top.env.v_agent [vdriver]
The Current is above the threshold @ 1.178812e+00A

& |

UVM AMS REPORTING ISSUES

= uvm_*_printer print_real() uses %f formatting which truncates very small values

= Propose change to UVM implementation otherwise override print_real() in chosen printer

24 se

Name Type Size Value Name Type Size Value

cap_txn cap_txn - @4931 cap_txn cap_txn - @4917
volts real 64 0.000000 volts real 64 0
amps real 64 0.000000 amps real 64 0
rseries real 64 100.000000 rseries real 64 100
rparallel real 64 1000000000000000.000000 rparallel real 64 le+ls
farads real 64 0.000000 farads real 64 le-09
henrys real 64 0.000000 henrys real 64 0

= Timestamps with limited precision in UVM-1.2 onwards
= compose_report_message() in uvm_report_server uses $time not $realtime
= Issue in UVM (MANTIS 0005807) workaround is to override report server

RECOMMENDED MS SETUP

WS Bnge

—forws | o

——o s

* Two $root cells
+ test_case to encapsulate the stimulus generation SV Class based world.
+ test_envto the physical envif of the PCB DUT.

«+ test_env is independent of how the test_case is setup enabling a DMS/AMS class based environment.

+ test_env could be a schematic and analog resources drawn or text view
+ Proposed system allows parameters to be used.
+ Proposed system worth hardware accelerators for the physical design.

[s)RENESAS

B |

PROVIDED PACKAGES/INCLUDE FILES

Statement Usage

Tmport uvm_ms_pkg: Within the MS Bridge and uvm_ms_agent.

NIRRT For Verilog-AMS modules defined as the analog_resource or hierarchy.

T R e X LCL Gl For SV modules defined as the analog_resource or hierarchy. E.g. The Verilog-AMS file
instance in SV module, this include would allow the SV module to use the same messaging
system.

clude “uvm_ms.svh” For inclusion in the MS Bridge to enable the commincation from the analog_resources. It
requires the MS Proxy instance is named __uvm_ms_proxy.

[ssrsmnma: s UENES/MAS

Renesas.com

[L —— s s UENES/MAS

LOGIC CONVERSION WITHIN ANALOG RESOURCE

= Logic Conversion needs reference VDD/VSS levels.

1. Dynamic tracking

1. Dedicated pins REF_VDD/REF_VSS in MS_BRIDGE/Analog Resource.
2. OOMR using analog_node_alias() and parameters for AMS only.
+ Can only be parameters as this is setup pre DC OP.

+ Ideally it would use ref_vdd/vss but alias to port is not allowed. (Verilog-AMS LRM 9.20)

2. real values set like other controls in the MS Bridge to the analog resource.
analos snitisl pegin
L€((z__voD_| ALID') &6 (Sanalog_node_alias (REF_VDD_INT, 2_VDD_FATH) == 0))
r e o up ", P_VDD_PATH) ; OOMR Paths
Le((e_ A e anaros node. ahas(ﬁm VSS_INT, B__VSS_PATH) == 0))
: e ground supply | B__VSS_PATH)
end
analog begin
3£ (use_Tixed_supply) logic_supply = a2 supply * logic trans .
else if(P__VDD_PATH != "I ") logic_supply = V(REF_VDD_INT,REF_VSS_INT); VOItage Selection

else logic_supply = V(REF_VDD,REF_VSS);
end

[s s ENESMAS

SV IF REQUIREMENT - LOGIC STIMULUS

+ Classical UVM where the pad is a digital model.
SV IF can have ports and those ports are wires
which enabled Verilog Strengths.
M g Allows inout for 12C SDA.

Twire] {> For UVM-MS the ideal solution is to use the SV
<]J \]'i IF without modification
SVIF o Could be multiple slaves

&l

« Atany one time there is one driver plus the pulll component.
« Logic strength rules control the resolved value.

[L —— oo A RUENESAS

SV IF REQUIREMENT - LOGIC STIMULUS

5 The proxy can’t be used as ‘wires’ are not
.

allowed which is needed for the net to have
various divers of different strengths.

oo Tf ey [pectrcn
Tore) | e [0

RS

o= ou
val-/ms « Electrical driver creates a feedback loop onto the logic net.
= « Detection of Z-state on the electrical net not possible
o « Different feedback drivers strength allowed but which should be
used?
Acts Tike bus keeper butl

+ Verilog-MS DRS not available in modules*
Eurong] + CM could be used but then it depends on what else the driver needs to
do.

+ Logic strength not natively accessible.

[— cornn: A ENESAS

SV IF REQUIREMENT - LOGIC STIMULUS

EDA vendors looking for common
oot
% ﬁf_@%m {> solutions to this.

Decode
— VR

our

s « Split Interface inout pins into input/output pairs, thus replicating DRS

= system.
.—<], A2D + Not ideal but removes the feedback loop.
+ Use VPI routine to get logic value/strength of logic net been driven to
‘electrical driver’
« 8bit bus, 2 bits for value, 3 for logic 1’s strength and 3 for logic 0's
strength. Similar to $drive_strength from Verilog-AMS.
« Strength changes output resistance.

ACCELLERA

accellera

SYSTEMS INITIATIVE
= Independent organization founded in 2000

System/Dasign - Verification -
o . Analog & Digital Analog & Digital
= Mission to collaborate to innovate and
)) SystemC UVM UVI-AMS.
deliver global standards that improve TLECUSnihess s e
design and verification productivity 5?“*"“‘-"“"“ Working Porable
Systemeriog Groups &
= Partnership with IEEE for formal P .
nie SV-AMISV-AMS Standards ErEmms
standardisation & governance oL ucis
= Renesas has representatives on many
working groups, including UVM, UVM-MS, R cture
IP Security Assurance Functional Safety
SV-AMS, SystemC IPXACT SCE-MI 1P Tagging
OCP SystemRDL

o A RENESAS

Larry Lapides

Imperas Software Ltd
VP Worldwide Sales

A Modern Fable: The Lost Art of Processor Verification

Platinum Sponsor

Abstract

The open standard Instruction Set Architecture (ISA) of RISC-V offers new design flexibilities
and opportunities, and is having a significant impact on the design side of many SoC projects.
An optimized processor enables developers to unlock hidden value in performance, power
savings, security, differentiated features, and an enduring market advantage.

While every SoC design team now has a free architecture license to build a custom RISC-V
processor or extend an existing core with custom instructions, this also represents a surge
in verification work and a step-change in verification complexity. With other ISAs,
verification methodologies have largely been kept proprietary. Now within the RISC-V
community, the art and science of processor verification is resurfacing. This represents a
massive migration in verification responsibility, and the creation of a new verification
ecosystem.

This talk outlines the various methodologies for RISC-V processor verification, which
leverage established SoC verification technologies with UVM and SystemVerilog. The
individual components of a step-compare methodology will be discussed, including
reference model, verification IP, functional coverage and test generation. Detailed
examples of successful, complex processor verification projects will be presented, including
flows to support verification of complex events and architectures such as interrupts, Debug
and privilege modes, multi-hart processors and multi-issue and out-of-order pipelines.

mperas

Biography

Larry is currently VP Worldwide Sales at Imperas Software Ltd., and previously ran
worldwide sales at EDA companies including Verisity Design (the top performing IPO of 2001
in the U.S.). Larry has about 30 years in software tools and EDA, plus time spent in infrared
sensors and systems engineering. Larry holds a BA in Physics from the University of
California Berkeley, a MS in Applied and Engineering Physics from Cornell University and a
MBA from Clark University where he was an Entrepreneur-in-Residence during Fall 2006,
when he developed and taught the course on Entrepreneurial Communication and Influence

Notes

M RISC-V' Imperas

ImperasDV™ RISC-V Processor Verification Solutions

RISC-V is an open standard ISA (Instruction Set ImperasDV and Imperas RISC-V processor verification
Architecture) that allows any developer to design and technology is already in active use with many leading
extend a custom processor, while remaining compatible customers, some of which have working silicon

with the growing ecosystem of supporting tools and prototypes and are now working on 2nd generation
software. The innovation and impact of RISC-V on the designs. These customers, partners, and users span the
design side is driving new developments across all breadth of RISC-V adopters from open source to
market segments and applications. commercial; research to industrial; microcontrollers to

high-performance computing.
Now, with ImperasDV, developers have a dependable,

reference model-based solution for verification that is A select sample of these include Codasip, Dolphin
compatible with the current UVM SystemVerilog Design, EM Microelectronics (Swatch), Frontgrade
methods for SoC verification. Gaisler, Intrinsix, NSITEXE (Denso), Nvidia Networking

(Mellanox), NXP, OpenHW Group, MIPS, Seagate
imperas.com/imperasC Technology, Silicon Labs, Valtrix Systems, and Ventana
Micro Systems, plus many others yet to be made public.

RISC-V Processor Functional Verification with RVVI & ImperasDV

SystemVerilog

top level Testbench
ImperasDV

UVM env (optional) imperas imperas

Simulation control

RISC-V Core
RTL (DUT)

RVVITRACER

System Verilog C/C+t | Pass/Fail Determinati

()

RISC-V Processor * Verification IP .
Design Verification * Test & Coverage suites
* RISC-V Reference model

Ilnperas

A Modern Fable:
The Lost Art of Processor Verification

Verification Futures — Austin

Larry Lapides
14 September 2023

Agenda imm[;@eras

RISC-V and processor verification

RISC-V processor models

RISC-V processor verification methodology
Processor verification success

Summary

© 2023 Imperas Software Ltd 14-Sep-23

Agenda immperas

RISC-V and processor verification

RISC-V processor models

RISC-V processor verification methodology
Processor verification success

Summary

© 2023 Imperas Software Lt 14-Sep-23

RISC-V Is Why We Are All Worried |
About Processor Verification Imperas

RISC-V is taking over the processor world, except for x86
Yes, that includes Arm

RISC-V processor customization means that every RISC-V
developer needs to verify the RISC-V processor

Lost art? Processor IP vendors guard their verification
methodology and details more than the IP itself
With the verification flow, someone could reverse engineer a
high quality processor
There are few public details about x86, Arm or Apple
processor verification

© 2023 Imperas Software Ltd 14-Sep-23

RISC-V Freedom Enables i
Domain Specific Processing iperas

Who: RISC-V users include traditional semiconductor companies, and embedded systems companies now
practicing vertical integration by developing their own SoCs
What: RISC-V is an open instruction set architecture (ISA), it is not a processor implementation
Where: RISC-V is growing in market segments where x86 (PCs, data centers) and Arm (mobile) architectures
are not dominant

Small microcontrollers for SoC management, replacing proprietary cores

Verticals such as loT and automotive

Horizontal markets such as security and Al/ML

Deep embedded applications

When: RISC-V processors are now used in over 30% of SoCs

Why: The freedom of the open ISA enables users to develop differentiated domain specific
processors and processing systems

© 2023 Imperas Software Ltd 14-Sep-23

Keys to RISC-V SoC Success Imperas

Processor IP
Processor IP vendor
Open source IP
Build it yourself

Processor verification
Software porting, development, bring up, test

All 3 areas need to account for the addition of custom features to the processor (because
everyone adds custom features to the processor)

© 2023 Imperas Software Ltd 14-Sep-23

Keys to RISC-V SoC Success Imperas

Processor IP
Processor IP vendor
Open source IP
Build it yourself

Processor verification
Software porting, development, bring up, test

Users of all 3 types of processor IP need to account for the addition of custom
features to the processor (because everyone adds custom features to the processor)

Success in processor verification requires a high-quality model of the processor

Success in processor verification requires innovative technologies and
methodologies — the lost art of processor verification

© 2023 Imperas Software Ltd 14-Sep-23

RISC-V Processor Complexity Imperas

RISC-V is a modular instruction set MP:R:“ PuC MU eouE AndesCore®

AX45MPV Multicore

architecture

Any extension (functional group of
instructions, e.g. atomics,
compressed, floating point, vector)
can be added to the base processor

Then add in interrupts, privilege
modes, Debug mode, multi-hart
(multi-core), etc. and it gets complex

Then processor DV, tool chain
development and other software
development is needed X Streaming Part

Bus interface Unit

© 2023 Imperas Software Ltd 14-Sep-23

RISC-V Processing Subsystems Imperas

=G Pasmar

Multi-processor subsystems are commonly being ﬂ
developed using RISC-V cores '

+ .
Application areas include DSP, Al/ML and packet ., T
processing | EAEED - Ea
This adds complexity to both the DV and software Dolph‘in Design “Panther” DSP

development tasks

ITEXE Data Flow Processor

Software Ltd 14-Sep-23

Agenda imm[;@eras

RISC-V and processor verification

RISC-V processor models

RISC-V processor verification methodology
Processor verification success

Summary

© 2023 Imper. ware Ltd 14-Sep-23

RISC-V Model Requirements Imperas

Model the ISA, including all versions of the ratified spec, and stable unratified extensions
Model other behavioral components, e.g. interrupt controllers

Easily update and configure the model(s) for the next project

User-extendable for custom instructions, registers, ...

Model actual processor IP, e.g. Andes, MIPS, NSITEXE, OpenHW, SiFive, SweRY, ...
Well-defined test process — for the model! — including coverage metrics

Interface to other simulators, e.g. SystemVerilog (Xcelium), SystemC (Helium), Imperas virtual
platform simulators

Interface to software debug tools, e.g. GDB/Eclipse, Imperas MPD
Interface to software analysis tools including access to processor internal state, etc.

Most RISC-V ISSs can meet one or two of these requirements

Imperas models and simulators were built to satisfy these requirements, and matured through
usage on non-RISC-V ISAs over the last 15+ years

© 2023 Imp 14-Sep-23

Imperas OVP RISC-V Fast :
Processor Models InnPeras

Use cases
Architecture analysis, including (especially) custom instructions
Software development, debug and test
Processor and SoC verification

Existing Imperas Open Virtual Platforms (OVP) Fast Processor Models of ...
Generic or envelope models of RV32/64 IMAFDCEVBHKPZ* M/S/U privilege modes
Models of processor IP vendors: Andes, MIPS, NSITEXE, OpenHW, SiFive, SweRV, ...
Models for developers building their own processor

Custom instructions easily added by user or by Imperas
New instructions are added in a side file so as not to perturb the verified model
Custom instructions are analyzed for effectiveness

Models are built using Test Driven Development (TDD) methodology
Tests are built at the same time as features are added
Continuous Integration (Cl) test flow used
> 15,000 tests for models + simulator
Additional testing by processor IP vendors to validate models

rtual Platforms

© 2023 Imperas Software Ltd 14-Sep-23

Reference Model Needs to Support the =
Spec, Enable Custom Instructions |m|_@eras

Imperas develops and maintains Base Model
- Base Model implements RISC-V specification in full

- Fully user configurable to select which ISA extensions

* Fully user to select which version of each ISA extension
- For processor IP vendors, have pre-defined configuration plus vendor

Reference Model

gl £e2 custom instructions
RISC-V S E 8% g + Base Model built using Test Driven Development methodology
= o338 . N " ¥
ase Model 81 L§ - Built using public APIs matured over 15 different ISAs

=] = Imperas provides methodology to easily extend base model
+ Custom instructions added using same APIs as in Base Model

Imperas Simulator + Separate source files and no duplication to ensure easy maintenance
* 100+ page user guide/reference manual with many examples

> RISC-V Base Model is used in all Imperas RISC-V - User extension source can be proprietary (Apache 2.0 open source
license)

processor models
> By commercial users
~ By academic users
» By users of the free ISS riscvOVPsimPlus
» RISC-V Base Model is used by > 150 organizations

Page 13 © 2023 Imperas Software Ltd 14-Sep-23

[
Models Drive Customization Inmperas

* Custom instructions are added to) Compile Sl
optimize a specific application or set of Algorithm W(ﬂ"'jcl"/
applications within a domain 08¢

* Models let you explore quickly Hand-Code

* Much faster to develop than RTL ASM

* Better profiling information available
* Easier to debug software

* Methodology
= Start by characterizing the application to be
optimized
* Then add the custom instructions, evaluate,
and iterate

Page 14 © 2023 Imperas Software Ltd. 14-Sep-23

imperas

Add Custom
Instructions

RISCV
Reference Model

R
Agenda Iperas

* RISC-V and processor verification

* RISC-V processor models

* RISC-V processor verification methodology
* Processor verification success

* Summary

Page 15 © 2023 Imperas Software Ltd 14-Sep-23

e
5 Levels of RISC-V Processor I
DV Methodology (IRpElas

Hello World
Self-checking tests (e.g. Berkeley torture tests pre-2018)

1)
2)
3) Post-simulation trace log file compare
4) Synchronous step-and-compare

5)

Asynchronous continuous compare

Page 16 © 2023 Imperas Software Ltd. 14-Sep-23

[
5 Levels of RISC-V Processor I
DV Methodology SIEElAs

1) Hello World

2) Self-checking tests (e.g. Berkeley torture tests pre-2018)
3

4) Synchronous step-and-compare

)
)
) Post-simulation trace log file compare
)
5) Asynchronous continuous compare

Page 17 © 2023 Imperas Software Ltd 14-Sep-23

[
3) Post-Simulation Trace Log File Compare =
(Entry Level DV) |mperas

Design Vericaton using Co Sim wih * Process

 use random generator (ISG) to create tests
* during simulation of ISS write trace log file
* during simulation of RTL write trace log file

* at the end of both runs, run logs through
compare program to see differences / failures

Sk
ke CHIPS . . .
- ALLIANE @lwﬂ?l“ # opentitan * ISS: riscvOVPsimPlus includes Trace and
GDB interface
asemannd - FreeSS: https: 1d.org/riscvOVPsimPlus
i

> ~ | * ISG: riscv-dv from Google Cloud / Chips
=3 '- 'j = ! Alliance

* e — * Free ISG: https://github.com/google/riscv-dv

Page 18 © 2023 Imperas Software Ltd. 14-Sep-23

|
5) Async Continuous Compare .
(I-aghesx Quality DV Methodology) P Im[r@eras

Debug
driver
ImperasDV

RISC-V RTL
RISC-V VIP

RISC-V
Instruction
Stream
Generator

Tracer

&memory

Results.log
Interrupt
driver

RISCV.s RISCV.elf

« Asynchronous events are driven into the DUT
« Tracer informs reference model about async events
* Verification IP handles async events, scoreboarding, comparison, pass/fail

* Asynchronous y is needed to support Jeatures such as
interrupts, pnv:lege modes, Debug mode, multl-hart multi-issue and 000 pipeline, ...

Page 19 © 2023 Imperas Software Ltd 14-Sep-23

[
ImperasDV Components imperas

* Reference model needed for comparison of correct behavior

* Verification IP provides ease of use, saves time and resources

* RVWVI standard provides communication between test bench and
reference model subsystem

* riscvISACOV: functional coverage modules

* Test suites: riscvISATESTS, directed test suites for difficult
extensions

- MultiProcessor Debugger (MPD) enables RTL-reference model
co-del

Feature selection and design choices require serious consideration due to implications of every decision
+ Every addition dramatically compounds verification complexity
- Adds schedule, resources, quality costs == big risks

Before 2021, no off-the-shelf toolkit/products available for DV of processors ... then came ImperasDV

ImperasDV, with async i hodol is needed to support features such as
interrupts, privilege modes, Debug made, multl -hart, multi-issue and 000 pipeline, ...

Page 20 © 2023 Imperas Software Ltd. 14-Sep-23

[
ImperasDV: Verification IP Ilnperas

* Data prep for functional

trace2 coverage impe
race2cov 8 ";‘FS:TS “ Includes DUT reference state

ystemVerilog to C eferent storage
Sy Refe e
Verilog to ce

verification IP

“ Logging data Ei 3 - Can run sync, async, interrupts,
debug, multi-hart
+ Pipeline synchronization is key for
asynchronous event DV
inchronization

* Includes comparison technology
* Comparisons are done on
DUT/ Model processor
events; enables DV of multi-issue
and 000 pipeline processors

+ Reference model encapsulation

trace2api

trace2log.

Model * Includes synchronization

Scoreboard

Pass/Fail
Determination

Page 21 © 2023 Imperas Software Ltd 14-Sep-23

[—
Open Standard RISC-V .
Verification Interface: RVVI Inmperas

* RVVI = RISC-V Verification Interface Testbench
* https://github.com/riscv-verification/RVVI

* Work has evolved over 3 years Simutation
* Imperas, EM Micro, SiLabs, OpenHW control
* Standardize communication
between testbench and RISC-V VIP

* Two parts (currently):

* RVVI-TRACE: signal level interface to
RISC-V VIP

* RVVI-API: function level interface to
RISC-V VIP

Page 22 © 2023 Imperas Software Ltd 14-Sep-23

RISC-V

Verification

RVVI-TRACE

[
RVVI-TRACE Enables DUT I
Introspection by Verification IP iperas

* Defines information to be extracted by

tracer
. . valid
* SystemVerilog interface wscy insn[..] .
-]
* Includes functions to handle Core g - £ RISC-V
asynchronous events (ouT) = net_push() | 3| | Verification 1P
- e.g. interrupts, debug requests |_net_pop() |

https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE

Page 23 © 2023 Imperas Software Ltd. 14-Sep-23

RVVI-API Enables Easy T
Implementation of Step-Compare ||]Tm|P)eras

rwiRefEventstep()
rwiRefGprsCompare()
rwiRefPcCompare()
__ rwiRefCsrsCompare()

RVVI-API

https://github.com/riscv-verification/RVVI/blob/main/include/host/rwvi/rvvi-api.h

Page 24 © 2023 Imperas Software Ltd. 14-Sep-23

[
Functional Coverage of RISC-V ;
Instructions: Scope Immperas

* There are many different instructions in the RV64 extensions:
* Integer: 56, Maths: 13, Compressed: 30, FP-Single:30, FP-Double: 32
* Vector: 356, Bitmanip: 47 Krypto-scalar: 85
© P-DSP: 318
* For RV64 that is 967 instructions...
* Each instruction needs SystemVerilog covergroups and coverpoints
+ 10-40 lines of SystemVerilog for each instruction
+ 10,000-40,000++ lines of code to be written
* Not design or core specific

© 2023 Imperas Software Ltd 14-Sep-23

I
riscvISACOV Is Automatically =
Generated SystemVerilog Functional “ﬁﬁ]@eras
Coverage

imperas

. = @ nd
RISC-V ISA SystemVerilog coverage
specification code generator

SystemVerilog functional coverage code

* riscvISACOV provides functional coverage of Instructions and operands
* Roadmap includes CSRs and data hazards
* Imperas tools can automatically generate functional coverage code for custom instructions

Page 26 © 2023 Imperas Software Ltd. 14-Sep-23

Functional Coverage is the Key B

Verification Metric

Functional coverage results
displayed in Synopsys Verdi

riscvISACOV (and ImperasDV) works with any SystemVerilog s

© 2023 Imperas Software Ltd 14-Sep-23

]
Test Stimuli Imperas

* Instruction Stream Generator (ISG) and/or directed tests

* ISG generates test programs using constrained random approach
 Most often obtain the ISG:
+ Commercial such as Valtrix STING
* Open source such as Google riscu-dv
- Require toolchains like GCC, LLVM for assemblers, linkers
- Require functional coverage so that you know what you've tested!
* Directed tests
+ Imperas have developed a directed RISC-V test generator, instruction coverage verification IP and a mutating fault
simulator (for test qualification) to provide high quality test suites
* The generated tests suites are targeting architectural compatibility as defined in the RVIA architectural test
working group coverage requirements
- Free Imperas architectural validation test suites (50+), including RV32/64 1, M, C, F, D, B, K, V, P
« https://github.com/riscv-ovpsim/imperas-riscv-tests

* Imperas commercial directed test suites for vector i memory
+ Can support any RISC-V vector or PMP configuration; the user selects the configuration and Imperas generates
the test suite

Page 28 © 2023 Imperas Software Ltd 14-Sep-23

[
ImperasDV: Debug with MPD IMPE€ras

* Imperas MPD is an Eclipse
based debug tool

Testbench

* Can debug using source line
or instruction level

(82 Mutti Processor Debugger

* See new custom instructions
and any new additional state
registers

 Break at the first mismatch,
debug SW and RTL
concurrently

Page 29 © 2023 Imperas Software Ltd 14-Sep-23

. [
Software Debug and Analysis Tools =
Automatically Work With the Immperas
Custom Instructions

pmy

coon s elaw x - .

New custom instructions
in trace disassembly

New custom instructions,
new additional state registers

Page 30 © 2023 Imperas Software Ltd 14-Sep-23

[
Hybrid Simulation-Emulation for
HW-SW Co-Verification Ilnperas

tual Platiorm

* It takes more than just the RTL simulator
for comprehensive processor verification

* An additional tool the the hardware
emulator, e.g. Cadence Palladium

* The interface to Palladium is via the
Cadence Helium SystemC simulator

Page 31 © 2023 Imperas Software Ltd 14-Sep-23

T
Agenda Iperas

* RISC-V and processor verification

* RISC-V processor models

* RISC-V processor verification methodology
* Processor verification success

* Summary

Page 32 © 2023 Imperas Software Ltd 14-Sep-23

)
RISC-V Processor DV Results imperas

* OpenHW Core-V-Verif

© OpenHW users now on 34 generation of Core-
V-Verif DV flow

* CV32E40P successfully taped out

Mem Cig |+

Memory ~ = R
* CV32E40Pv2, CV32E40S, CV32E40X, CV32E20 i A (.
using this flow today; all expected to complete SRt '
DV this year

* Other successful DV projects using Imperas
include Codasip, MIPS, Nagra, NSITEXE,
Nvidia Networking, ...

Page 33 © 2023 Imperas Software Ltd 14-Sep-23

[
Case Study: Wally RISC-V Core lIMPEras

« Configurable core:
© RV32l, RV32E, RV64I, RV64E
« A, C, F, D, M extensions, privileged modes, CSRs
* MMU/TLB virtual memory, caches

* Developed at Harvey Mudd College / Oklahoma State University -

* Focus: high quality core for processor architecture education
* Now in OpenHW as CORE-V Wally (https://github.com/openhwgroup/cvw)

* Status in January 2023 — before starting to use RVVI + ImperasDV for verification:

* Passing all RISC-V International compliance tests, Imperas compatibility tests
+ Using Compliance Level post-simulation signature file compare

* Boots Linux

Page 34 © 2023 Imperas Software Ltd. 14-Sep-23

-
Wally + RVVI - Status (July 2023) lDeras

@ openhwaroup fcww nas

Cote O uoues & [l Pulvequests O Dsowsions @ actons [Pujeets 0 seeurmy L2 mais

* RVVI Tracer + testbench integration: 3
days of effort
* Results: e {EH_a0

© 20+ bugs found in simulation almost
i using ImperasDV and riscv-dv
 Reached Linux prompt with continuous

Arty A7 board support, ImperasDV Linux boot -

checking: 2 days of simulation oSN e s W 27180 s cathi e O G080 csadese B
+ One bug found just after the Linux

command prompt (!) adaiinal suppon for Aty A7 FPGA o
* Functional coverage achieved by booting Luck map o

Linux: covergroups 37%

(bins 3%)

JTo
* Future work:

* Boot Linux with co-sim using hardware
assisted verification

* Achieve 100% functional coverage using
constrained-random tests I

Page 35 © 2023 Imperas Software Ltd 14-Sep-23

ixes bug 203 and linux/ImperasDV mismatch at 571M instructions #304

BB i et v

T
Agenda Iperas

* RISC-V and processor verification

* RISC-V processor models

* RISC-V processor verification methodology
* Processor verification success

* Summary

Page 36 © 2023 Imperas Software Ltd 14-Sep-23

[
Processor Verification: .
The Key to the RISC-V Castle Innperas

= Asynchronous step-compare
methodology

* High quality reference models
* Verification IP

* Verification standards

* Verification metrics

* ImperasDV

Page 37 © 2023 Imperas Software Ltd 14-Sep-23

]
Imperas

Thank you

Larry Lapides
LarryL@imperas.com

Page 38 © 2023 Imperas Software Ltd 14-5ep-23

Adnan Hamid

Breker Verification Systems
Founder and CTO

Advanced RISC-V Verification Technique Learnings for SoC
Validation

Gold Sponsor

Abstract

The verification of application-level RISC-V cores require specialized techniques and approaches
previously the purview of Arm, Intel and other processor companies. The open and customizable
RISC-V cores have led to many new processor development teams with unique microarchitectural
approaches that require extensive verification.

Breker has found that a key aspect of RISC-V core verification involves its smooth operation within
the larger system. For example, load-store anomalies, asynchronous interrupt mechanisms, and
security protocols are just a few of many issues that must be fully analysed. In developing new test
approaches for these and other scenarios, their application in more general System-on-Chips has
become apparent, and indeed these methods can track complex system corner cases that will never
be detected simply by running real workloads or benchmarks.This presentation will describe many
techniques useful for RISC-V core verification, and also how they may be applied to the broader SoC
at large for high coverage verification.

Biography

Adnan is the founder and CTO of Breker and the inventor of its core technology. Noted as the father
of Portable Stimulus, he has over 20 years of experience in functional verification automation, much
of it spent working in this domain.

Prior to Breker, he managed AMD’s System Logic Division, and also led their verification team to
create the first test case generator providing 100% coverage for an x86-class microprocessor. In
addition, Adnan spent several years at Cadence Design Systems and served as the subject matter
expert in system-level verification, developing solutions for Texas Instruments, Siemens/Infineon,
Motorola/Freescale, and General Motors.

Adnan holds twelve patents in test case generation and synthesis. He received BS degrees in
Electrical Engineering and Computer Science from Princeton University, and an
MBA from the University of Texas at Austin. 4 >

BREKER”

MRISCV®

i

IP Block
Simulation

uP Core
Verification

rrey

rergaveear
.

Subsystem
Simulation

Prototyping/

Platform or Emulation Post-Silicon

IP, End-to-End
Test Content

SystemUVM Scalable,
Portable Test Content

RISC-V Core
& SoC Integrity

Comprehensive Toolkits
for Stringent Testing

System & SW
Validation

Firmware Test,
Performance Profiling

SoC Integrity

SystemVIP

High Coverage,
Automated Apps

RISC-V Core SystemVIP

Random Instructions

Cio instructions yield comrect results

Register/Register Hazards | Pipeline perturbations dues to register conflicts
Lead,/Store Integrity Memory conflict pattemns

Conditionals and Branches | Pipeline perturbations from synchronous PC change
Exceptions Jumping to and returning from 158

Asynchronous Interrupts Pipeline perturbations from asynchronous PC change

Privilege Level Switching

Context switching

Core Security

Register and Memory protection by privilege level

Core Paging/mMmu

Memory virtualization and TLE operation

Sleep/Wakeup State retention across W
Violtage/Freq Scaling Operation at different clock ratios
Core Coherency Caches, evictions and snoops

SoC SystemVIP

Random Memaory Tests

Test Cores/Fabrics/Memory controllers

Random Register Tests Read, write test to all uncore registers
System Interrupts randomized interrupts through CUNT
Multi-core Exscution Concurrent operations on fabric and memory
KMemory Ordering For weakly order memory protocols

Atomic Operation

Across all memony types

System Coherency Cover 3ll cache transitions, evictions, snoops

System Paging/PMOMMU | Systemn memaory virtualization

System Security Register and Memory protection across system

Power Management System wide sleep/wakeup and voltage/freqg scaling
Packet Genaration Generating networking packets for 1/0 testing

Interface Testing Analyzing coherent interfaces including CEL & UCle

Sof Profiling Layering concurrent tests to check operation under stress
Firmware-First Executing 5W on block or sub-system without processor

www.brekersystems.com

BREKER"

Automated Test Synthesis

Fast test availability
Quality SystemVIP / easy composition

Ultrahigh coverage
Auto bug tracking in complex scenarios

Portable & Reusable
Same tests across platforms and projects

info@brekersystems.com

B R EKE R.- THE LEADER IN PORTABLE STIMULUS

Advanced RISC-V Verification Technigue
Learnings for SoC Validation

Using Breker SystemVIP for RISC-V System Ready

Adnan Hamid, CTO, Breker Verification Systems

Verification Futures Austin 2023

Agenda

BREKER"

o Test Suite Synthesis and SystemVIP
e RISC-V Core Verification SystemVIP
e RISC-V SoC Verification SystemVIP

© Breker Verification Systems,Inc. Allights reserved Breker Systems Confidentia 2

Agenda

BREKER"

e Test Suite Synthesis and SystemVIP
e RISC-V Core Verification SystemVIP
e RISC-V SoC Verification SystemVIP

© Breker Verification Systems, Inc. Al rights reserved. Breker Systems Confidential 3

The High Cost of Developing Test Content

Largest Functional Verification Challenge BREKER

Can we re-use the same knowledge ?

SOC Integration

Block UVM System
Validation
Project Resource Deployment

Verification:
Debug
25%

Design:
32%

Verification: Verification:
Content Development - Other 13%

Can we abstract verification intent ?

Test developmen Complex tests

5 .
drives debug hard to get right Why? Resource Intensive Test Content

© Breker Verification Systems, Inc. Al rights reserved. Breker Systems Confidential a

Test Suite Synthesis... Analogous to Logic Synthesis
Design Synthesis Test Suite Synthesis

O O Dﬂ—D Describe intent ;m':"(
@ :

BREKER"

Breker
Core Technology

Al Planning
w Algorithms g
— <
(" Timing/Area Specify goals Coverage £
»T " constraints peciive Constraints S
S 3D Coverage ?(
—~— closure JIS)
= Generate g
L implementation S
. [oY
Synthesizable :(
VerificationOS
Map to M soc silicon
platform **_ ‘ I;‘;LJ
© Breker Verification Systems, Inc. Alights reserved. Breker Systems Confidential
Breker SystemVIP Library
BREKER"

SoC SystemVIP Library
! i * The RISC-V Core TrekApp provides fast, pre-packaged

tests for RISC-V Core and SoC integrity issues

* The Coherency TrekApp verifies cache and system-level
coherency in a multiprocessor SoC

* The End-to-end IP TrekApp IP test sets ported from
UVM to SoC

+ The Power Management TrekApp automates power
domain switching verification

+ The Security TrekApp automates testing of hardware
access rules for HRoT fabrics

- s T + The Networking & Interface TrekApp automates packet
B il generation, CXL, UCle interface tests

© Breker Verification Systems, Inc. Al rights reserved. Breker Systems Confidential

Constrained Random vs Al Planning Algorithm Synthesis BRQER‘,

Constrained Random Generation Al Planning Algorithm

UVM SV & other PSS tools Breker Test Suite Synthesis

states,
states,

1 ¥ cves - time / cycles
Design black box, shotgun tests to search for key state Starts with key state and intelligently works backward through space
Low probability of finding complex bug Deep sequential, optimized test discovers complex corner-cases

White Paper Discussing Al Planning Algorithm Test Generation on Breker Website

© Breker Verification Systems, Inc. All rights reserved. Breker Systems Confidential

A Look At RISC-V

BREKER"

e Open Instruction Set Architecture (ISA) creating a discontinuity in the market
o Appears to be gaining significant traction in multiple applications

o Significant verification challenges
o Arm spends $150M per year on 10%° verification cycles per core
o Hard for RISC-V development group to achieve this same quality
o Lots of applications expands verification requirements
o Requires automation, reuse and other new thinking

P RISC-V°

© Breker Verification Systems, Inc. All rights reserved. Breker Systems Confidential

RISC-V Verification & Validation Tasks

Core Integrity
Interrupts/Paging/Memory Order

Micro-architecture functionality

15A compliance

First Instruction Completion

S0C Integrity

Complex

BREKER"

Firmware Integrity

==

1~ e
,
t IP Integrity ’ e i
: =
=
s
Breker RISC-V SystemVIP Portfolio
y BREKER"
Load/Stor
Core Cache Coherency
sy
I o i SVIPs for Firmware Integity
» MemaMem (dma)
3 | - 10 Offload (PCIE/Eth)
A

SVIPs for IP Integrity
* Mem2Mem (dma)
* 10 0ffload (PCIE/Eth)
* Wasenicing

© Breker Verification Alights reserved

Breker Sys

WQ Servicin

Single Source of Truth for all stages of Verification & Validation

SVIPs for Core Integrity

SVIPs for SoC Integrity

BREKER"

SVIPS for FW Integrity

SVIPs for IP Integrity
Register Hazards

* Mem2Mem (dma) Load/Store

* 10 0Offload (PCIE/Eth)
o UmeETiEE Core Interrupts

Core Cache Coherency

* S0 Cache Coherency
* Memory Ordering
* Power Management
* System Interrupts

= Mem2Mem (dma)
* 10 Offload (PCIE/Eth)
* WQsenvicing

=
4

H

Test Suite Synthesis
v

VirtualPlatform Simulation Hybrid Emulation Siicon/
Environment VM Block Acceleration Environment Prototyping
& t Environment
L nvironment f

¥igh Level Debug

Different Challenges for Core vs SoC Verification
BREKER"
¥ 1
. RISC-V SoC Verification Challenges
RISC-V Core Veri ation Cl System Cover all cache transitions, evictions, snoops
e Gt e
= bR s e
grity patterns age System wide 8¢ q scaling.
e T T - -
Exceptions Jumping to and returning from ISR Interface Testing ‘Analyzing coherent interfaces including CXL & UCle
Pipeline fr hi PC change Random Memory Tests | Test Cores/Fabrics/Memory controllers across DDR,
g v e e
Register Vo v P Random Register Tests _|Read/write test to all uncore registers
Core Paging/MMU Memory virtualization and TLB operation System Interrupts Randomized interrupts through CLINT
; Wrl i E d
i o i T

Agenda

BREKER"
o Test Suite Synthesis and SystemVIP
e RISC-V Core Verification SystemVIP
e RISC-V SoC Verification SystemVIP
RISC-V Core Testbench Integration
BREKER"
Scenario
Mode
> T
Treksoc !
- CPU
RV64 Core Instruction Generation
BREKER"

harto -

TO
asminstrs.1

k4004084 40}

Instruction Coverage Analysis

27/103 reachable
opcode have been
/ exercised

BREKER"

Atomics, loads and
stores not reachable
in register only test

RV64 Core Load/Store

BREKER"

ultsop.)

UNSE AGEREINATED ThreadiTu Snstance s

i / Locality

f write addrs.

!

© Breker Verification Systems, Inc. All

Breker Systems Confident

Example Address Allocation Patterns
BREKER"

e Random Clusters with locality of reference

/4 memAllocAddsslice allocated setldioxl of Oxd blocks
4 memAllochddrRand size:0xE addri trek_mem ddrs0xDEbEl0ch
4 memAlloehdd:Rand
74 mamAl LocAdds kand addr y
14 memallocaddrrand size:Oxh addri trek_mem_ddrs0x2)B0e3li

o Stride Patterns across fixed address distances
11 memAllaeadzslice allacased sseidsou of Dxd blacks
71 mamllocssidrastide. weride lons0adhon aiessbed addrs srok mem dde+0x0uks30sd
/¢ memallocaddrstride etride_lan;0x2000 sizesiel addr: trek_men_ddr+0x0nbisocs
77 wemALLocAddS ke stride_lon 052800 aises 0Kt addr) ek men_dds+0X0UEN 700
77 WA LLochdds Sk e wtride_lon 052800 aises 0Kt addr) ek mon_dds+0A0ULRSOCH

e Sequential Addresses matching a specific Hash

71 memAllochddrslice

1located setIdilxl of Oxd blocks

/¢ memhllochddrBash hash:Oxdd aizes0x100 addr: trek mem ddr+0x08bell0D
£1 memAlLochddriash Oxdd mize:dx100 addr: trak_mem ddr+0x0801100
F1 memAllocaddriash hashiOxdd sizerdxi00 addri trek_mem ddr+0x08cdilon

/1 memnllochddrRash hash:0xdd size:dx100 addr: trek mem ddr+0x08cellon

© Breker Verification Systems, Inc. Al rights reserved. Breker Systems Confidential

Application to Unit Bench and Sub-System Bench

BREKER"

=T

NOC/Cache Unit Testbench

NOC/Coherency Sub-Subsystem
T

© Breker Verification Systems, Inc. A

Breker Systems Confidentia

RV64 Core Exception Testing

BREKER"

hart0
T0

sendinterrupt 2

sendinterrupt. 3

sendinterrupt.4
checkinterruptCount.1

Generates for example,
asm("UNIMP");

47 mvensaOns agentihartd the
ualting for strek_interropt_sou
rek_hazed_T0_stateis

© Breker Verification Systems, Inc. A

ights reserved. Breker Systems Confidential

Page Based Virtual Memory Tests

BREKER"
RV64 Core Page Based MMU Tests
BREKER"

_ | Swap MMU PTE’s and
| Check memory access

Agenda

BREKER"
o Test Suite Synthesis and SystemVIP
e RISC-V Core Verification SystemVIP
e RISC-V SoC Verification SystemVIP

RISC-V SoC Testbench Integration

BREKER"

Scenario

w -

4 > [
. conper
TrekSoC

test.tbx v rvm v w5

o o

Multi-Agent Scheduling Plans: Overview
BREKER"
o True Sharing within scenario
o False Sharing across scenarios
N Transition Scenarios.
, N Transition Sequences
A U Concurrent Scenario Test Case
Interleave & Pack
Resolve Dependencies
RV64 MultiCore MoesiStates
BREKER"

ved Breker Systems Confidentia %
Efficacy of System-Integrity Testing using the RISC-V TrekApp
BREKER"
Typical directed
coherency test ...
! u,mul.lll”l|||tl||
2. [ez 5w
.. VS. RISC-V TrekApp
automated Sys-Integrity tests
© Breker Verification ystems, Inc. Alghtsreservd. z
Atomics Testing
. BREKER"
Check result is aggregate of [
synchronized atomic
operations '_
|
creh_uinedd_e pte = (erek_ui , ddesoxaths
Croid) T e gy
T 14 Laventinaed agentibazct
aritans saaedtons, rrok_hartl P !
Joeitess_haresiom, ek hart.3
'
2

Al ights reserved, Breker Systems Confidential

RISC-V SoC Memory Ordering: Dekker Algorithm
BREKER"
e Assume initial state A=0, B=0
e The Dekker Algorithm States
core @: ST A, 1; MEM_BARRIER; LD B
core 1: ST B, 1; MEM_BARRIER; LD A
error iff (A ==0 & B ==0)
e This is a test for a weakly ordered memory system
o Such a system must preserve the property that a LD may not reorder ahead of a
previous ST from the same agent
Dekker Memory Ordering
BREKER"
o e e
‘E; == == = nchronized Dekker
== = ‘
== == scenarios -
— =] == fres——
m== = B e,
— = e e o
et || ==
B —
TEEEe= = s st '
=== = e iy weatredens
MultiCore MMU Tests
BREKER"
All cores Swap MMU
PTE’s and check
| memory access
T
—
==l
tud gt
:
False-Share Memory Stress Tests
BREKER"

N ——————.——— Allocate set of memory blocks

Each core operates on a “slice””
/ of memory

pen_4dr+BndELAR0cE |
iz oet
asce],

Random cores with
S

© Breker Verification Systems, Inc. Al rights reserved. Breker Systems Confidents

Thanks for Listening!
Any Questions?

Notes

Balram Naik Meghavath

Broadcom Ltd
Sr Staff Engineer

Improve the Quality of the Testbenches using specialized
PySlint solutions

User Paper

Abstract

Simulation is the most common RTL verification technique, involving the execution of
testbenches are essential for the verification of the designs. SystemVerilog and UVM have
been widely adopted over the last two decades. However, the complex nature of these
languages/methodologies can make it difficult for junior-level engineers to create
maintainable and reusable code.

Static linting checks have been widely used for RTL design, but they have not been used as
widely adopted for Testbenches. In this talk, we share our experience in using a popular
open-source framework named PySlint to lint-check SystemVerilog UVM Testbeneches.

We show how PySlint can be used to identify potential problems in SV-UVM Testbenches,
such as coding style violations, potential bugs, and potential performance bottlenecks. We
also show how PySlint can be used to generate reports that can help engineers to improve
the quality of their Testbenches buiodling a robust verification environment process. Some
key components of a robust verification environment includes, Testbenches, coverage
matrics, Assertions, regression testing.

We believe that PySlint can be a valuable tool for improving the quality of SystemVerilog
UVM testbenches. By using PySlint, engineers can identify and fix potential problems in their
testbenches early in the development process, which can help to prevent costly delays and
errors.

SystemVerilog:

1800-2017 - IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and
Verification Language

@ BROADCOM'

UVM Use Guide:
https://www.accellera.org/images/downloads/standards/uvm/uvm users guide 1.2.pdf

PySlink:
https://github.com/svenka3/pyslint

Biography

15+ years of Design Verification exp.

Prior to Broadcom, | worked for Microchip , Western Digital.

My Verification expertise from IP level to SOC subsystems

Initially, | worked for VIP development, Net works chips, Mobile chips, and Storage product
lines, Last 10 years mainly with Wireless products, GPS and Bluetooth, Wifi SoC's.

https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://github.com/svenka3/pyslint

2023

VERIFICATION FUTURES

Improve the Quality of the Testbenches using
specialized PySlint solutions

e e cadence ImPeras z\pouLos é @ﬂﬂ“ﬂlﬁ,

Srinivasan Venkataramanan BREKER' S
www.asfigo.com
AsFi go
. Chip Design at it thould e
% REENSEEASE R, ot fneos s ohai o i A AN, © BROADCOM'

Lint and Code Analysis

« Find bugs early

« RTL Lint well proven

« Verification
— SystemVerilog TB !
— UVM Code base
— Assertions L
— Acceleration i

— Emulation

— Formal Verification Source: Siemens EDA

&.A

I, F— [T— £ BROADCOM

RTL Lint is Very Popular

Ensures adherence to
naming guidelines and
coding style checks

RTL linting is widely used in
the field of digital design

Improves overall code

It helps to identify and fix
quality and reliability

issues in RTL code

= smﬁ§ﬁ§$:’ fn— [—— ©BROADCOM

Open-source RTL Lint - options

« Widely used flow - RTL Lint
o Naming guidelines
o Coding style checks V @
o Synthesis checks VERILATOR (8= sl
o DFT checks

« Many teams even integrate this to CI/CD flows

Google

« Good opensource alternates becoming available

Verible

3 BROADCOM

TB Lint - Challenges and Alternatives

e New Paradigm: Code analysis approaches changing
e Lack of good PI for newer
.

Slang Verible, Svlint, and PySlint are good opensource
alternatives

Provide flexibility and customization options

E L ASEIZR: corsommsanr snsarn o e oo

40 BROADCOM

Testbench Linting

+ New paradigm
— Old/proven concept

— Lack of good parsers/tools/AP|

Verible — C++ based rules

Svlint — Rust based, custom plugin

hitps:/lgithub.com/dalance/sviint

UVMLInt — Python based, custom plugin for UVM TB

- httpsulgithub.com/AsFigo/UVMLint

Pyslint — Python based, works on top of slang/pyslang pkg

jthub. com/AsFi

slint

: Azl ige
et bty andd R, ooyon @202 s, A4 s R, Tt oo et o Brsdcon . ander s st

4 BROADCOM

Testbench Linting — Sample rules

NAME_CL_PREFIX Naming/style checks

NAME_CG_PREFIX

NAME_ASM_PREFIX

MNAME_COV_PREFIX

SVA_MISSING_LABEL Assertion specific. Performance, Debug

SVA_MISSING_ENDLABEL categories

SVA_NO_PASS_AB

SVA_MISSING_FAIL_AB

CL_METHOD_NOT_EXTERN Class specific - style, functionality

CL_MISSING_ENDLABEL

FUNC_CNST_MISSING_CAST

=5 TS E 7 T 2 @ EBROADCOM

SV Constraints — case study

endclass

. Asfige

@ D e vl - S Constantuse amayreduction method,chec forcasting
® “
Seus s tht mont cvrbow o
Descrbe the sluion youd ke
class bug_c; 480 3t 1k chck o missingcast i uch cases
rand bit num_list[32]; P’
constraint c_sum
num_list.sum() == 1; "

) BROADCOM

PySlint—results

2. o 203 . 4 e s, Tho e Sk s Bk . o s £ BROADCOM
UVMLint—results
& . ASFIZ2 cnemn S [— ©BROADCOM
Testbench Linting - summary
« Exciting new frontiers
+ Opensource can now lead the way for commercial tools to
follow
— Than just playing a catch-up game
— Faster turn-around time
— Potentially vast set of developers!
G o 0202 s, A it Resaved Tt St e oo e, andes s s ©BROADCOM
Summ ary, next steps
+ Open-source verification is now real
- Shared our experience in:
Assertions
Unit Testing
RTL Linting
Testbench Linting
+ PySlint— a case where open-source can leapfrog beyond
commercial tools
— Opportunity for US Universities to take the lead!
B L ASEIED: corvecrsmn snsancems moon st testosson v it ©BROADCOM

Our contributions — GitHub repos/projects

L s——" £ BROADCOM

Who we are, what As-Figo do ?

UK based chip design start-up
~ Biinging decades of Chip Design and EDA expertise

~ Globaly reputed raining solutions
RTL Design, Veriication
SystemVeriog, VHDL, e, PSL etc.
Methodologies: UVM, OVM, VMM, eRM etc.
Bringing AIML to chip design flows

- Generative Al

~ AlAnalyics

& AsFige

Chp Denign a1k rhouliTe
a— 3 BROADCOM

oo o Bt ne

Summary, next steps

 Proved that open-source is now ready for primetime in Design-Verification

= All our code will be available as open-source via GitHub -
https://github.com/svenka3/af cip_verilator

« Looking for volunteers to fix issues on Verilator, improve SVA support
— svenka3@gmail.com
— Balram.Meghavath@broadcom.com

@ VAS L. i N U — £ BROADCOM

Integrate Lint to CI/CD

Subset of Lint rules Check-In
Customize as per project stage/phase Lint Checks

Stricter as it gets mature

Applies to RTL& TB

deally use open-source tools {

Fre o cense restrictions (|~

Easy to customize
Commercial license models available (MIT)

S.a

FFD o ot s, A s s ot ot b s . st s s £ BROADCOM

Conclusion

Integration with CI/CD flows
helps in continuous

improvement o
04 02

Adopting new approaches and Using popular tools and

alternatives is essential for o3 alternatives improve code

evolving languages and reliability

paradigms

40 BROADCOM

o Brosdcom . sndlr s

o
Tl Copyignt 2023 Broadeam. Al Rihts

S.

Notes

Hemendra Talesara

Bitstar Technologies
Advisor

Verification by Documentation

User Paper

Abstract

With all the innovations in tools to help with functional closure, one that is not fully
appreciated is the need for disciplined documentation at every stage of verification.
Documentation often is a victim of tight schedules and yet lack of it remains the root cause
of schedule slips, many escapes, delays and churn in projects. We will explore different kinds
of documents and shine light on this problem. We claim, without due appreciation of this,
we can not close the verification gap.

Biography

Hemendra Talesara is a distinguished leader in the semiconductor sector in the USA,
amassing a rich legacy of over 35 years. He served in senior management roles with IBM,
AMD, Synopsys, and many other organizations. Specializing in CPU, GPU, ASIC, and SOC chip
design, he boasts profound chip design verification technology expertise. Hemendra's
exceptional competencies encompass global team formation, project risk management, and
certified corporate governance as a NACD Certified Corporate Board Director. His interests
include business Implications of digital disruption, Al, and cyber security. Hemendra's
academic journey encompasses an MS in Electrical and Computer Engineering from the
University of Texas at Austin and a BE in Electronics and Telecommunication Engineering
from IIEST, Shibpur, India. Beyond his professional journey, Hemendra's active involvement
in industry conferences, technical journals, teaching, travel, and diverse hobbies showcases
his multifaceted persona. With a career defined by inclusive and collaborative leadership,
technical prowess, and a commitment to innovation, Hemendra Talesara brings
considerable depth to any organization.

Notes

VERIFICATION BY
DOCUMENTATION

THINK BUG ESCAPE

Hemendra Talesara 5
Vrteton S Bitstar

e Technologies

DOCUMENTATION CYCLE «~

DOCUMENTATION ATLAS

DESICN/
ARCHITECTURE / MICRO FUNCTIONAL POST SILICON
SLSTERSEEC FIRMWARE SPEC ARCHITECTURE REVIEWS CLOSURE RETROSPECTIVE
SPEC
N | ; pl 1
| | \ /
N v | |
v /) v/ Bugs
Verificatio Regression
Strategy T
n TB/Emulationt est Y Covera oS METRICS _Coverage
Architecture Performance

A _.a

Strategy Plan % Testbench Verify Signoff

SELECT SOURCES OF

BUG ESCAPES

1. REQUIREMENT DOCUMENTS

ERRORS, OVERSIGHTS OR GAPS IN THE REQUIREMENTS

2. SPECIFICATIONS

ERRORS IN THE DESIGN OR ARCHITECTURE. MISSING ASSUMPTIONS

3. IMPLEMENTATION

ERRORS IN THE CODING OR IMPLEMENTATION.

4. VERIFICATION PLAN

ERRORS IN THE TEST PLANNING OR TEST ACTIVITIES..

5. COVERAGE PLAN

GAPS IN TESTING; VERIFICATION UNIVERSE IS VERY LARGE

6. REVIEWS (DOCUMENTS AND CODE)
ERRORS IN THE PROCESS OR POLICIES

BUGS IN REQUIREMENT DOCUMENTS

ERRORS, OVERSIGHTS OR GAPS IN THE REQUIREMENTS
* AREQUIREMENT IS OMITTED OR FORGOTTEN

* PHRASED POORLY

* NOT PROPERLY UNDERSTOOD BY ARCHITECTS

*» MISUNDERSTOOD BY DESIGNERS

BUGS IN SPECIFICATIONS

ERRORS IN THE DESIGN OR ARCHITECTURE
ARCHITECTS / DESIGNERS CREATE AN INEFFICIENT
ALGORITHM OR CONFIGURATION

0 ALGORITHM OR CONFIGURATION DOESN'T YIELD THE
REQUIRED PERFORMANCE OR POWER

0 SPECS PHRASED POORLY OR INADEQUATELY

0 SPECS MISUNDERSTOOD BY ENGINEERS

0 LEGACY SPECS MISSING OR INADEQUATE

BUGS IN IMPLEMENTATION

ERRORS IN THE CODING OR IMPLEMENTATION

1. TRADITIONAL BUGS FROM SIMPLE TO COMPLEX
UNGRACEFUL ERROR HANDLING

LACK OF DOCUMENTATION IN CODE IMPLEMENTATION
LEGACY CODE MISMATCH WITH ARCHITECTURE UPDATES
INADEQATE DESIGN SPEC

COE = w N

GAPS IN VERIFICATION PLAN

ERRORS IN THE TEST PLANNING OR TEST ACTIVITIES
1. RIGHT METHODOLOGY, RIGHT TESTBENCH ARCHITECTURE

. GAPS IN SCENARIO PLANNING

. INCOMPLETE BOUNDARY CONDITIONS

. CONSTRAINT SETTING, TWEAKING

. COVERAGE PLAN AND FEATURE TESTING TRACEBILITY TO
SPECS

6. TRACKABLE ENUMERATED TEST TEMPLATES

a B~ w N

GAPS IN COVERAGE PLAN

INADEQUATE TESTING DUE TO FALSE CONFIDENCE
1. VERIFICATION UNIVERSE IS VERY LARGE

2. PSEUDO-RANDOM TESTING NEEDS TO BE CONSTRAINED
3. GAPS IN PLAN CAN LEAD TO FALSE CONFIDENCE AND
INADEQUATE TESTING

COVERAGE PLAN NEEDS TO BE REVIEWED CAREFULLY

2

NO TIME FOR REVIEWS

ERRORS IN THE PROCESS OR POLICIES
1. REVIEWS CONSIDERED SIDE ACTIVITY (NOT A CENTRAL CONTRIBUTION)
2. APPROVALS WITHOUT ADEQUATE REVIEWS OF DESIGN, CODING OR
TESTING.
3. REVIEWING RESOUCES INCLUDE TEAMS WITH OTHER PRIROTIES
4. TIME/RESOURCE ALLOCATION FOR REVIEWS ARE DIFFICULT TO PLAN
AND YET ARE MOST CRITICAL

TAKEAWAYS

1. VERIFICATION IS A“WRITTEN" CONTRACT

2. GAPS IN DOCUMENTS = GAPS IN VERIFICATION

3. ROI ON DOCUMENTATION CLOSURE
v IMPROVED QUALITY
v IMPROVED SCHEDULE (COUNTER INTUITIVE?)
v IMPROVED MAINTENANCE

-
THANK YOU ‘;‘Tj
: : &
-0 il L ihﬁi‘
CONTACT US

Notes

Track Session

Latest Topics in Verification
Lonestar Ballroom — Salon A+B

FLOOR PLAN

Magnolia
Bluebonnet
| one Star Salon D
Ballroom
Longhorn
__________ g
Stairs E
Salon A Salen B Salon C 'g
S
i a
Sycamore B Capitol
Sycamore A -+— Business Center Prefunction Area
Mo
Sycamore A .
e Wrangler Front Desk M Club
Entrance/Exit
Flevators
Lobby Bar & Restaurant
| Entrance/T xit

We would be grateful if you could move to the track session as quickly as possible.

Notes

Aditya Devarakonda

NXP Semiconductor
Senior Manager — Design Verification

Leveraging AMS verification and DMS verification for
efficiency and quality in Mixed-signal designs

User paper

Abstract

Mixed-signal verification at the SOC level is a unique problem that is currently being tackled
by two disciplines of verification- Analog Mixed-Signal (AMS) Verification, and Digital Mixed-
Signal Verification (DMS). Each of these disciplines have their own strengths, and
weaknesses. Understanding and leveraging those appropriately is needed to achieve the
required success in silicon, while using the verification engineering resources efficiently. In
this paper | would like to discuss the aspects that need to be considered while determining
an effective, and combined AMS and DMS strategy for robust verification of Mixed-signal
designs

Biography

Aditya Devarakonda leads Digital Verification for Advanced Power Systems at NXP. Prior to
this he held several roles in digital design and digital verification of Mixed-signal ICs at ON,
Maxim (ADI), Dialog (Renesas), and Freescale. Aditya holds an MSEE.

h -
L |

Notes

LEVERAGING AMS VERIFICATIONAND
DMS VERIFICATION FOREFFICIENCY AND

QUAUTY IN MIXED- SIGNALDESIGNS

Aditya, Devarakonda
Advanced Power Systems, NXP
SEP 2023

x SECURE CONNECTIONS
FOR A SMARTER WORLD

AGENDA

What is a Mixed-Signal IC?

Verification of Mixed-Signal ICs
Evolution of DV into DMS

Need for a combined DMS-AMS strategy
A combined AMS-DMS flow

Transitioning from an AMS-DV to AMS-DMS
flow

More on Modeling
Combined AMS-DMS flow — Some Pitfalls
Conclusions

1 X

Chip T
e WHAT IS A MIXED-SIGNAL IC

= Mixed-Signal ICs have both Analog and Digital
functions together on the chip

= Analog functions are typically implemented using a
schematic based design flow

= Digital functions are typically implemented using
an RTL-Synthesis-Automated Place and Route
(APR) based flow

2 X

VERIFICATION OF A MIXED-SIGNAL IC

- Two aspects of Mixed-signal IC verification
- Verification of electrical parameters, performance, and transient behavior of Analog circuits
- Functional verification at block and SOC/sub-system level

- Majority of use-cases involve interaction between Analog and Digital that needs
verification at the SOC/sub-system level

- Most of the digital/SOC level bugs are found here
- Two approaches to SOC/sub-system level verification

- Analog-Mixed-Signal Verification (AMSV)
- Digital Verification (DV)

3 W

VERIFICATION OF A MIXED-SIGNAL IC

« Analog-Mixed-Signal Verification (AMSV)
- SOC level verification with Analog focus
- Analog is typically represented using schematics/models that need the simulator’s analog solver
- Digital is typically represented using behavioral model (Verilog/SV/VHDL etc)
- A more accurate verification method that is orders of magnitude slower than DMSV
- Digital Verification(DV)
-SOC level (?) verification with digital focus

- Analog is typically represented using behavioral models that do not need the simulator’s analog
solver

- Digital is typically represented using behavioral model (Verilog/SV/VHDL etc)
- Orders of magnitude faster than an AMS simulation
- Accuracy depends on modeling, and model verification

EVOLUTION OF DV INTO DMS
- Evolution of digital verification in Mixed-Signal ICs

= Dig-top only verification
« Verification of the digital was limited to the digital-top with no true SOC level verification
- Lack of modeling of any analog blocks
- Analog response is provided by the testbench itself
- 100% digital only focused verification flow
- SOC level connectivity and functional coverage are heavily dependent on AMS

= Dig-top with functionally equivalent Analog models
- Analog models functionally equivalent to the analog schematics used along with digital top
+ No real netlisting from the actual chip level schematic
- Still a very digital only focused verification flow

« Can result in a more accurate digital but SOC level connectivity and functional coverage are still heavily dependent
on AMS

= Dig-top with accurate Analog models and netlisting from chip level schematics
« SOC level Digital-Mixed-Signal (DMS) verification

- More accurate and fast Analog behavioral models are used through Wreal, System Verilog Real Number (SV-RNM),
and User Defined Net

+ When combined with robust model verification, can provide reliable SOC level connectivity and functional coverage

NEED FOR A COMBINED AMS-DMS FLOW

- AMSV and DMSV flows have the same common goal. They solve the same problem

- With more accurate modeling, SOC level use cases and scenarios previously verified only using
AMSV could be verified using DMSV without invoking the analog solver

- Concepts like randomization, coverage etc could be realized at the SOC level

- Though DMSV could provide a greater share of functional coverage in less time it still cannot
completely replace AMSV

- AMSV and DMSV working independently is inefficient, and unnecessarily redundant

- A combined DMS-AMS strategy which leverages on strengths of DMSV, and AMSV flows will
reduce cycle times while ensuring quality

A COMBINED AMS-DMS FLOW

- This flow aims to move away from heavy dependence on AMSYV for SOC level verification
- Verification Planning
= Instead of working on separate, and independent Verification Plans, AMSV and DMSV execute a
Common Verification Plan
= Verification Plans clearly identify the method to be used to cover each feature — AMSV, DMSV, or Both
= The classification depends on the following factors-
- Criticality of the feature — input from product definers, analog designers
« Maturity of the analog IP and the analog models
- Existence of a robust analog model Vs schematic verification flow

- Other factors like analog, and digital design approach, experience of the teams greatly affect the division of
verification coverage between AMSV and DMSV.

- AMSV and DMSV leads need to be clear on the limitations and strengths of each flow in verifying
each feature

TRANSITIONING FROM AMS-DV TO AMS-DMS FLOW

- Alignment from other disciplines

= For successful AMS-DMS flow execution alignment is needed from Analog Design, Digital Design, AMSV,
DMSV, and Modeling teams

« Design teams need to adopt a more Top-Down design approach
- Define the chip-top level pins, architecture, sub-block ports
- Define sub-block level, and Analog-Digital interactions clearly before design implementation
- Well defined partitioning of analog, and digital blocks at chip, and sub-block level

= A common testbench for AMS and DV is desirable
- State of the art tools allow for the development of a common TB for AMS and DMS

- The test bench config view determines if the analog solver is invoked or not in a given sim there by allowing the same test to
be run using AMS or DMS

- Modeling and model verification
= The integrity and reliability of DMSV depends on the availability of accurate and well-written analog models
= Analog models should be thoroughly verified against schematics
= The Model Vs Schematic regression should be run whenever the design changes

MORE ON MODELING

- Model Vs Schematic Verification Flow

Ana!og Regular
Design Model
Schematics Vs

Create Schematic Regression’ Update
Analog Verification Pass? Analog
Models and Model

Regression

Ye%

- Models could be developed by Analog designers, Modeling engineers, or AMSV engineers

- With a top-down design approach, analog models facilitate early proof of concept of the chip
architecture even before any design effort has actually begun

- Analog models could replace, or supplement design architecture definition
- Analog IP development requirements could be extended to include analog model for each IP

Analog
Architecture
Requirements

COMBINED AMS-DMS FLOW - SOME PIT FALLS

Case 1 — An AMSV heavy approach with very simple analog models

- Given the longer simulation times for AMSV, this approach results in very large verification cycle
times

- AMSYV effort becomes the bottleneck for tapeout

Case 2 — A DMSV heavy approach with very complex analog models

- In this approach even minute features like analog trims are modeled

- Given the iterative nature of analog design, this needed the models to be updated too often
- DMSV effort becomes the bottleneck as model failures delay regression closure

Case 3 — An AMSV-DMSYV flow without a strong top-down design flow

- Without a strong top-down design flow, analog schematics, sub-block ports, and the analog-
digital interface change frequently requiring frequent netlist, and testbench debug

- DMSYV team spends a lot of time in re-netlisting the design, and in testbench debug

CONCLUSIONS
- A combined approach for SOC level functional verification of Mixed-signal designs has been
presented

- Adopting a well balanced, and combined AMS-DMS verification flow will greatly reduce total time
and resources spent on verification

- Having a robust analog model creation, and verification flow will ensure reliability in the coverage
achieved through DMS

- Some pit falls in the suggested approach also have been presented based on some real case
studies

Notes

Bill Tiffany

SigmaSense LLC
Verification Lead

DSP Verification Using MATLAB C Models

User Paper

Abstract

The SigmaSense touchscreen controller IP uses proprietary configurable DSP logic for
touchscreen signal generation and detection. MATLAB modelling is first used to refine the
design to the point of a bit-width accurate resolution of each point in the signal path. This
detailed definition is used to define the rtl implementation requirements. Via the
MATHWORKS DPIGEN utility an equivalent C modelis produced to serve as the DV predictor.
A UVM testbench is created where constrained random simulations are performed,
comparing the DUT and MATLAB C model results until they are in agreement.

Biography

Bill Tiffany has an extensive background in digital logic design and verification including DSP
applications, networking interfaces, microcontrollers, solid state drive controllers and with
SigmaSense’s latest touch screen controller. In addition to understanding system
requirements, continuous learning and sharing within a team is key to success.

X SigmaSense

Notes

VF2023

Sigm aSense technology - Fast, continuous,low voltage data capture with intelligent
digital signal processing moves analog challenges to the digital domain where
software defined sensing delivers orders of magnitude improvements.

DsP

DACs K Tx Signal 1 CSRs J

reen Ny 12'3 | Generation :IEEIL _— . Peripheral /o
C::::L?Is Subsystem [~ GPIO

1 | RxSignal || DSP |1 IN|
L AR 1 processing [~ Mem] F'AXI—|‘
S/
columns L

SigmaSense Touchscreen SOC Block Diagram

Sigma > VF2023

MATHWORKS - Both MATLAB and SIMULINK offer DPI C support

+ SIMULINK is cycle based, lends itself to an ASIC flow via RTL export, UVM TB export and C models
(but not our area of expertise)

* MATLAB (used by our system architects)
Is sample based (no concept of clocks).

MATHWORKS DPIGEN utility supports export of C models that can be integrated into a SV TB via DPI-C interface.

DPIGEN places syntax restrictions on the MATLAB. Legacy code may have to be updated.

Variable size multi-dimension arrays that are MATLAB function i/o arguments must be flattened in MATLAB before
running DPIGEN (3D array example: 128 channels x 64 frequencies x N samples)
« This adds a burden on the coding of MATLAB functions (shape outputs to flatten, reshape inputs to unflatten).
* UVM testbench has to deal with these flattened arrays
* Handle the array element accessing via complex indexing
+ Convert the flattened arrays back to n-dimensional arrays before using in T8
« MATLAB indexing is 1:N, SV is O:N-1
« MATLAB array flattening by default is column major order, SV is row major order

MATLAB C model can be memory intensive. All samples are generated or processed in one call so memory utilization is
proportional to the number of data samples needed for the simulation.

VF2023

SigmaSense methodology:

MATLAB is used to refine the system architecture for maximum performance at minimum gate count.

MATLAB model is refined to the point of being bit width accurate so any distortion effects are understood.

RTL design requirements are extracted from the detailed MATLAB models

Design Verification
* Design engineer can do initial debug with testvector data files exported from MATLAB sims and used as
stimulus/checking in a simple SV testbench

* DPI-C models from DPIGEN are used by DV team for stimulus and predictors
* In agiven simulation the CSR settings will be set via constrained randomization and applied to
DUT, Stimulus and Predictor models
MATLAB stimulus C models emulates Rx data from the touchscreen.
Seed from SV can be passed as input arg to stimulus model for internal randomization

VF2023
MATLAB C model example:

* MATLAB DPIGEN
+ produces zip file with .c, .h and .sv files
+ Unzip in linux sim environment and run gec using MATHWORKS Porting_DPIC.mk script
+ 5o library file is generated

* Intestbench
* Filelist.f
« firfilter_dpi_pkg.sv
« firFilter_predictor.sv
* Declare handle
chandle objhandle_DP!_firfilter;
objhandle_DPI_NG1_firFilter = DPI_firFilter_initialize(objhandle_DPI_firFilter);
Call using function provided in firFilter_dpi_pkg.sv
/0PI firFilter_output1(input chandle objhandle, input real bitsSDM, input real sdmOut [], - input real decRatioFIR,

output int firOut_size, output real bitsFIR);
DPI_firFilter_output1(objhandle_DPI_firFilter, bitsSDM, sdmout, decRatioF IR,
firout_size, bitsFIR);

firOut = newlfirout_size];

//DPI_firFilter_output2(output real firout []);
DPY_irfilter_output2(firou

Sigma VF2023

MATLABC model example:

* In simulation command line
* xrun—dpi—sv_root ../cpred/lib_firFilter —sv_lib lib_firfilter.so

* NOTES:

“double” datatype matlab args translate to “real” datatype in SV

In/out args of C function must be “real” so conversion between “logic” and “real” types is required.
Recommend hiding these MATLAB specifics in “predictor” so “scoreboard” can be more generic.

MATLAB multi-dimension variable size arrays must be flattened when they appear as I/O arguments

Predictor C model will produce an array of expected data for entire simulation
Scoreboard will check DUT output cycle by cycle, updating index into predictor array on each cycle.

Similarly, a driver will index through a Stimulus array cycle by cycle.

Matlab model should provide enough intermediate datapath values to isolate an rtl/matlab mismatch

> VF2023

MATLAB C model challenges:

« Keeping track of indexing into flattened multidimensional variable size arrays can be confusing.
DV engineer needs to understand the matlab internal array structure before flattening and how flattening
was done (column major vs row major ordering)

Some matlab may need to be recoded to live within codegen restrictions
Add %#codegen comment to matlab function, matlab will indicate coding issues

Agreement between designer and matlab creator on module partitioning, interfaces and important
internal signals to be compared is important

Ben Delsol

UVMGen
Founder

Methodology focused testbench generation

User Paper

Abstract

UVM testbench, environment and UVC development practices need a boost. UVMGen
speeds VIP creation by reactively generating code that uses only the best industry strategies.
Now, recent college graduates can create environments that will withstand any guru’s code
review and they’ll be running tests in a matter of hours, not months. At integration levels,
simply click in these lower level environments to create cluster and chip level testbenches.
UVMGen ensures seamless compatibility for UVC and environment reuse, making
development and integration a snap.

Biography

Ben Delsol has been a DV engineer with a passion for improving quality of work with
automation. For more than 15 years, Ben has been a part of creating and observing
industry best practices at companies such as Intel, Qualcomm, Samsung and Microsoft. He
leaves his mark at these companies creating tools that transform the way work is done.
Now Ben has started his own company, UVMGen LLC, which is positioned to change the
way the world does DV. Never has a SystemVerilog code generation tool been created with
this degree of intelligence and Ben is excited to introduce it here at the Tessolve DV
Conference in Austin.

-

Notes

Methodology focused

Intro

e Whoam I?
o Ben Delsol - DV engineer formerly at Intel,
Qualcomm, Samsung and Microsoft
o Founder of uvmgen.com.
e What | care about?

o Clean code.

o Methodology best practices
Not wasting brain energy.
= Divide, reuse and conquer.

= Automating redundant problems

U]

The idea of UVM is spot on

e Common procedures and methodologies across the industry.
e Clear coding and separation of testbench concerns.

e Reusable protocol agents.

e Reusable block level environments.

e Decades of verification best practices rolled into one methodology.

U]

Some best practices from the last 15 years...

e Pass down config object over config db e Interface harnesses
e Use slave sequences with late response e Abstract/concrete classes
randomization e Use sequence, BFM and config factory
e Reset methodology: don't kill sequences overrides
with the sequencer e Scale UVC, sub-env, config and TLM instances
e Use virtual sequences over phase jumping at runtime
e No virtual sequencers e Conditional instantiation of static verification
e Use objections wisely elements at compile time
e Use constraint policies over inheritance e Use standalone testbench for UVC development
e DUT parameter passing to VIP e And many more...

U]

Abstract/ concrete classes

e Problem:

o Any component which uses a virtual interface handle to a parameterized interface must be
parameterized, and so too must all its component ancestors (ie test, env, agents, drivers,
monitors all must be parameterized! Possibly configs, sequencers and sequences t0o).

e Solution:

o Define a BFM class in the parameterized interface.

o Have the component initiate the BFMs construction with the abstract/ concrete design
pattern

o Retain the BFMs access to it's config object, UVM printing and ability to be overridden by the

factory.

e Can be used for access of protocol tﬁjeckers and signal checkers too.

DUT parameter passing to VIP

e Problem:

o The verification environment of a parameterized design must also have access to those
parameters. Same problem as getting access to a parameterized virtual interface handle, type
specialization of many classes can become very cumbersome to manage.

e Solution:

o Inyour interfaces, collect parameter values in an object and put the object in the uvm_config_db.

o Inyour configuration, get the object with parameter values out of the uvm_config_db.

o Inyour interface harness, collect DUT parameter values in an object and put them in the
uvm_config_db.

o Inyour env-config, get the object with parameter values out of the uvm_config_db.

Ul

Use constraint policies over inheritance

e Problem:
o Mixing and matching constraints via inheritance causes a lot of copy and paste/repeat of
constraint code. How to DRY up my code (ie. not repeat myself)?
e Solution:
o Write your constraint once in a policy object. Then apply the policy objects on the sequence
item, sequence or config object as needed.
o Inyour test, factory override sequences, configs with the new classes that apply these

policies.

Ul

Interface harness

e Problem:
o Code which handles connectivity of the design to interfaces, access to BFMs and DUT
parameters is not reusable from the block level to upper levels of integration.
e Solution:
o Aninterface harness defines the connectivity of all interface signals to design signals and can
be reused/bound into the DUT at block level as well as upper levels of integration.
o Itencapsulates access to BFM concrete creation classes through the config db.

o It encapsulates collecting and setting DUT parameters in the config db.

U]

No virtual sequencers - pass sequencers to the vseq

e Problem:
o How to get sequencers and configuration objects to virtual sequences and their sequences in
asimple yet reusable way? le. reuse the virtual sequence in upper levels of integration where

its environment and virtual sequencer might not be instantiated.

e Solution:
o Set sequencers and configuration objects with virtual sequence setter functions.
o Define a set_sequencers(virtual_sequence_base vseq) function in the base test which assigns
agent sequencer handles to the top virtual sequence.
o Define a set_sequencers(virtual_sequence_base vseq) in the virtual_sequence_base class

which assigns agent sequencer handles to lower level virtual sequences.

Ul

Scale UVC, sub-env, config and TLM instances at
runtime

e Problem:
o Compile-time instance scaling requires a proliferation of parameter passing via class type
specializations.
e Solution:
o Collect DUT parameters at runtime and make available to env and agent configs.
o Construct agents and sub-env instances as needed.
o Construct env-config and agent config instances as need.
o Construct/connect scoreboard, predictor and coverage TLM as needed.

o Construct sub-env predictors as needed.

Ul

Conditional instantiation of static verification
elements at compile time

e Problem:
o Sub-environments and SVA may not be needed in every test regression and can bog down full-
chip simulation performance.
e Solution:
o Make instantiation of static verification sub-elements, such as interfaces, protocol checkers
and signal checkers, conditional at compile time.
Create clear, easy to use macro definitions to disable binding of verification elements
individually or all at once.

o Enable verification sub-environments and/or SVA as needed for debug.

Ul

But the UVM dream is not today’s reality

e Current state:
o Tight schedules.
o Adaunting programming effort.

Some UVM best practices unknown or time-consuming to implement.

e The result:

Carefuli
5l

tion-of-best-practi for-reu nd-
P
o Get it verified. On time. However possible.
Monolithic verification decisions made to hit deadlines.

o Hacks to fix hacks.

U]

Introducing UVMGen Technology

e With the best DV practices across the industry distilled and encoded into the
UVMGen code generator, users can stand on the shoulders of DV experts.

e Generate world-class VIP in an instant, reuse at a click and scale with ease.

e Now everybody can code like a guru and capitalize on the UVM promise

letting verification productivity, reuse and confidence shoot through the roof.

U]

L

uvmgen.com

Track Session

Training Session - 2
Lonestar Ballroom — Salon C

FLOOR PLAN

Magnolia
Bluebonnet
| one Star Salon D
Ballroom
Longhorn
__________ g
Stairs E
Salon A Salen B Salon C 'g
S
i a
Sycamore B Capitol
Sycamore A -+— Business Center Prefunction Area
Mo
Sycamore A .
Y Wrangler hront Desk M Club
Entrance/Exit
Flevators
Lobby Bar & Restaurant
| Entrance/T xit

We would be grateful if you could move to the track session as quickly as possible.

Doug Smith

Doulos
Engineer / Instructor

Using Non-Determinism with Formal

Gold Sponsor

Abstract

The use of non-determinism with formal is how formal is able to manage large state spaces
and still arrive at a quick solution. Non-determinism plays a part in writing our formal
constraints, formal targets, and formal abstractions. In this formal tutorial session, we'll
explain what non-determinism is, how it's used, and show lots of examples so you can take
advantage of non-determinism in verifying your designs.

Biography

Doug Smith is a verification engineer and instructor for Doulos based in the Austin Texas
area with expertise in UVM and formal technologies. He has been using formal technology
for several decades, performing formal verification on many kinds of designs and formal
applications. Likewise, he has provided formal application support at both Jasper and
Mentor/Siemens EDA. At Mentor/Siemens EDA, he served as a formal specialist and
verification consultant, where he provided both formal consulting and developed an
automotive functional safety formal app for performing formal fault campaigns. At Doulos,
he delivers training in verification methodologies like UVM, SystemVerilog, and formal
technology.

Doug holds a masters degree in Computer Engineering from the University of Cincinnati and
a bachelors degree in Physics and Biology from Northern Kentucky University. Currently, he
resides in Paige Texas with his wife and family on a small farm where he raises bees, cows,
horses, chickens, and pigs and loves driving a tractor.

£\ DOULOS

[;\ Global

poutos Training Solutions

ESL & Verification Methodology

» SystemVerilog » UVM
» SystemC » TLM-2.0 » Formal

Hardware Design (ASIC / FPGA)

» VHDL » Verilog » SystemVerilog
» Tcl » AMD » Intel FPGA

Arm & Embedded Design

» Arm Cortex A/R/M Series » C » C++
» RTOS » Linux » Yocto » Security

Al & Deep Learning

<4

» Edge Al » Deep Learning
» Python

V- "

Practice — Share — Learn
Simulate your hardware description code

playground in a web browser for free

Call +1-888-GO-DOULOS to discuss your training needs
www.doulos.com

/.\ KnowHgw

DOULOS WEBINARS Deliv www.doulos.com

How nondeterminism accelerates formal verification

AR e . N

= Randomness in formal
® Nondeterminism accelerates formal

® Wrap-up

JON

DOULOS

A Case for Randomness

DOULOS

e Tests what we don’t know

bbl Faster test development
H Q Find corner cases faster

"‘ Deeper state space exploration

Not Just for Simulation

DOULOS

Determinism in algorithms is reproducibility of results with the
same inputs

Simulation
Order of process execution is nondeterministic

Everything else is deterministic - random stability + reproducibility

Formal
Algorithms are nondeterministic — different results every time!
l.e., randomness is built into formal by default

Randomness is not just for simulation!

Some Things Aren’t So Different

T4\

DOULOS
Randomization in ...
Simulation Formal
Write random constraints Constrain formal’'s randomness
Test what we don’t know Frees formal to test everything
Hit corner cases faster Skips straight to target
Coverage shows what was hit | Coverage shows formal’s path

_ .
But Wait, There’s More Lo\

DOULOS

Randomness (nondeterminism) in formal also helps with ...

Reducing the cone of influence
Abstracting away complexity
Simplifying property writing

Dealing with inconclusives

Nondeterminism in Formal

DOULOS

Anything undriven is a formal control point (random)

stopat counter

DUT inputs

11

Cut signals

Black-boxed ports . t

Undriven signals and variables logic [WIDTH-1:0] counter;

snip_driver counter

netlist cutpoint counter

Cut Points and Black Boxes

DOULOS

Assertions

\
4

Cut Points and Black Boxes

Assertions

\
7

stopat signal
snip_driver signal

netlist cutpoint signal

DOULOS

Cut Points and Black Boxes

Assertions

LW
=y

Unconstrained “free variables"

DOULOS

10

Initial Value Abstraction

always @ (posedge clock or posedge reset) reset -none
if (reset)

reset none
count <= 0;

else if (count < 16'hffff) formal init {}

count <= count + 1'bl;

else With no reset, count is a free variable
count <= 0;

assign enl = (count == 16'hOLff);
16'hO7£E) ;
16'h3££E) ;

assign en2 = (count

assign en3 = (count

always @ (posedge clock)
begin
if (enl)

array[addressl] <= data_in; // Bounds check Fails at depth=1

if (en2)

array[address2] <= data_in; // Bounds check Fails at depth=1

if (en3)

end

array[address3] <= data_in; // Bounds check Fails at depth=1

DOULOS

1

Free Variables
DOULOS

Known as random, free, or nondeterminism (ND) variables

Undriven signals and variables are formal control points

module formal tb(... [7:0] output data);
byte data; 1
byte random data;

always @(posedge clk or negedge rst n)
if ('rst n)
data <= '0;
else begin
data <= random data;

Constrain output

assume property (output_data == data);

12

AR e S N

How nondeterminism accelerates formal verification

® Randomness in formal

= Nondeterminism accelerates formal

® Wrap-up

13

AR e S N

How nondeterminism accelerates formal verification

Nondeterminism accelerates formal
» Reducing the cone of influence
® Simultaneous testing
® Faster property development
¢ Handling inconclusives

® Abstractions

14

Design Symmetry

DOULOS

module arbiter #(...)

always @* begin

case (pointer_reg) e
2b00 T Code repetition
if (req[0]) grant = 4'b0001;
else if (req[l]) grant = 4'b0010; i ;
else if (req[2]) grant = 4'b0100; Parameterization may
else if (req[3]) grant = 4'b1000; repeat code
else grant = 4'b0000;
2'b01 :
if (req[l]) grant = 4'b0010;
else if (req[2]) grant = 4'b0100;
else if (req[3]) grant = 4'b1000;
else if (req[0]) grant = 4'b0001;
else grant = 4'b0000;
2'b10 :
if (req[2]) grant = 4'b0100; logic [1:0] pointer_reg;
else if (req[3]) grant = 4'b1000; always @(posedge clk or posedge reset)
else if (req[0]) grant = 4'b0001; if (reset)
else if (req[l]) grant = 4'b0010; pointer_reg <= 0;
else grant = 4'b0000; else -
2'p11 : pointer_reg <= pointer_reg + 2'bl;
if (req[3]) grant = 4'b1000;
else if (req[0]) grant = 4'b0001;
else if (req[l]) grant = 4'b0010;
else if (req[2]) grant = 4'b0100;
else grant = 4'b0000;
endcase

end

15

2'b00

else
else
else
else

else
else
else
else

else
else
else
else

else
else
else
else
endcase
end

if
if
if
if

2'b01 :

if
if
if
if

2'b10 :

if
if
if
if

2'bll :

if
if
if
if

module arbiter #(...)

always @* begin
case (pointer_reg)

(req[0])
(req[1])
(req[2])
(req[3])

(req[1])
(req[2])
(req[3])
(req[0])

(req[2])
(req[31)
(req[0])
(req[1])

(req[31)
(req[0])
(req[1])
(req[2])

Data Independence

grant
grant
grant
grant
grant

grant
grant
grant
grant
grant

grant
grant
grant
grant
grant

grant
grant
grant
grant

4'b0001;
4'b0010;
4'b0100;
4'b1000;
4'b0000;

4'b0010;
4'b0100;
4'b1000;
4'b0001;
4'b0000;

4'b0100;
4'b1000;
4'b0001;
4'b0010;
4'50000;

4'b1000;
4'b0001;
4'b0010;
4'50100;

grant = 4'b0000;

Consider ...

if (req[0]) grant = 4'
else if (req[l]) grant = 4'
else if (req[2]) grant = 4'b0100;
else if (req[3]) grant = 4'
else grant = 4'

This is equivalent to ...

req[0] -> grant[0]
req[1] -> grant[1]
req[2] -> grant[2]
req[3] -> grant[3]

Or...

req[pointer_reg] -> grant[pointer_reg]

Each request and grant is independent

of each other

16

else
else
else
else

else
else
else
else

else

2'b01 :

2'p10 :

2'p11 :

if
if
if
if

if
if
if
if

if
if
if
if

if
if
if
if

(req[0])
(req[1])
(req[2])
(req[3])

(req[1])
(req[2])
(req[3])
(req[0])

(req[2])
(req[3])
(req[0])
(zeq[1])

(req[3])
(req[0])
(req[1])
(req[2])

grant
grant
grant
grant
grant

grant
grant
grant
grant
grant

grant
grant
grant
grant
grant

grant
grant
grant
grant
grant

Adding Nondeterminism

module arbiter . Free€ variable

always @* begin
case (pointer_reg)
2'000 :

4'b0001;
4'0010;
4'50100;
4'p1000;
4'0000;

4'b0010;
4'0100;
4'1000;
4'b0001;
4'50000;

4'b0100;
4'b1000;
40001 ;
4'b0010;
4'b0000;

4'b1000;
4'b0001;
4'0010;
4'0100;
4'b0000;

stopat pointer_ reg

snip_driver pointer reg

netlist cutpoint pointer reg

Any starting point okay

Functionality modeled by the RTL

DOULOS

17

Reduced Cone of Influence

module arbiter ... Free variable

always @* begin
case (pointer_reg)
2'000 :

else

else

endcase

2'p11 :

if
if
if
if

if
if
if
if

if
if
if
if

if
if
if
if

(req[0])
(zeq[1])
(req[2])
(req[3])

(req[1])
(req[2])
(req[3])
(req[0])

(req[2])
(req[3])
(req[0])
(req[1])

(req[3])
(req[0])
(req[1])
(req[2])

grant
grant
grant
grant
grant

grant
grant
grant
grant
grant

grant
grant
grant
grant
grant

grant
grant
grant
grant
grant

4'b0001;
4'b0010;
4'b0100;
4'p1000;
4'b0000;

4'b0010;
4'b0100;
4'p1000;
4'b0001;
4'b0000;

4'b0100;
4'b1000;
4'b0001;
4'b0010;
4'b0000;

4'p1000;
4'b0001;
4'b0010;
4'b0100;
4'b0000;

Arbiter

stopat grant
snip_driver grant

netlist cutpoint grant

Constrain behavior

assume property (
$onehot0 (grant)) ;

end

J All upstream logic removed! ‘

DOULOS

18

DOULOS

= Simultaneous testing

How nondeterminism accelerates formal verification

e S N

Nondeterminism accelerates formal

® Reducing the cone of influence

® Faster property development

® Handling inconclusives

® Abstractions

19

Modeling with Free Variables

DOULOS

/) B Undriven port

module ecc_assertions (input logic [7:0] data,
input logic [12:0] ecc from dut,

wire 1 ~ data[0]

logic pl ~ data[l] ~ data[3] ~ data[4] ~ data[6];
wire logic p2 = 1 ~ data[0] ~ data[2] ~ data[3] * data[5] ~ data[6];
wire logic pd = 1 ~ data[l] ~ data[2] ~ data[3] * data[7];
wire logic p8 = 1 * data[4] * data[5] ~ data[6] ~ data[7];
logic [12:0] expected ecc;
assign expected ecc[11:0] == { data[7], data[6], data[5], data[4],

p8, data[3], data[2], data[l], p4,
data[0], p2, pl };
assign expected_ecc[12] = “expected_ecc[11:0];

assert property (ecc_from dut == expected_ecc);

Formal can test all values of data simultaneously!
20

Symbolic Constant

DOULOS

Symbolic constants do not change once initialized

bit [7:0] index;

Symbolic constant

assume property (##1 $stable(index));

assert property (request[index] |=> grant[index]);

f All indices proven at the same time

Simplifies modeling and reduces analysis effort

How nondeterminism accelerates formal verification

[AR e S N

Nondeterminism accelerates formal
® Reducing the cone of influence
¢ Simultaneous testing
= Faster property development
® Handling inconclusives

® Abstractions

DOULOS
22

Control Knobs

DOULOS

y formal

enum bit { FALSE

pkt_good acts as a knob in the constraints

property prop_sof (n) ;
(packet[n] .sof.sof == '0) and
(packet[n] .sof.unused == '0);
endproperty

/ of fr

property prop_pkt_sof(n) ;
seq_kind(n,SOF) and
seq_length(n,1) and

84§ pasceeel) e Lo () Knob negates constraint
else not(prop_sof(n));

endproperty

23

Setting Knobs

property pkt parsing;

endproperty

ast_bad_pkt marked malformed :

DOULOS

Iparse[*0:$] ##1 parse[*1:$] ##1 !'parse;

Control knob enables the formal target

assert property (not(pkt good) && pkt_sof && pkt valid |->

malformed signal within (pkt parsing));

24

Simplifying Properties

DOULOS

assert property (req |-> ##N ack);

Synthesizes N number of flops — adds extra state space

State machines models property behaviors
Focus only on interesting states
Free variable start lets formal start at any time

start && req

count == N && ack (L[] Clife]g count == N && !ack

25

Start Signals

Free variable

enum bit [1:0] { IDLE, COUNT, DONE, ERROR } state;
bit [$clog2(N)-1:0] count;

always @(posedge clk or posedge rst)

assert property (state != ERROR);

DOULOS

if (rst) begin
state <= IDLE;
count <= 0;
end
else Free selection of any time
case (state) v
IDLE : if (start && req) begin
state <= COUNT;
count <= 0;
end
COUNT : if (count == N) begin
if (ack) state <= DONE;
else state <= ERROR;
else count <= count + 1'bl;

endcase

26

DOULOS

[AR e S N

How nondeterminism accelerates formal verification

Nondeterminism accelerates formal
® Reducing the cone of influence
¢ Simultaneous testing
® Faster property development
=» Handling inconclusives

® Abstractions

27

Deep State Space Search

Set proof depth = 5000

always @ (posedge reset or posedge clock)
if (reset)
count <= 0;
else if (count < 16'hffff)
count <= count + 1;
else
count <= 0;

assign enl = (count == 16'hOLff);
assign en2 = (count == 16'hO7ff);
assign en3 = (count == 16'h3£ff);

always @ (posedge clock)
begin: fail_eventually
if (enl)
array[addressl] <= data_in; //
if (en2)
array[address2] <= data_in; //
if (en3)
array[address3] <= data_in; // Sounds

Fails at depth=512
Fails at depth=2048
Inconclusive at 5000

28

end

Cut Points

Set proof depth = 5000

always @(posedge reset or posedge clock)

if (reset)

count <= 0;

else if (count < 16'hffff)
count <= count + 17 Free variable stopat count
else

ceEE = O snip_driver count
assign enl = (count == 16'hOLff);
assign en2 = (count == 16'hO7£f);
assign en3 = (count == 16'h3fff);

netlist cutpoint count

always @(posedge clock)
begin: fail_eventually

if (enl)
arves adicnsa] <= data. in; /
if (en2)
if (en3)
arrayladdress3] <= data_in; // !
end

29

How nondeterminism accelerates formal verification

[AR e S N

Nondeterminism accelerates formal
® Reducing the cone of influence
¢ Simultaneous testing
® Faster property development
® Handling inconclusives

= Abstractions

DOULOS

DOULOS

Counters have a large state space

A counter abstraction can reduce the state space for formal

always Q(F d reset or p d clock)
if (reset)
count <= '0;
else begin
count <= count + 1;

Abstraction must provide functionality for:

Correct initial n

‘ Counter behavior (including wrapping)

31

Counter Abstraction

if (reset)
count <= 0;

count <= 0;
else

count <= count + 1;

logic [3:0] increment;

PO

DOULOS

Nondeterminism inserted using free variables

always @(posedge reset or posedge clock)

else if (count == MAX)

assume property (count ==

~={ Free variables

$past (count) + increment) % MAX);

Add cut point stopat count

snip_driver count

netlist cutpoint count

32

Priority Arbiter Example

k i
req[2] req[1] Arbiter | g

Requirements:
j<k

a LI
ol —J L
i) giildl o — I L
o) — [L
gnt2]

k i

req[j] has higher priority than req[k]
req[j] implies req[k] not granted until req[j] granted first

FON

DOULOS

33

bit [$clog2(N)-1:0] j, k;

bolic con

// Sy

encoded

//

assume property (j < k)

// Keep wi 1 nge
assume property (k < N)

assert property (req[j]

Simultaneous Checking

Free variables

assume property (##i $stable(j) && $stable(k));

All combinations of j and k checked simultaneously!

|-> 'gnt[k] s_until with gnt[j]);

DOULOS

34

= Wrap-up

JON

DOULOS

How nondeterminism accelerates formal verification

[AR e . N

® Randomness in formal

® Nondeterminism accelerates formal

35

ﬁ
DOULOS

Nondeterminism accelerates formal by ...
Fewer properties => faster property development
Formal modeling => simultaneous testing
Reducing state space => faster state exploration
Abstraction => deeper state exploration

Randomness => exhaustive testing

36
Thank you for attending
AR e S N
We hope you found this information helpful!
[\
DOULOS
37
o\
DOULOS www.doulos.com
P -cn—
SoC Design & » SystemVerilog » UVM » Formal
Verification » SystemC » TLM-2.0
FPGA & Hardware » VHDL » Verilog » SystemVerilog
Design » Tel » Xilinx » Intel FPGA (Altera)
Embedded Software » Emb C/C++ » Emb Linux

» Yocto » RTOS » Security » Arm
Python & Deep Learning ',

Track Session

VHDL Verification
Lonestar Ballroom — Salon D

FLOOR PLAN

Magnolia
Bluebonnet
| one Star Salon D
Ballroom
Longhorn
__________ g
Stairs E
Salon A Salen B Salon C 'g
S
i a
Sycamore B Capitol
Sycamore A -+— Business Center Prefunction Area
Mo
Sycamore A .
Y Wrangler hront Desk M Club
Entrance/Exit
Flevators
Lobby Bar & Restaurant
| Entrance/T xit

We would be grateful if you could move to the track session as quickly as possible.

Notes

Jim Lewis

SynthWorks Design Inc
VHDL Verification Specialist

OSVVM in a Nutshell, VHDL’s #1 Verification
Methodology

User Paper

Abstract

OSVVM is an advanced verification methodology that defines a VHDL verification
framework, verification utility library, verification component library, scripting API, and co-
simulation capability that simplifies your FPGA or ASIC verification project from start to
finish. Using these libraries you can create a readable, powerful, and concise testbench that
will boost productivity for either low level block tests (unit tests) or complex FPGA and ASIC
tests.

OSVVM is developed by the same VHDL experts who have helped develop VHDL standards.
We have used our expert VHDL skills to create advanced verification capabilities that
provide:

e A structured transaction-based verification framework using verification
components.

e A common, shared transaction API for address bus (AXI4, Avalon, ...) and streaming
(AXI Stream, UART) verification components.

e Improved readability and reviewability by the whole team including software and
system engineers.

e Improved reuse and reduced project schedules.

e Buzz word features including Constrained Random, Functional Coverage,
Scoreboards, FIFOs, Memory Models, error logging and reporting, and message
filtering that are simple to use and work like built-in language features.

e A common scripting API to run all simulators. OSVVM scripting supports GHDL, NVC,
Aldec Riviera-PRO and ActiveHDL, Siemens Questa and ModelSim, Synopsys VCS, and
Cadence Xcelium.

SynthWorks
VHDL Training OSVVM

e A Co-simulation capability that supports running software (C++) in a hardware
simulation environment.

e Unmatched test reporting with HTML based test suite reports, test case reports, and
logs that facilitate debug and test artifact collection.

e Support for continuous integration (CI/CD) with JUnit XML test suite reporting.

e Arrival to the verification capabilities of SystemVerilog + UVM.

OSVVM has grown rapidly during the COVID years, giving us better capability, better test
reporting (HTML and Junit), and scripting that is simple to use (and works with most VHDL
simulators). This presentation will show how these advances fit into the overall OSVVM
Methodology.

Looking to improve your VHDL verification methodology? OSVVM provides a complete
solution for VHDL ASIC or FPGA verification. There is no new language to learn. It is simple,
powerful, and concise. Any VHDL engineer can write either tests or verification components.

Each piece/capability of OSVVM can be used separately. Hence, you can learn and adopt
pieces as you need them.

Maybe your EDA vendor has suggested that you should be using SystemVerilog for
verification. According to the 2022 Wilson Verification Survey [1], for both FPGA design and
verification, VHDL is used more often than Verilog or SystemVerilog. Likewise, in the survey
you will find that OSVVM is the #1 VHDL verification methodology.

[1] https://blogs.sw.siemens.com/verificationhorizons/2022/11/21/part-6-the-2022-
wilson-research-group-functional-verification-study/

Biography

Jim Lewis is an innovator and leader in the VHDL community. He has 30 plus years of design
and teaching experience. He is the Chair of the IEEE 1076 VHDL Standards Working Group.
He is a co-founder of the Open Source VHDL Verification Methodology (OSVVM) and the
chief architect of the packages and methodology. He is an expert VHDL trainer for
SynthWorks Design Inc. In his design practice, he has created designs for print servers, IMA
E1/T1 networking, fighter jets, video phones, and space craft.

Whether teaching, developing OSVVM, consulting on VHDL design and verification projects,
or working on the IEEE VHDL standard, Mr Lewis brings a deep understanding of VHDL to
architect solutions that solve difficult problems in simple ways.

https://blogs.sw.siemens.com/verificationhorizons/2022/11/21/part-6-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/11/21/part-6-the-2022-wilson-research-group-functional-verification-study/

OSVVM in a Nutshell,
VHDL's #1 Verification Methodology

by
Jim Lev
OSVVM Chief Architect
IEEE 1076 VHDL Working Group Chair
VHDL Training Expert at SynthWorks
Jim@SynthWorks.com

OSVVM in a Nutshell

Copyright © 2020 - 2023 by SynthWorks Design Inc.
Distributing a pdf version of this document in whole for individual usage is permitted.
Printing a paper version of this document in whole for individual usage is permitted.
All other rights reserved.
In particular, without express written permission of SynthWorks Design Inc,

You may not distribute powerpoint versions of this document

You may not alter, transform, or build upon this work,

You may not use any material from this guide in a group presentation,

tutorial, training, or classroom

You must include this page in any printed copy of this document.
This material is derived from SynthWorks' class, VHDL Testbenches and Verification

This material is updated from time to time and the latest copy of this is available at
http://www.SynthWorks.com/papers

Contact Information

Jim Lewis, President

SynthWorks Design Inc

11898 SW 128th Avenue

Tigard, Oregon 97223

503-590-4787

Jjim@SynthWorks.com

www.SynthWorks.com

OSVVM in a Nutshell

Agenda
What is OSVVM?
OSVVM Verification Framework
Verification Components
Test Sequencer
Writing Directed Tests
Constrained Random Tests
Scoreboards
Functional Coverage
Intelligent Coverage Random
Protocol and Parameter Checks
Test Reporting
Scripts

Backgroun

= About Jim Lewis
30 years: VHDL Design and Verification
20+ years: Active in IEEE VHDL WGs
15+ years: |IEEE VHDL WG chair
Chief Architect of OSVWM
VHDL Consultant and Trainer for Syn

* SynthWorks provides VHDL Training
« Comprehensive VHDL Introduction
» VHDL Coding for Synthesis
» Advanced VHDL Testbenches and Verification — OSVVM Bootcamp

OSVVM is developed by the same VHDL experts who have helped develop
VHDL standards.

y VHD
* VHDL is #1 for FPGA Design and Verification

+ From Wilson Resear
+ For FPGA desig
+ For FPGA verification:

roup 2022 Functional Verification Survey
66% worldwide use VHDL
56% worldwide use VHDL

* © Siemens 2022 https://blogs.sw.siemens.com/verificationhorizons/2022/11/21/part-6-
the-2022-wilson-research-group-functional-verification-study/

y OSVVM?
= OSVVM is VHDL's #1 Verification Methodology

« For FPGA Verification,

= Worldwide: 28% use OSVVM = 50% of the VHDL FPGA users

JJJ n ol

FPG, ch Met

Siemens 2022 https://blogs.sw.siemens.com/verificationhorizons/2022/11/21/part-6-
the-2022-wilson-research-group-functional-verification-study/

What is OSVVM?

Verification Framework

Transaction Interface & API
Verification Components
Test Sequencer (Test Cases)

Verification Utility Library
Constrained Random, Scoreboards,
Functional Coverage, Memory Models,
Error tracking, and Message filtering, ...

L
Verification Component
Library

AXI4 Full, Lite, AXI Stream,
UART, xMII, DPRam, ...

-
Script Library
Tool Independent Scripts
One Script to Run them All

R

E__J

Co-Simulation

Run Software in Hardware Simulator
Write tests in C++

Test Reports
HTML Test Suite, Test Case, Log Files
JUnit XML for CI/CD tools

* OSVVM is Free, Open Source
+ Developed by the same VHDL experts who helped with VHDL Standards

1997 Transaction Framework, ThUtilPkg

é\{:;i“:orks 2006 RandomPkg, ResolutionPkg, ScoreboardPkg, MemoryPkg
2010 CoveragePkg
[2011 RandomPkg, CoveragePkg
2015 AlertLogPkg, TranscriptPkg, MemoryPkg
2016 ScoreboardGenericPkg, TbUtilPkg, ResolutionPkg
OSVWM 2018 AxidLite, AxiStream, UART
and
2020 Scripting, Specification Tracking, MIT, Virtual Interfaces,
SynthWorks Axid Full and AxiStream, both with Bursting
Classes
2021 Singleton Data Structures, HTML & JUnit XML reports
2022 HTML Log & Scoreboard Reports, Code Coverage Reports,
Ethernet VC, Arrays of Transaction Interfaces
L 2023 Co-simulation of C++ Software in a Hardware Simulator

VC with delay randomization, Specification Tracking Part 2

OSVVM Verification Framework

* Looks identical to a SystemVerilog framework:

» Verification components (VC) implement interface signaling

» Test sequencer (TestCtrl) calls transactions = test case

« Each test case is a separate architecture of TestCtrl

Entity

1 1

| Test 1
AXI UART Architecture

TbAxi4

Manager Rx

Test 2
Clock and UART Architecture

Reset TX o

SRAM Testn
Model Architecture

9

Framework Implement

library osvvm, osvvm Axid4 ;
context osvvm.OsvvmContext ;

Structural Code
Plugs together just like RTL

entity TbAxid4 is
end entity TbAxi4d ;
architecture TestHarness of TbAxid is

signal ManagerRec : AddressBusRecType (
Address (A}{I_ADDR_‘WIDTH-I downto 0},
DataToModel (AXI_DATA WIDTH-1 downto 0),
DataFromModel (AXI_DATA_WIDTH-1 downto 0)
|
begin

osvvm.TbUtilPkg.CreateClock (Clk, tperiod Clk) ;

osvvm.TbUtilPkg.CreateReset (nReset, . . .) ;

DUT_1: DUT (. . .) i puTt
Axi4Manager_1 : Axi4Manager (MRec, . . .) ; Verification
UartRx_1 : UartRx(RxRec, . . .) ; Components
UartTx_1 : UartTx(TxRec, . . .) ;

TestCtrl_ 1 : TestCtrl (TxRec, RxRec, MRec, nReset) ;

end TestHarness ;

teps to VC Development

» Step 1: Transaction Interface (ManagerRec, ...
« Step 2: Transaction API (Write, Send, ...)
« Step 3: Verification components

TbAxi4

AxiManaaerProc ManagerRec i
Write (.) AxiManager

TxProc TxRec UART
Send(...) TX

RxProc UART
Get(...) RX

Step 1: Transaction Interface = Record

type AddressBusRecType is record

Rdy : RdyType : Control /
Ack : AckType Handshaking

Operation : AddressBusOperationType ;
Address : std logic vector max c ;

}];diri;lit]; 5 nzzeciler_,max it) Transaction
ataToMode. ¢ std_logic_vector_max_c ; Information
DataFromModel : std_legic vector max ¢ ;

DataWidth : integer max ;

end record AddressBusRecType ;

* The record is an "inout" port
* The "magic” is in the types and resolution functions (from ResolutionPkg)

Long term plan is to migrate to VHDL-2019 Interfaces
+ Only requires a mode view declaration for the record

Step 2: Transaction APl = VHDL Procedure

procedure Read (

signal TransRec : InOut AddressBusRecType ;
iAddr : In std logic vector ;
variable oData : out std_logic_vector ;
StatusMsgOn : In boolean := FALSE
) is
begin
-- Put Transaction inte Record
TransRec.Operation <= READ OP ;
TransRec.Address <= SafeResize(iAddr, TransRec.Address'length) ;

TransRec.AddrWidth
TransRec.DataWidth
TransRec.StatusMsgOn

iAddr'length ;
oData'length ;
StatusMsgOn ;

-- Handshake with Verification Component
RequestTransaction(Rdy => TransRec.Rdy, Ack => TransRec.Ack)

-- Gat Results
ocData := SafeResize (TransRec

end procedure Read ; Independent of VC
+ Put transaction into record

+ Handshake with VC
+ Get results from record

Step 3: Verification Components

entity AxidManager is
generic (
tperiod Clk : time := 10 ns ;

tpd Clk RReady : time := 2 ns
)
port (
-- Globals
Clk : in std_logic
nReset : in std legic ;

-- AXI Master Functional Interface

DUT Interface
AxiBus : inout AxidRecType ; |

-- Testbench Transaction Interface

Transaction Interface
TransRec : inout AddressBusRecType |

Step 3: Verification Components

TransactionHandler : process

bec

WaitForTransaction (

Rec.Rdy,
-ansRec.Ach

-- Decode and execute the transa

case TransRec.Operation is
when WRITE OP =>

AxiWrite (TransRec.Addr

, TransRec.Data, ..);
when READ OP =>
AxiRead (TransRec.Address, TransRec.Data, ..);

when . . . =>
—- Other Transactions

end case

end

Benefit: Coding OSVVM VC is well within the capabilities of any VHDL engineer E

» Observation: Some interfaces do the same transactions
= Address Bus Interfaces (AXI4, Avalon, ...) do read and write
+ Streaming Interfaces (AxiStream, UART, ...) do send and get

* For these interfaces, Model Independent Transactions (MIT) define
+ Transaction Interface (record) and Transaction API (procedures)

* ... Address Bus MIT (basic subset)
type AddressBusRecType is record

Write (AddrRec, iAddr, iData) ;
Read (AddrRec, X"1111_1110", oData) ;

.. Stream MIT (basic subset)
type StreamRecType is record

Send (TxRec, iData [, iParam])
Get (RxRec, oData [, oParam])

Benefits of OSVWM MIT

* Accelerates VC Development, Test Writing, and Documentation

» Verification Component Developers

* Re-use the transaction interface and API defined by MIT

* Focus on writing VC behavior

» Test Writers
* Similar VC use the same transaction API
* Similar VC can share sequences of transactions
» Co-Simulation Interface
* Supports all MIT based VC - including ones you write
* Documentation
* VC only need to identify which transactions they support
= More Information is in user guides in OsvvmLibraries/Documentation/
+ Address_Bus_Model_Independent_Transactions_user_guide.pdf
+ Stream_Model_Independent_Transactions_user_guide.pdf

stCtrl = Test Sequencer
entity TestCtrl is

port (
TxRec : InQut StreamRecType ;

RxRec : InQut StreamRecType ; Ports =

Transaction Interfaces
ManagerRec : InOut AddressBusRecType;
nReset In std_logic

|
end TestCtrl

architecture UartTxl of TestCtrl i

egin

~ ControlProc : process Aspects of a Test Sequencer

begin « Whole test in one file
WaitForBarrier (TestDone, 5 ms) ; » Control Process
EndofTestReports ; » Initialize & finalize test
std.env.stop;

end process ; * One process per interface

e T — = Concurrent, just like design

begin « Tests =
wait until nReset = 'l1' . I .
Write(. . .) ; Calls to transactions
WaitForBarrier (TestInit); . Easy to add and mix in

WaitForBarrier (TestDone) + Directed Tests

end process ; « Constrained Random

TxProc : process + Scoreboards

begin)
WaitForBarrier (TestInit) ; Functional Coverage
Send(. . .) ; * Synchronization

« Error Reporting & Messaging

WaitForBarrier (TestDone)
end process;

Test Initialization in ControlProc

ControlProc : process
begin
SetTestName ("UartRxl") ; Set Test Name

TranscriptOpen ; Open Transcript File
SetTranscriptMirror (TRUE) ; + Write to Console
TBID <= NewID("TB") ; Construct AlertLog

RxID <= NewID ("UartRx 1") ; and Scoreboard data
SB <= NewID("SB", ModellID) ; structures

SetLogEnable (PASSED, TRUE) ; Enable Logs
SetLogEnable (RxID, INFO, TRUE) ; Message Filterin:

WaitForBarrier (TestDone, 5 ms) ; Stop until Test Done
or 5 ms has passed

-- Test Finalization M

OSVVM Makes Writing Tests Easy

» Call transactions such as Send, Get, and Check

TxProc : process RxProc : process
variable RxD : ByteType;
begin begin
Send (TxRec, X"10") Get (RxRec, RxD) ;
AffirmIfEqual (TBID, RxD, X"10");

Send (TxRec, X"11") Check (RxRec, X"11");

WaitForBarrier(...) WaitForBarrier (TestDone) ;
end process TxProc ; end process RxProc ;

+ Test OQutput for AffirmIfEqual

%% Log PASSED In TB, Received: 10 at 2150 ns
%% Alert ERROR In TB, Received: 08 /= Expected: 10 at 2150 ns

Benefit: Improves readability. Simplifies writing self-checking tests.

OSVVM Makes Randomization Easy

* Why Randomize?
« Directed test of a FIFO (tracking words in FIFO):

-
/

» Key Benefits:
* Generates realistic stimulus in a timely fashion (to write)
+ Ideal for large variety of similar items
* Modes, sequences, network packets, processor instructions, ...

OSVVM Makes Randomization Easy

» Randomize a value in an inclusive range, 0 to 15, except 5 & 11

RV.RandInt (Min => 0, Max => 15) ;
RV.RandInt (0, 15, Exclude => (5,11))

* Randomize a value within the set (1,2, 3,5, 7, 11), except5 & 11
= RV.RandInt((1,2,3,5,7,11)) :

= RV.RandInt((1,2,3,5,7,11), Exclude => (5,11))

* Weighted Randomization: Weight, Value = 0 .. N-1
Data5 := RV.DistInt ((7, 2, 1)) ;

* Weighted Randomization: Value + Weight

. == ((vall, wtl), (val2, wt2),
Data6 := RV.DistValInt(((1,7), (3,2), (5, 1)))

By itself, this is not constrained random

OSVVM Constrained Random Tests

= Code Pattern + Randomization + Transaction Calls

TxProc : process
variable RV : RandomPType ;
for T in 1 to 10000 lcop Randomize Operation
case RV.DistInt((70, 10, 10, 5, 5)) is
when 0 => -- Nominal case 70%
Operation := UARTTB_NO ERROR ; }
TxD:= RV.RandSlv(0, 255, Data'length) ;

when 1 => -- Parity Error 10%

when 2 => -- Stop Error 10%
Operation := UARTTB_STOP_ERROR ;
TxD:= RV.RandSlv(l, 255, Data'length)

Stop Error
10%

when . . . -- (3 and 4)

end case ;

Send (TxRec, TxD, Operation) ;

end loop ;

Constrained Random and Checking?

For checking, RxProc could repeat the randomization from
TxProc, however, this is tedious and potentially error prone.

TxProc : process RxProc : process
variable TxD : ByteType; variable ExpD : ByteType;
variable RV : RandomPType; variable RV : RandomPType;
begin begin
for I in 1 to 10000 loop for I in 1 to 10000 loop
case RV.DistInt((. . .)) is case RV.DistInt((. . .)) is

end case ; end case ;

Send (TxRec, TxD, Op): Check (TxRec, ExpD, Op):
end loop ; end loop ;

WaitForBarrier (TestDone) ; WaitForBarrier (TestDone) ;
end process TxProc ; end process RxProc ;

Scoreboards

« Simplify self-checking when data is minimally transformed

Generation Process Tl (Y Che;l:zrc;cess

)
Send(...) Check(SB, ...)

4A, 4B, 4C, ...

Scoreboard

Internally it is a FIFO + Checker

Uses package generics to support different types
Handles small data transformations

Handles out of order execution

Handles dropped values

OSVVM Generic Scoreboards

package ScoreBoardGenericPkg is
generic(
type ExpectedType ;
type ActualType ;
function Match(. . .) return boclean ;
function expected to string(. . .) return string ;
function actualitgiszring {(. . .) return string
) i
type ScoreboardIDType is ... ;
procedure NewID (.) ;

procedure Push (.) ;
procedure Check (.) ; E‘Cfée:glard/
procedure Pop (.) :

impure function Pop (..) return ExpectedType ;
impure function Empty (..) return booclean ;

/‘ Parameterized with Generics

type ScoreBoardPType is protected

end protected ScoreBoardPType ;
end ScoreBoardGenericPkg ;

OSVVM Scoreboards: Generic Instance

library ieee ;
use ieee.std logic 1164.all ;
use ieee.numeric std.all ;

package ScoreBoardPkg slv is new osvvm.ScoreBoardGenericPkg
generic map (
ExpectedType => std logic vector,
ActualType => std logic vector,
match => MetaMatch,
expected to_string => to hxstring,
actual to string => to hxstring
)

package ScoreBoardPkg int is new osvvm.ScoreBoardGenericPkg
generic map (
ExpectedType = integer,
ActualType integer,
match "=t
expected to_string to_string,
actual to_string => to_string

) Both in OSVVM Library

Using OSVVM's Scoreboard is Easy

use osvvm.ScoreboardPkg_slv.all ;
signal SB : ScoreboardIDType :

SB <= NewID("SB", ModelID) ; -- Constructor in ControlProc

TxProc : process RxProc : process
R variable RxD : ByteType;
begin variable RV : RandomPType;
for I in 1 to 10000 loop begin
case RV.DistInt((. . .)) is for I in 1 to 10000 loop

end case ; Get(RxRec, RxD, RxOp):
Check (SB, (RxD, RxOp)):
end loop ;

Push (SB, (TxD, Op)):
Send (TxRec, TxD, Op);
end loop
WaitForBarrier (TestDone) ;

OSVVM's Data Structures (SB, FIFO, FC, and Alerts) use singletons
* Singletons use ordinary types and constructors (NewlID)
+ Easier than our older methodology which uses protected types.

Functional Coverage

* What: Code that tracks that items in the test plan occur
» Tracks requirements, features, and boundary conditions

Why?
* With Randomization, how do you know what the test did?
+ Test Done = Functional Coverage and Code Coverage @ 100 %

Item Coverage (aka Point Coverage)
» Track relationships within a single object
* Bin transfer sizes into: 1, 2, 3, 4-127, 128-252, 253, 254, 255

Cross Coverage
» Track relationships between independent objects
* Has each set of registers been used with each input of an ALU?

Why not just use code coverage?
» Code coverage tracks code execution
+ Misses anything not in code (bins, uncorrelated items)

CoveragePkg

+ CoveragePkg simplifies coverage definition, collection, and reporting
» Internally it has a data structure and configuration parameters
* Implemented as a singleton in CoveragePkg
+ The singleton API defines the coverage capabilities

function GenBin (. . .) return CovBinType ;

type CoverageIDType is . ;
impure function NewID(Name : string; ...)
return CoverageIDType ;

procedure AddBins (ID : CoverageIDType; CovBin : CovBinType)
procedure AddCross(ID : CoverageIDType; Binl, Bin2, ... : CovBinType);

procedure ICover (ID : CoverageIDType; val : integer)
procedure ICover (ID : CoverageIDType; val : integer_vector)

impure function IsCovered (ID : CoverageIDType) return boolean ;

procedure WriteBin (ID : CoverageIDType)
procedure WriteCovHoles (ID : CoverageIDType)

OSVVM Functional Coverage i y

» For the UART, we track the following items

Status Register Values
A

r “

Break Stop Parity Done Integer
Condition Error Error _ Error Flag Value(s,

Normal Transfer 1

Parity Error

Stop Error

Parity & Stop Error
Break Error

OSVVM Functional Coverage is Easy

architecture CR 1 of TestCtrl is —_—
signal RxCov : CoveragelIdType ; +— Coverage Object

RxProc : process

Ce f—‘ Construct the Data Structure |
begin

RxCov <= NewID("RxCov", TB_ID) &

wait for 0 ns ; Define coverage model

AddBins (RxCov, GenBin(l)) : -- Normal
AddBins (RxCov, GenBin(3)) ; -- Parity Error
AddBins (RxCov, GenBin(5)) -- Stop Error
AddBins (RxCov, GenBin(7)) ; -- Parity + Stop
AddBins (RxCov, GenBin(9, 15, 1)) -- Break

for I in 1 to 10000 loop
Get (RxRec, RxD, RxOp)
Check (SB, (RxD, RxOp));

ICover (RxCov, to_integer (RxOp)) ; Collect Coverage

end loop

Functional Coverage with OSVVM is as
simple and concise as language syntax. 33

= Randomize Using Functional Coverage Holes

TxProc : process -
variable StimCov : CoverageIdType ; c—‘CoverageObJect
begin
StimCov := NewID("StimCov", TB ID) ; «+— Constructor
wait for 0 ns ;
AddBins (StimCov, "NORMAL", 7000, GenBin(l)) ; |Coverage Goals =
AddBins (StimCov, "PARITY", 1000, GenBin(3)) ; |Randomization
AddBins (StimCov, "STOP", 1000, GenBin(5)) ; |Weights

for T in 1 to 10000 loop

iOperation := GetRandPoint (StimCov) ; +— Randomize

case iOperation is

when 1 => . . . =-- Nominal 70% Similar actions to
when 3 => . . . -- Parity 10% constrained
R random
end case ;
SB i :
Push(SB, (Data, Operation)) Do transaction &
Send (TxRec, Data, Operation) ; Collect coveraae
ICover (StimCov, iOperation) g

wait for Idle * UART BAUD PERIOD 115200 ;

w Intelligent Coverage goes beyond what SV does | m

OSVVM Protocol and Parameter Checkers

* Protocol Check: OE and WE of a RAM never asserted simultaneously
SimultaneousAccessCheck: process
begin
wait on iCE, iWE, 1iOE ;
AlertIf (SramAlertID, (iCE and iWE and iOE) = '1',
"nCE, nWE, and nOE are all active") ;
end process SimultaneousAccessCheck ;

+ Alerts signal errors and keep counts in the AlertLog data structure
+ Alert Levels: FAILURE, ERROR (default), WARNING

= Controls: StopCount, PrintCount, Enable/Disable

SetAlertStopCount (ERROR, 20) ; -- Stop when 20
SetAlertPrintCount (CpulD, ERROR, 10) ; -- Limit printing
SetAlertEnable (WARNING, FALSE) ; -=- Disable Alerts

» Alerts are enabled by default and rarely disabled

OSVVM Logs Simplify Debug

* Logs are conditional printing

TxProc : process
begin

Log (TbID, "Sequence 1 Starting", ALWAYS)

Log (TbID, "Test Last Failed Here", DEBUG) ; -- Disabled

* Log Levels: ALWAYS (default), DEBUG, INFO, FINAL, PASSED
* Logs only print when enabled.

« Controls: Enable/Disable

SetLogEnable (DEBUG, FALSE) ; -- Disable Alerts

* Log output for above

%% Log ALWAYS In TB, Sequence 1 Starting at 2200 ns

*+ Message with level DEBUG does not print since it is disabled

Test Finalization

ControlProc : process
begin
SetTestName ("UartRx1")

- Test Initialization

Stop until Test Done
WaitForBarrier (TestDone, 5 ms) ; or 5 ms has passed
AlertIf (TBID, NOW >= 5 ms, "Test timed out") ;
AlertIf (TBID, not Empty(SB), "Scoreboard not empty")

AlertIf (TBID, GetAffirmCount < 1, "Checked < 1 items") ;

AffirmIfNotDiff ("UartRxl.log", "Checked/UartRxl.log") ;

EndOfTestReports ; Create Reports

std.env.stop ;
wait ;
end process ControlProc

OSVVM Test Watch Dog

* Purpose: Stop a process until all processes have reached the barrier

signal TestDone : integer barrier

ControlProc : process TestProcl : process
begin

SetTestName ("UartRxl") WaitForBarrier (TestDone) ;

o wait
WaitForBarrier (TestDone,5 ms) ;
L TestProc2 : process
ReportlAlerts ; o

std.env.stop (GetAlertCount) ; WaitForBarrier (TestDone) ;

end process ControlProc ; wait ;

+ Benefit
» With "TestDone", simulator scripts do not need to know run length
+ The 5 ms is a time out — aka watch dog timer on the test

Including the OSVVM Library is Easy

» OSVVM Includes numerous packages.
= To simplify this, OSVVM library provides context declarations
-- OSVVM Utility Library, Random, Coverage,

library osvvm ;
context osvvm.OsvvmContext ; —-- All OSVVM packages

-- AXI4 Model Library

library osvvm axid
context osvvm axid.AxidContext ; -- AXI4 Full VC
context osvvm axid.AxidLiteContext ; -- AXI4 Lite VC
context osvvm_axid.AxiStreamContext ; -- AXI Stream VC

-- UART Mcdel Library
Library osvvm uart ;
context osvvm uart.UartContext ;

-- DPRAM Model Library
Library osvvm dpram ;
context osvvm_dpram.DpRamContext

My Scripts Before OSVVM
set DIR SRC [file dirname [status file]]

set LIB_NAME osvvm_TbUart

if {![file isdirectory ./VHDL_LIBS/${LIB_NAME}} {
vlib ./VHDL_LIBS/${LIB_NAME}

}

vcom -2008 -work $LIB_NAME ${DIR_SRC}/TestCtrl_e.vhd Compile

vcom -2088 -work $LIB_NAME ${DIR_SRC}/TbUart.vhd
vcom -2008 -work $LIB_NAME ${DIR_SRC}/TbUart_SendGet1.vhd

vsim -1ib ${LIB_NAME} TbUart_SendGet1l Simulate, add

- * :
add wave -r /TbLedFlasher/ waves, & run
run 4@ us

* lIssues
* Need help (TCL code) to find the source directory
* Simulator Specific
* Simulator API repeats the same information on many calls

hy is EDA Scripting Hard?

« Some blame TCL

* Issues
= Simulator needs to run in a specific directory
* Settings and Library information are in a *.ini or *.cfg
» If not, the library info must be respecified on tool start
* Hence, if you use "cd", you loose this information

» Scripts need to be co-located with verification IP
* Hence, they need directory information

+ The simulator APl fundamentally misunderstands the VHDL work library
* Work is not a name for a library
* Work is the shorthand for the current library

OSVVM Scriptin
¢ Procedure based API that runs on top of

library osvvm TbUart Activate Library

analyze . /test.bench/TestCtrl_e .vhd
analyze ./testbench/ThUart.vhd

analyze ._/testbench/TbUart_SendGetl.vhd Simulate & Run
simulate ThUart SendGetl ThUart_SendGet1
» Benefits
« Simple, just like a list of source files ...
o ... Except we also get the power of TCL

» Settings (like current working library) are remembered
» Paths are relative to script location to facilitate moving pieces of projects

« One Simulator Script API for
« GHDL, NVC, Aldec, Siemens, Synopsys VCS, Cadence Xcelium

Calling OSVVM Scripts

» build - Call a *.pro file from command line or Cl

e Build + EndOfTestReports generates the HTML and Junit reports

» include - Call a *.pro file from another *.pro file

AXI4.pro

include ./common/common.pro
include ./AxidLite/AxidlLite.pro
include ./AxiStream/AxiStream.pro
include ./Axi4/Axi4.pro

» Use Build and Include rather than TCL's source or EDA vendor's do
» Used to make paths relative to directory from which the scripts run

OSVVM Test Completion Message

» EndOfTestReports produces a summary and if errors a detailed report
EndOfTestReports ;

%% DONE PASSED Test UartRx 1 Passed: 48 Affirmations Checked:
at 100100100 ns

%% DONE FAILED Test UartRx_1 Total Error(s) = 7 Failures: 0 Errors: 7
Warnings: 0 Passed: 41 Affirmations Checked: 48 at 100100100 ns

8% Default Failures: 0 Errors: Warnings: 0 Passed:
&% OSVVM Failures: 0 Errors: Warnings: 0 Passed:
8% B Failures: 0 Errors: Warnings: 0 Passed:
&% UART_SB Failures: 0 Errors: warnings: 0 Passed:
&% AxiMaster 1 Failures: 0 Errors: Warnings: 0 Passed:
&% AxiMaster 1 Data Err Failures: 0 Errors: Warnings: 0 Passed:
%% AxiMaster_l1 Protocol Failures: 0 Errors: Warnings: 0 Passed:
8% vartRx_1 Failures: 0 Errors: warnings: 0 Passed:
&% UartTx_1 Failures: 0 Errors: Warnings: 0 Passed:

» When a build finishes, a single line, mini report is produced

BuildError: Sim Demo|FAILED, Passed: 149, Failed: 3,
Skipped: 0, BAnalyze Errors: 0, Simulate Errors: 0, Build
Error Code: 0

« If there are errors, this is the first place we see an indication

Build Summary Repor

Build Status
Summarizes all tests run

Link to Simulation Transcript
Both text and html

Link to code coverage

TJest Suite Summaries

Test Suite = multiple test cases
Summarizes Pass/Fail +

Jest Case Summaries
Test Case = Testbench
Identify Failing Test(s)
Links to Test Case Reports

Test Case Repo

TbAxi4_MemoryReadWriteDemo1 Test Case Detailed Report inks

Avetabie Reports Alert Report

Functional Coverage Report
Scoreboard Reports
Simulation Results

Test Case Transcript

Link to Build Summary

ThAxia_MemaryReadWriteDemas Alert Resert Alert Report

» TUAxi4_MemoryResdWritaDemol Alert Settings Settings (hidden)

» ThAxid_MemoryResdWriteDemeo1 Alert Rasults Results (hidden)

— Report for each FC model in
testbench (each hidden)

TbAxi4_MemoryReadWriteDemol Coverage Report } Functional Coverage Report

Thaxia_MemoryReadWriteDemo1 Scoreboard Report for Scorcboard_shv

Pt emCust Grorcout DeaChecked Demsbvpped | NemsOropsed Moot

Scoreboard Report

One Table for each
Scoreboard type.
One row in table for
each scoreboard.

ThAxi4_RandomReadWrite Alert Report

¥ ThAxi4_RandomReadWrite Alert Settings

Alert Settings

! Alert Report
¥ ThAxid Results - J
— — ™ Nt Counts [rrom— Dlsabled et Counts

Pused Toml OB ilwes Ewers Wamings Passad Chacked fallues Emers Wamings

= FAILED in le indi
— [P — TbAxi4_DemoErrorMemoryReadWrite1 has 2 errors
e The 2 errors were detected in the manager_1 VC
Fores One error is in the manager_1:Data Check
bpeind | & e i S e s One error is in manager1:ReadBurstFifo

* ThAxi4_DemofrrarMemoryiteadWrite] Alert Resulls

e ot Aot ot P Disabled Aert ot
Hame. Stabes el
pused Gstsl U pales Emos Wmings Passed Checked Falures Eors Warmings

Uart7_Random_part3 Coverage Report
Total Coverage: 100.00
¥ UART_RX_STIM_COV Coverage Model Coverage; 100.0

v WART_RX Coverage Sectings

Coverage Model Settings

| Coverage Results

¥ UART_RX_COV Coves
» UART_RX
v T

Test Case Report: Scoreboards

TbAxi4._ y 1 Report for _slv

ParentName TtemCount ErvorCount ItemsChecked TtemsPopped MemsOropped FifoCount

A separate table is created for each scoreboard instance
Each row in the table has statistics for a single scoreboard

Tables for Scoreboard_slv and Scoreboard_int are automatically generated
Use WriteScoreboardYaml to generate reports for user created scoreboards

52

HTML'ized Simulation Transcrip

Simulation Transcript
« Details are hidden
» Rotate triangle to see details
= Scan a file that is otherwise
100K+ lines in seconds

Simulation Transcript
When viewed from Test Case
Report, it jumps to the
simulation'’s results

Errors are shown in red in the HTML'ized report

As a result, this report can be scanned for errors

Simulation Transcript
When viewed from Test Case
Report, it jumps to the
simulation’s results

VHDL Transcript Fil

Created by TranscriptOpen
Test Case Report links to this file

etting OSVVM & Running Scripts

* Get the sources:

git clone --recursive https://github.com/osvvm/OsvvmLibraries

* Alternately, a zip file is at: osvvm.org/downloads

+ Initialize the simulator — see Documentation/Scripts_user_guide.pdf

file mkdir sim ;
cd sim
source

« Build all OSVWM and Run All VC Tests

In directory containing OsvvmLibraries

.. /OsvvmLibraries/Scripts/StartUp.tcl

build $OsvvmLibraries/OsvvmlLibraries.pro
build $OsvvmLibraries/RunAllTests.pro

» Each VC has a RunAllTests and RunDemoTests

All you ne

Verification Framework
Transaction Interface & API
Verification Components
Test Sequencer (Test Cases)

Verification Utility Library
Constrained Random,
Functional)

Scoreboards, ...

T~
Verification Component
Library

A Full, Lite, AXI Stream,
UART, xMIl

T

Script Library
Tool Independent Scripts
One Script to Run them All

P
Co-Simulation

Run C++ in Hardware Simulator
Write tests in C++

Benefits

L7
Test Reports

HTML Test Suite, Test Case, Log Files
JUnit XML for O tools

+ Powerful and Concise - rivals other verification languages

+ Unmatched reuse through the entire verification process

+ Unmatched report capability with HTML for humans and JUnit XML for CI
Tests are Readable and Reviewable by All

Adopt incrementally as needed

Tests and VC can be written by any VHDL Engineer

Y ks VHDL Classes

Comprehensive VHDL Introduction 4 Days - beginners class
http://www.synthworks.com/comprehensive_vhdl|_introduction.htm
A design and verification engineer's introduction to VHDL syntax, RTL
coding, and testbenches. Students get VHDL hardware experience

with our FPGA based lab board.

Advanced VHDL Testbenches and Verification - OSVVM Boot Camp - 5 days
http://www.synthworks.com/vhd|_testbench_verification.htm
Learn the latest VHDL verification techniques including transaction based
modeling, self-checking, scoreboards, memory modeling, functional coverage,
directed, algorithmic, constrained random, and intelligent testbench test
generation. Create a VHDL testbench environment that is competitive with other
verification languages, such as SystemVerilog or 'e’. Qur techniques work on
VHDL simulators without additional licenses and are accessible to RTL engineers.

VHDL Coding for Synthesis 4 Days

http://www.synthworks.com/vhd| rtl synthesis.htm

Learn VHDL RTL (FPGA and ASIC) coding styles, methodologies, design
techniques, problem solving techniques, and advanced language
constructs to produce better, faster, and smaller logic.

OSVVM Resources

o Documentation
e HTML: https://osvvm.github.io/Overview/Osvvm1About.html
* PDF; OsvvmLibraries/Documentation - in OSVVM release
e Forum: https://osvvm.org

¢ Recorded Webinars
e OSVVM: Leading Edge Verification for the VHDL Community
 https://www.youtube.com/watch?v=KVmGDy_PHNI
e Faster than Lite Verification Component Development with OSVWM
¢ https://www.aldec.com/en/support/resources/multimedia/webinars/2187
* OSVVM'’s Test Reports and Simulator Independent Scripting
 https://www.aldec.com/en/support/resources/multimedia/webinars/2188
* Advances in OSVVM'’s Verification Data Structures
¢ https://www.aldec.com/en/support/resources/multimedia/webinars/2190

« Jump start your VHDL verification effort with training

» Advanced VHDL Testbenches and Verification - OSVVM Boot Camp
e https://synthworks.com/vhdl_testbench_verification.htm

hy OSVVM?

+ OSVVM is VHDL's #1 Verification Methodology

For FPGA Verification,
» Worldwide: 28% use OSVVM = 50% of the VHDL FPGA users

FPGA Verification Methodology per Wilson Survey

UM v

OSVWM + UVM CoCoTh other

u2012 2014 2016 2018 ®=2020 w2022

Siemens 2022 https://blogs.sw.siemens.com/verificationhorizons/2022/11/21/part-6-
e-2022-wilson-research-group-functional-verification-study/

T=SSOLVE

A HERO ELECTRONIX VENTURE

Tessolve is the leading engineering service/
solution provider with 3000+ employees worldwide
and a full breadth of pre-and post-silicon expertise.
Tessolve provides a one-stop-shop solution with
full-fledged hardware and software capabilities,
including its advanced silicon and system testing
labs. We have Test labs in India, the US, Malaysia,
and Singapore.

Analog and
Digital IC Design

Tessolve offers complete Turnkey ASIC Solutions,
from design to packaged parts. We are actively
investing in the R&D center of excellence initiatives
such as 5G, mmWave, high power PMICs, HSIO,
HBM/3D/Chiplets, system-level tests, advanced
verification methodologies, and others.

Silicon to
Product
\ Development

Reliability Package
Design

Tessolve also offers end-to-end product design
e Lo ol services in the embedded domain from concept to
e SRRt manufacturing under an ODM model with
application expertise in Avionics, Automotive, Data
Centre/ Enterprise, Industrial/loT, and Wireless
segments. We are ISO 9001:2015 certified and our
Embedded team is 1SO9001 & EN9100 Quality
certified.

Visit www.tessolve.com for more information.

Test/Product Hardware Embedded
Chip Design Engineering Development Systems

180nm 900+ 130+ 30+

3 n m Test programs PCB designs per Embedded Systems

Advanced Process released month ° released
® node downto 7nm

- VIPs . 30+ 60+ 50%

Verification IP (VIP) P Automated Test Experience with . Over 50% employees
solution for different . Equipment supported 60+ layers PCB . with 10+ years’
Protocols & IPs design + Sl + Pl . experience

Mike Bartley Marc Waugh Tessolve DTS Inc

Senior Vice President Director Sales & 4210 South Industrial Drive
VLSI Design Marketing STE 140

+44 (0)779 630 7958 512-461-4017 Austin, TX 78744, USA
mike.bartley@tessolve.com marc.waugh@tessolve.com .
ye gh@ Email: sales @tessolve.com

Notes

T=SS0OLVE

SILICON AND SYSTEMS SOLUTION PARTNER

Silicon to
Product
Development

Data Centre/
Enterprise

Avionics Semiconductor

EFAE]
T
@]

We hope you have found the conference interesting and informative

Slides and recordings will be available on the Tessolve Website

https://www.tessolve.com/verification-futures/vf2022/

2022

VERIFICATION FUTURES

https://www.tessolve.com/verification-futures/vf2022/

