N
Ilperas

A Modern Fable:
The Lost Art of Processor Verification

Verification Futures — Austin

Larry Lapides
14 September 2023

© 2023 Imperas Software Ltd. 14-Sep-23

RISC-V Is Why We Are All Worried
About Processor Verification Ihnperas

RISC-V is taking over the processor world, except for x86
Yes, that includes Arm

RISC-V processor customization means that every RISC-V
developer needs to verify the RISC-V processor

Lost art? Processor IP vendors guard their verification
methodology and details more closely than the IP itself

With the verification flow, someone could reverse engineer a
high quality processor

There are few public details about x86, Arm or Apple
processor verification

© 2023 Imperas Software Ltd. 14-Sep-23

_
mperas

Agenda

* RISC-V and processor verification
* RISC-V processor models

* RISC-V processor verification methodology

* Processor verification success
* Summary

© 2023 Imperas Software Ltd. 14-Sep-23

_
mperas

Agenda

* RISC-V and processor verification

* RISC-V processor models

* RISC-V processor verification methodology
* Processor verification success

* Summary

© 2023 Imperas Software Ltd. 14-Sep-23

RISC-V Freedom Enables
Domain Specific Processing Inperas

Who: RISC-V users include traditional semiconductor companies, and embedded systems companies now
practicing vertical integration by developing their own SoCs

What: RISC-V is an open instruction set architecture (ISA), it is not a processor implementation

Where: RISC-V is growing in market segments where x86 (PCs, data centers) and Arm (mobile) architectures
are not dominant

Small microcontrollers for SoC management, replacing proprietary cores

Verticals such as loT and automotive

Horizontal markets such as security and Al/ML

Deep embedded applications

When: RISC-V processors are now used in over 30% of SoCs

Why: The freedom of the open ISA enables users to develop differentiated domain specific
processors and processing systems

© 2023 Imperas Software Ltd. 14-Sep-23

Keys to RISC-V SoC Success IMnperas

Processor IP source
Processor IP vendor
Open source IP
Build it yourself

Processor verification

Software porting, development, bring up, test

All 3 areas need to account for the addition of custom features to the processor (because
everyone adds custom features to the processor)

© 2023 Imperas Software Ltd. 14-Sep-23

Keys to RISC-V SoC Success IMnperas

Processor IP
Processor IP vendor
Open source IP
Build it yourself

Processor verification
Software porting, development, bring up, test

Users of all 3 types of processor IP need to account for the addition of custom
features to the processor (because everyone adds custom features to the processor)

Success in processor verification requires a high-quality model of the processor

Success in processor verification requires innovative technologies and
methodologies — the lost art of processor verification

© 2023 Imperas Software Ltd. 14-Sep-23

e
RISC-V Processor Complexity ~ IMN[D€@ras

* RISC-V is a modular instruction set Ports/ . oy JDebue

AndesCore®

. Memo Module
architecture v AX45MPV Multicore
° Any eXtenSIOn (functlonal group Of — W Ve AW IRQ's Platform-Level Interrupt Controller
instructions, e.g. atomics o JTAG
] ° °]
compressed, floating point, vector) 45-series uCore, PMP/PMA T
can be added to the base processor LMAMI
.. . . DSP/FPU o
* Then add in interrupts, privilege
mOdeS; DEbUg mOde, mU|ti_hart M Coherenl;ce)’ Coherence Manager
(multi-core), etc. and it gets complex ' port
ICache L2 Cache Controller
* Then processor DV, tool chain
development and other software Bus Interfoce Unt . e remen =
development is needed AXI Streaming Port

© 2023 Imperas Software Ltd. 14-Sep-23

0
RISC-V Processing Subsystems
Compound DV Issues PeTas

)
* Multi-processor subsystems are commonly being o b ;

developed using RISC-V cores e :
* Application areas include DSP, Al/ML and packet
processing
* This adds complexity to both the DV and software Dolphkm Design “Panther” DSP i
development tasks

DR1000 Birdeye Core Complex (BCCX) SGS
Inst. Cache |nst. Cache] st Ca:ho. .lntl. Ca:hol Ilnst Cach'. \VPU Register File (VRF) on ASIL D READY
ng:’:' Scalar || Scalar Scalar Scalar :‘;’f‘:"" s"‘xom
S Proc. Proc. Proc. Proc. Vector s tacktace
CU(':"L‘J Unit Unit Unit Unit Proc. SAAR
el 8PY) || (sPu) | | sPu) | | sPu) Unit
CCU Local SPU Local SPU Local SPU Local SPU Local (VPU)
RAM (CLM) RAM (SLM)| | RAM (SLM)| | RAM (SLM)] | RAM (SLM)
Read Only
Cache for
wiroey] LMPU_| [wor | [otu | | icu | VPU (LV°L°':')RAM
| smu | [oBs | [emu |

MPU: Memory Protection Unit SMU: System Management Unit
WDT: Watch Dog Timer DBG: Debug Unit
DTU: Data Transfer Unit EMU: Error Management Unit

ICU: Interrupt Controller/Request

NSITEXE Data Flow Processor

© 2023 Imperas Software Ltd. 14-Sep-23

_
mperas

Agenda

* RISC-V and processor verification

* RISC-V processor models

* RISC-V processor verification methodology
* Processor verification success

* Summary

Page 10 © 2023 Imperas Software Ltd. 14-Sep-23

RISC-V Model Requirements:
Quality, Configurability, Interfaces

Model other behavioral components, e.g. interrupt controllers

Easily update and configure the model(s) for the next project
User-extendable for custom instructions, registers, ...

Model actual processor IP, e.g. Andes, MIPS, NSITEXE, OpenHW, SiFive, ...
Well-defined test process — for the model! — including coverage metrics

Imperas

Model the ISA, including all versions of the ratified spec, and stable unratified extensions

MMC Models

Shared Resource

Instruction Decode

Instruction Behavior

Tightly-Coupled Cache

A\

Processor State

Exception Modeling

TLB/ MMU

Asynchronous Events

Instruction
Disassembly

Debug
Interface

Libraries

Interface to other simulators, e.g. SystemVerilog, SystemC, Imperas virtual platform simulators

Interface to software debug tools, e.g. GDB/Eclipse, Imperas MPD

Interface to software analysis tools including access to processor internal state, etc.

Imperas models and simulators were built to satisfy these requirements, and matured through

usage on non-RISC-V ISAs over the last 15+ years

© 2023 Imperas Software Ltd.

14-Sep-23

Imperas OVP RISC-V Fast
Processor Models Inperas

Use cases

Architecture analysis, including (especially) custom instructions
Software development, debug and test
Processor and SoC verification

Existing Imperas Open Virtual Platforms (OVP) Fast Processor Models of ...

Generic or envelope models of RV32/64 IMAFDCEVBHKPZ* M/S/U privilege modes
Models of processor IP vendors: Andes, MIPS, NSITEXE, OpenHW, SiFive, ...
Models for developers building their own processor

Custom instructions easily added by user or by Imperas ’
New instructions are added in a side file so as not to perturb the verified model
Custom instructions are analyzed for effectiveness Open Virtual Platforms

Models are built using Test Driven Development (TDD) methodology
Tests are built at the same time as features are added
Continuous Integration (Cl) test flow used
> 15,000 tests for models + simulator

Additional testing by processor IP vendors to validate models

© 2023 Imperas Software Ltd. 14-Sep-23

-
Model + Simulator Architecture (1) im@eras

_____ - Imperas develops and maintains Base Model
* Base Model implements RISC-V specification in full

* Base Model built using Test Driven Development methodology
* Built using public APIs matured over 15 different ISAs
* Simulator is separate from the model; supports the modeling APIs

RISC-V
Base Model

Imperas Simulator

Page 13 © 2023 Imperas Software Ltd. 14-Sep-23

Model + Simulator Architecture (2) imperas

- Imperas develops and maintains Base Model

RISC-V
Base Model

Imperas Simulator

Model Config
250+ params

Base Model implements RISC-V specification in full

Base Model built using Test Driven Development methodology
Built using public APIs matured over 15 different ISAs

Simulator is separate from the model; supports the modeling APIs
Fully user configurable to select which ISA extensions

Fully user configurable to select which version of each ISA
extension

Page 14 © 2023 Imperas Software Ltd. 14-Sep-23

Model + Simulator Architecture (3) immg@eras

_____ - Imperas develops and maintains Base Model

RISC-V
Base Model

Model Config
Vendor-
specific config
file + custom
Instructions

250+ params

Imperas Simulator

Base Model implements RISC-V specification in full

Base Model built using Test Driven Development methodology
Built using public APIs matured over 15 different ISAs

Simulator is separate from the model; supports the modeling APIs
Fully user configurable to select which ISA extensions

Fully user configurable to select which version of each ISA
extension

For processor IP vendors, have pre-defined configuration plus
vendor custom instructions

Page 15 © 2023 Imperas Software Ltd. 14-Sep-23

Model + Simulator Architecture (4) JRDE@ras

- Imperas develops and maintains Base Model

Reference Model

,,,,,,,,,, k_,__,,,_

RISC-V
Base Model

Model Config
250+ params
Vendor-
specific config
file + custom
Instructions

Imperas Simulator

Page 16

User Extension:
custom
instructions
& CSRs

Base Model implements RISC-V specification in full

Base Model built using Test Driven Development methodology
Built using public APIs matured over 15 different ISAs

Simulator is separate from the model; supports the modeling APIs
Fully user configurable to select which ISA extensions

Fully user configurable to select which version of each ISA
extension

For processor IP vendors, have pre-defined configuration plus
vendor custom instructions

* Imperas provides methodology to easily extend base model

Custom instructions added using same APIs as in Base Model

Separate source files and no duplication to ensure easy
maintenance

100+ page user guide/reference manual with many examples

User extension source can be proprietary (Apache 2.0 open source
license)

© 2023 Imperas Software Ltd. 14-Sep-23

-
Model + Simulator Architecture (5) immg@eras

_____ - Imperas develops and maintains Base Model
* Base Model implements RISC-V specification in full

Reference__l__/l_g_d_el ¢ Base Model built using Test Driven Development methodology
——————— A * Built using public APIs matured over 15 different ISAs
e Simulator is separate from the model; supports the modeling APIs

ED (7)) EO

= g | & g oy Fully user conf!gurable to select wh!ch ISA (—.then5|ons

RISC-V S Cls g % 2 custom * Fully user configurable to select which version of each ISA
= al8Bc 3¢ _ : extension
Base Model S =5 g = E Instructions . * For processor IP vendors, have pre-defined configuration plus
S e qi_: c & CSRs vendor custom instructions
(%) \

* Imperas provides methodology to easily extend base model

TS S Eier * Custom instructions added using same APIs as in Base Model
. Sep_arate source files and no duplication to ensure easy
> RISC-V Base Model is used in all Imperas RISC-V maintenance

* 100+ page user guide/reference manual with many examples

rocessor models))
P) * User extension source can be proprietary (Apache 2.0 open source
» By commercial users license)

» By academic users
» By users of the free ISS riscvOVPsimPlus
» RISC-V Base Model is used by > 150 organizations

Page 17 © 2023 Imperas Software Ltd. 14-Sep-23

Models Drive Customization

* Custom instructions are added to
optimize a specific application or set of
applications within a domain

* Models let you explore quickly
* Much faster to develop than RTL
* Better profiling information available
* Easier to debug software

* Methodology
» Start by characterizing the application to be

Compile

Algorithm

A

. 3
Imperas

Hand-Code
ASM

Add Custom

RISC-V
Reference Model

Instructions

optimized [
* Then add the custom instructions, evaluate, ey
and iterate Base Model

Page 18

config
ustom

O O 35

Model Config
Vendor-

250+ params

o
5+
o v
Q=
mﬂ—

© 2023 Imperas Software Ltd.

User Extension:
custom
instructions

_
Imperas

Simulate
w/ RISC-V
Model

Analyze

14-Sep-23

_
mperas

Agenda

* RISC-V and processor verification

* RISC-V processor models

* RISC-V processor verification methodology
* Processor verification success

* Summary

Page 19 © 2023 Imperas Software Ltd. 14-Sep-23

5 Levels of RISC-V Processor
DV Methodology imperas

Asynchronous continuous compare

Synchronous step-and-compare
Post-simulation trace log file compare

Self-checking tests (e.g. Berkeley torture tests pre-2018)
Hello World

Quality

© 2023 Imperas Software Ltd. 14-Sep-23

S Levels of RISC-V Processor
DV Methodology mperas

Asynchronous continuous compare

Synchronous step-and-compare
Post-simulation trace log file compare

Self-checking tests (e.g. Berkeley torture tests pre-2018)
Hello World

Quality

© 2023 Imperas Software Ltd. 14-Sep-23

3) Post-Simulation Trace Log File Compare

(Entry Level DV)

£ Google Cloud RTL Simulation

RISC-V RTL
& Memory

RISCV.c RISCV.elf

imperas

SystemVerilog design + UVM simulator for RTL

Design Verification using Co-Sim with reference model

Imperas.log

O Google Cloud Open source Stressful Transaction & Instruction Generator (STIG):

imm[p)eras Model and simulation golden reference of RISC-V CPU

EHFASNI:E @"'W"'SC 1= opentitan

* Process

CPU model
variant selectionand
configuration

'Application
<cross>.elf

Semihosted
Filel/O

Imperas riscvOVPsimPlus Reference Simulator

Page 22

Imperas

* use random generator (ISG) to create tests
* during simulation of ISS write trace log file
* during simulation of RTL write trace log file

 at the end of both runs, run logs through
compare program to see differences / failures

* |ISS: riscvOVPsimPlus includes Trace and
GDB interface

* Free ISS: https://www.ovpworld.org/riscvOVPsimPlus

* ISG: riscv-dv from Google Cloud / Chips

Alliance

* Free ISG: https://github.com/google/riscv-dv

© 2023 Imperas Software Ltd.

14-Sep-23

https://www.ovpworld.org/riscvOVPsimPlus
https://github.com/google/riscv-dv

Post-sim Trace Compare:
Pros and Cons nperas

Pros:
Availability of quality RISC-V simulators (e.g. riscvOVPsimPlus from Imperas)
Simple to set up and use

Cons:

Must run RTL simulation to the end

Cannot debug live

Incompatible trace formats (between RTL, ISS, ...)

Easy to skip instructions, and only compare selected few

Difficult to verify asynchronous events (e.g. interrupts, debug requests)
Not a comprehensive DV strategy

Post-sim trace compare is widely used
Most effective as a complementary methodology to asynchronous continuous compare

© 2023 Imperas Software Ltd. 14-Sep-23

riscvOVPsimPlus / riscvISATESTS:
Commercial Users Innperas
A &

DT B EMEE Sespressk SAVARTI M=IC

BIREN TECHNOLOGY MACRONIX
ATIONAL Co., L1D.

2 OTSL oo
NETRONGME = HuainTone

SYLINCE:m

P it
m @ e ESWIN @ SIFIV@

G

HASTRA SECWRE-iC

SHA

A/ T T IHE SECURITY SCIENCE COMPANY
i n tel FLC KPIT glgmfonqm Il‘%. VE NTANA Xp ERI. I’\U Canaan
} galois B SAROS = N

. TECHNOLOGY UBILITE . SoC.one
[HgT’pE | BERIX “% o -
S OMNIVIsION” 9ALTRarn RENISHAW.E:

SKY=CH SEAGATE

Comba MIPs & CD

A o
TECIMQ_CECBSY <§
ARQUIMEA §>

AMDZ1 SLEVATING RISEY g Imagination
At A8 9™ mmm Google

EEEEEEEEEEEE

HENSOLDY

Cafinesn

DS RS o AOVMICROCHIP NUMASCALE® Tenafe | SPasEx v
gim n ot RCEHERIUM o &= SILICON LABS Y,
NN g p~ @odosip | = AMAZON ettel
0 St v Specrrum} o b I UeWave UNISOC " tenstorrent Vle e

iy : o LZASHLING Cws VladLink @&

7 AsahiKASEl awchicl @ LIS YiiEh (D) PlatformOlabs ™= SIAR

eemldynamié rRONTGRAGaDmE CIeanSiIicon ‘|CROBT KIOXIA

© 2023 Imperas Software Ltd. 14-Sep-23

Downloaders from OVPworld of riscvOVPsimPlus / riscvISATESTS (21-feb-2023)

riscvOVPsimPlus / riscvISATESTS:
University & Research Lab Users |[ﬁ]ﬂ|@er as

’ ueh ie A 3
UNIVERSITE DE € :
National Taiwan University

UNIVERSITY OF CAPE TOWN ‘ o) IR SC) De La Salle University Un?\‘;‘é;'s‘ﬁ\'}& RENNES 1

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI
[RIVERSIDE B
we Iearn @ A::ggémlc Stanford Universitét & COMPUTER SCIENCE
OZARKS TECHNICAL . omncores To see beyond the horizon. Together enter Oldenbu rg
Universidade Federal
de Campina Grande

UNIVERSITY OF
ENGINEERING & TECHNOLOGY
LAHORE 100 Years of Academic Excellencd

Carl von Ossietzky [SCHOOL OF ELECTRICAL ENGINEERING

COMMUNITY COLLEGE www.opencores.org

) ‘-4 PennState
Hong Kong Applied Science and
NSTRI e

Technology Research Institute

BERREANBETRE

A\ ORTA DOGU TEKNiK UNIVERSITESI

) .
(Aal negle Universitat

- S SHARIF : : : : S T U (D/ MIDDLE EAST TECHNICAL UNIVERSITY UNIVERS“;TY -
& TI-ITI Mincen University of BRESE I “‘LINOIS 1\’10110[1 Stuttgart
Technolog University

— TECHNISCHE HAR
TAT REBIAY UNIVERSITAT \ | M @ THalr
Tokyo University of Agriculture and Technology D R ES D EN I I .:-lel(s:::::"llao;;

Barcelona
Supercomputing

RWTH

N & TUBITAK
' ‘ & NC STATE UNIVERSITY @

LUND J Center
l l EH UNIVERSFrYOF UNIVERSITY PlttS ur gh University of Centro Nacional de Supercomputacion
HOCHl MlNHCrrY
OPENHW %Southampton
PROVEN PROCESSOR IP . ° ""r
» V I S H N U Universiti UNIVERSITI TEKNOLOGI MALAYSIA
ICE YRMIEAERLE LA wsmy |nstitute of Technology lN k 33%35?’:?5;
INSTITUTE OF COMPUTING TECHNOLOGY . CHINESE ACADEMY OF SCIENCES IJI&)]I\(]IE(RASIPI_Q Amencan University of Beirut Un|VerS|ty Of
: 7 TEXAS A&M ERY LYo O el California. Irvine

VIET NAM NATIONAL UNIVERSITY HCMC TONITYERSITTY

UNIVERSITY OF
CAMBRIDGE

National Institute of Technology _J Tampere University

Karnataka, Surathkal

A\ ORTA DOGU TEKNiK UNiVERSITESI
MIDDLE EAST TECHNICAL UNIVERSITY

& Yikexin Research Institute

UNIVERSITY

German University in Cairo

Uﬁ‘f‘rﬁ‘éﬁF()K“ATl()N TE(?HN()I,()(;Y—"“ 0 C |)
ij NIRMA \)GU @M%cﬁqm

SEOUL NATIONAL UNIVERSITY

NAAC ACCREDITED ‘A+ GRADE 5)-» Li_l l_? x_&_’ Llil ‘ :{M u|
Downloaders from OVPworld of riscvOVPsimPlus / riscvISATESTS (21-feb-2023)

© 2023 Imperas Software Ltd. 14-Sep-23

BAZLLXE

iversity of Science and Technology of China

1) Async Continuous Compare

(Highest Quality DV Methodology)

RISC-V
Instruction
Stream
Generator

RISCV.s

/ Debug

driver

RISC-V RTL
& memory

Interrupt

\ driver

RISCV.elf

N

/—-
*

RISC-V
Reference
model

T~

ImperasDV
RISC-V VIP

/

* RTL and reference model are run in “lock-step” in the same simulation
* Internal state of the two is continuously compared

* Asynchronous events are driven into the DUT
* Tracer informs reference model about async events
 Verification IP handles async events, scoreboarding, comparison, pass/fail

Page 26

© 2023 Imperas Software Ltd.

_
mperas

Results.log

14-Sep-23

ImperasDV Components

Imperas

/ Reference model needed for comparison of correct behavior SystemVerilog top level

testbench

ImperasDV
1

Verification IP provides ease of use, saves time and resources

Simulation
control

RISC-V Core
RTL
(DUT)

imperas

riscvISACOV
functional
coverage

imperas

RISC-V

RVVI standard provides communication between test bench
and reference model subsystem

| trace2cov

RISC-V
Instruction
Stream

Generator

riscviISACOV: functional coverage modules

Test suites: riscvISATESTS, directed test suites for difficult
extensions

RVVI TRACER
RVVI-TRACE
RVVI-API

trace2log

MultiProcessor Debugger (MPD) enables RTL-reference

K model co-debug

Feature selection and design choices require serious consideration due to implications of every decision
Every addition dramatically compounds verification complexity
Adds schedule, resources, quality costs == big risks

Before 2021, no off-the-shelf toolkit/products available for DV of processors ... then came ImperasDV

Imperas

riscvISATESTS
irected test suites

Pass/Fail
Determination

SystemVerilog l C/C++
1

ImperasDV, with async continuous compare methodology, is needed to support features such as
interrupts, privilege modes, Debug mode, multi-hart, multi-issue and OoO pipeline, ...

© 2023 Imperas Software Ltd. 14-Sep-23

Async Continuous Compare
Pros and Cons NPETAs

Pros:
Instruction by instruction comparison
Comparison of execution flow, program data, internal state
Errors are flagged immediately — no runaway simulations
Detects synchronous and asynchronous bugs
Checking is done for you
Verification IP (VIP) is reusable across different core DV projects
Ease of use
Training, documentation, and support

Ccons:
Cost of VIP licenses

© 2023 Imperas Software Ltd. 14-Sep-23

I
ImperasDV: Verification IP Innperas

* Reference model encapsulation

* Data prep for functional

coverage !
g inmperas * Includes DUT reference state

storage

RISC-V

* Data movement from Reference

SystemVerilog to C Model . .
verification IP Includes synchronization

)) technology
* Logging data « Can run sync, async, interrupts,
debug, multi-hart
* Pipeline synchronization is key for
asynchronous event DV
Synchronization .
* Includes comparison technology
* Comparisons are done on
Pass/Fail DUT/Reference Model processor

. events; enables DV of multi-issue
Determination . 1.
and 000 pipeline processors

trace2api

trace2log

Page 29 © 2023 Imperas Software Ltd. 14-Sep-23

RISC-V Verification Interface
RV Imperas

Standardize communication Testbench
between DUT, testbench, and _
RISC-V VIP —— Tracer — VIP driver RISC-V Verification IP
ey, — data ? Provides tracer déta to (e_g_ |mperasDV)
RVVI-TRACE: provides tracer Core " e R i using g ST
o L Reference
data to RISC-V VIP RTL 'g w » Functions to configure 2 Model
. o > b
RVVI'API' funct|0n Ievel (DUT) I Asynchronous — é. > cont\::lr}gzgﬁ(l:l]elr;lthe Configuration
interface to RISC-V VIP — netevents — > > i
o Synchronization
RVVI-VVP: virtual peripherals § F
s RVVI-TRACE client such Scoreboard
. v v as file logger
Collaborative work has evolved , . : pass/Fal
RVVI Virtual RVVI Virtual RVVI-VVP _ | RVVI-TRACE client such e
over 3 yea rs Peripheral Peripheral e as (SystemVerilog) gelemiianon
Functional Coverage
Imperas, EM Micro, SiLabs
’ ! ! N J A\ J \ J
OpenHW Group Y hd Y
Verilog Verilog or C/C++ C/C++

https://github.com/riscv-verification/RVVI

© 2023 Imperas Software Ltd. 14-Sep-23

https://github.com/riscv-verification/RVVI

Functional Coverage is a Key

Verification Metric
Especially True for

-
covergroup add_cg with function sample(ins_t ins);
option.per_instance = 1;

cp_rd : coverpoint get gpr_name(ins.ops[0].key, "add") {
}
cp_rd_sign : coverpoint int'(ins.ops[0].val) {
bins neg = {[$:-11};
bins zero = {0};
bins pos = {[1:$1};
}
cp_rsl : coverpoint get_gpr_name(ins.ops[1].key, "add") {
}
cp_rsl_sign : coverpoint int'(ins.ops[1].val) {
bins neg = {[$:-1]};
bins zero = {0};
bins pos = {[1:%$]};
}
cp_rs2 : coverpoint get_gpr_name(ins.ops[2].key, "add") {
}
cp_rs2_sign : coverpoint int'(ins.ops[2].val) {
bins neg = {[$:-1]};
bins zero = {0};
bins pos = {[1:$]};
cr_rsl rs2 : cross cp_rsl sign, cp_rs2 sign ;

cmp_rd_rsl eq : coverpoint ins.ops[0].key
bins rd_eq_rsl = {1};

bins rd_ne_rsl = {0};

ins.ops[1l].key {

cmp_rd_rsl_eqval : coverpoint int'(ins.ops[0].val) == int'(ins.ops[1].val) {

bins rd_eqval_rsl = {1};
bins rd_neval_rsl = {0};
}
cmp_rd_rs2_eq : coverpoint ins.ops[0].key == ins.ops[1].key {

bins rd_eq_rs2 = {1};
bins rd_ne_rs2 = {0};

cmp_rd_rs2_eqval : coverpoint int'(ins.ops[0].val) ==
bins rd_eqval_rs2 = {1};
bins rd_neval_rs2 = {0};

int'(ins.ops[1].val) {

}

cmp_rsl rs2 eq : coverpoint ins.ops[0].key
bins rsl_eq_rs2 = {1};
bins rsl _ne_rs2 = {0};

ins.ops[1].key {

cmp_rsl_rs2_eqval : coverpoint int'(ins.ops[0].val) == int'(ins.ops[1].val) {
bins rsl_eqval_rs2 = {1};
bins rsl_neval_rs2 = {0};

}

endgroup

Processors

Ilperas

Fle View Plan Exclusion Tools Window Help

od EEHE e 9 x

Summary

9 I

l Hierarchyl Modules | Groups |Asserts I Statistics ITests |

Tree

<Verdi-Apex:vdCoverage:1><vdb: cov_work.vdb> (on Inx6470.impinternal.com)

¥ 2 I9®d G

AET-"D | covsrcd: RISCY._...256.1.1):add_cg & E5T - O | covbetail

LS. D)

[uncovered - <] 5 lpviriscusacovss *

a@-

-

= 4001 }
4002 “enair

AR

Cover Group ltem

v, A3 Group Scora33.20% U+G7SES LisSSl G235 Lo 400> | . =y B 77.34
Inst, I+ Us 4 1
Bt dompire il 2561 Ci2984 o S -G8 cmp_rd_r.. [EEEEEN100.00% 2
® Grouy Score Instances covergroup add Cg With functl
e - . S g 8 crop_rd v EE100.00% 2
| E : T 77.34% [4087 cpticn.per_instance - 17 (68 cmp_rd_r.. [EEEEN100.00% 2
T cmp_rd_rsleq R 00.00% 4008 cpticn.comment - “AQ"; 8 cmp_rd_r... [EEEEN100.00% 2
H d_rsl | I 100.00% S
i cmp_rd_rs1_equa O 4090 Cp asm count : 3 —GRcmp rsl_... I 50.00% 25
8 d rs2 100.00% ine.ins etr —- “aaa" iff (1 i
€8 cmp_rd_rs2_eq = et = i =
e N t = “Num
:‘m"—m-m-e""a' 100 00% D (0 e "\ _|e status BinName Tpe AtleastSze HitCount
&8 cmp_rsl rs2_eq [50.00% xecutea”;
4092 bine count[] = {1};
— B8 cmp_rs1_rs2_eqval I 100.00% . Boas }
4094 cp ra : coverpoint get gp
~ B8 cp_asm_count [100.00% = et i cam[ST Eag Y SEE A
H d 1 00.00% TETINESN—
SRcp_r 4095 opticn.cosment - “RD
B cp_rd_maxvals I 25.00% (m: register assigument”;
4096
88 cp_rd_sign 1 00.00% S 087 Cp ra sign : coverpomnt 1
ot (ins.cpe[0].val) iff (ims
— 88 cp_rd_toggle I 1 00.00% L .trap == 0) {
1= M CovDetail | HvpDetail
Message ‘X ‘3-__‘;!'_ u]

Functional coverage results
displayed in Synopsys Verdi

Exclusion Manager} Requirements Manager | Message |

riscvISACOV (and ImperasDV) works with any SystemVerilog simulator

© 2023 Imperas Software Ltd.

14-Sep-23

RISC-V Functional Coverage IMnD@ras

For a processor there are different types of functional coverage required:

Standard ISA architectural features
unpriv. ISA items: mainly instructions, their operands, their values
=> these are standard and the same for all RISC-V processors — it is the spec...

Customer core design & micro-architectural features
priv. ISA items, CSRs, interrupts, debug block, ...
pipeline, multi-issue, multi-hart, ...
Custom extensions, CSRs, instructions

© 2023 Imperas Software Ltd. 14-Sep-23

Functional Coverage of RISC-V
Instructions: Scope InPeras

There are many different instructions in the RV64 extensions:
Integer: 56, Maths: 13, Compressed: 30, FP-Single: 30, FP-Double: 32
Vector: 356, Bitmanip: 47 Krypto-scalar: 85
P-DSP: 318
For RV64 that is 967 instructions...

Each instruction needs SystemVerilog covergroups and coverpoints
10-40 lines of SystemVerilog for each instruction

10,000-40,000++ lines of code to be written

Not design or core specific

© 2023 Imperas Software Ltd. 14-Sep-23

_
mperas

riscviSACQV Is Automatically
Generated SystemVerilog Functional
Coverage

Imperas
- Imperas
RISC-V ISA SystemVerilog coverage riscvISACOV
specification code generator

SystemVerilog functional coverage code

* riscvISACOV provides functional coverage of Instructions and operands
* Roadmap includes CSRs and data hazards
* Imperas tools can automatically generate functional coverage code for custom instructions

Page 34 © 2023 Imperas Software Ltd. 14-Sep-23

Test Stimuli |[ﬁ]ﬂ|}>)e|'as

Instruction Stream Generator (ISG) and/or directed tests

ISG generates test programs using constrained random approach

Most often obtain the ISG:

Commercial such as Valtrix STING
Open source such as Google riscv-dv

Require toolchains like GCC, LLVM for assemblers, linkers
Require functional coverage so that you know what you’ve tested!

Directed tests

Imperas have developed a directed RISC-V test generator, instruction coverage verification IP and a mutating fault
simulator (for test qualification) to provide high quality test suites

The generated tests suites are targeting architectural compatibility as defined in the RVIA architectural test
working group coverage requirements

Free Imperas architectural validation test suites (50+), including RV32/641, M, C,F, D, B, K, V, P
https://github.com/riscv-ovpsim/imperas-riscv-tests
Imperas commercial directed test suites for vector extension, protected memory components

Can support any RISC-V vector or PMP configuration; the user selects the configuration and Imperas generates
the test suite

© 2023 Imperas Software Ltd. 14-Sep-23

https://github.com/riscv-ovpsim/imperas-riscv-tests

ImperasDV: Debug with MPD

* Imperas MPD is an Eclipse
based debug tool

* Can debug using source line
or instruction level

* See new custom instructions
and any new additional state
registers

* Break at the first mismatch,
debug SW and RTL
concurrently

Page 36

Testbench

wp
File

Edit

Ilperas

- Multi Processor Debugger

crt0.S 88 [Jsyscalls.c [c]exit() at exit.c:64 0x59¢

(oo o

BN . . k| BS

®=Va 9 Br 6fEx

4 Debug %8 (5 Project Explorer T -
ETIUININ I |0 oR—. e 3
§

~ iw Imperas Platform (mpd) [Imperas - Connect
~ iw refRoot

~ il cpu [CV32E40X riscv]

~ 1D #1 [cpu] CV32EAOX risev (S,

exit() at syscalls.c:115 0x356

B [

B Mo mopPr 3 = O

&

Q type register name filter text

5L// W au, 8(sp) 7% a9 = argc */
52// addi al, sp, _ SIZEOF POINTER _ /* al = argv */

53// a2, @ /* a2 = envp = NULL */
54// Initialize these variables to 0. Cannot use argc or argy

exit() at exit.c:64 0x59c

55// since the stack is not initialized
56 lia@, 0

57 lial, @

58 liaz, @

9

60 call main

61 tail exit

62

63.size _start, .-_start

refRoot/cpu
fiscy
CV32E40X
14351
Machine

InctritinnAddenceMic.

@ Debugger Console 13

Imperas Platform (mpd) [Imperas - Connect to running simulator] mpd.exe

MPD (64-Bit) 20220601.0 Multiprocessor debugger from www.IMPI
Copyright (c) 2005-2022 Imperas Software Ltd. Contains Impel
rmation.

Licensed Software, ALl Rights Reserved.

Visit www.IMPERAS.com for multicore debug, verification and i

Info (MPD_SCS) Connecting

Info (MPD_SC) Socket connected

Info (MPD_VC) Server is compatible

Info (TC_LIS) Listening for console connections on port 4131!
idebug (cpu) > Info (TC_CN) New client (fd=8)

idebug (cpu)

Execution finished

exit (exit status=) at syscalls.c:115
while (1) {};
idebug (cpu) >

® = pi B >~ = 0O |G consol | Registe 32 |[£] Proble

v H#General Registers

0
0xc2 <_start+66>
0x400000

0x3d18

0x0 <vector_table>
0

14184

O Execut

=

0 Memor o=

e

General Purpose and

Imperas

© 2023 Imperas Software Ltd.

14-Sep-23

Software Debug and Analysis

Automatically Work With the
Custom Instructions

File Edit Source Refactor Navigate Search Project Run Imperas Window Help

0 - Ci%-0-Q-i™ 4 - " P ANDD LR G G- 1 2 |
1 Debug & = @ w»~Variables I3 % Breakpoints ! Regi = Moduk = n
» "N 3Ly - 0 i & - CR S e A S 4
= wo Platform Launch [Imperas - Connect to running simulator] Name Type Value
v uwiss o input i unsigned int | 2222400358
7 cpuO [RV3I2IM riscv] 09 word unsigned int } 2804990272
v £1D #1 [cpu0] RV32IM riscv (Suspended : Breakpoint) - res | unsigned int o
" processiinel) at test_custom.c:S 0x10230
= main() at test_custom.c:32 0x102e4
w mpd -.*

[test_custom.c 22 ™ customChaCha20. ™riscv32.c) _start() at Ox1 ;o9 = B g Outline &w Prog View =D bly 22 Sy
'.,inlc\‘:;;:mtivty;;;u;‘()xw test for Chacha2o [(Enler tocation her @ li[L_.‘;,j P w
0001023¢ 00078513 mv a0, as _’-1.
unsigned int processLine(unsigned int input, unsigned int word){ 00010240: fdB42783 lw a5,-40(s0)
® unsigned int res = input; 00010244 00078593 mv al,as
asm __volatile__("mv x10, %" :: "r“(res)); 00010248 chacha20qrl a0,a0,al
asm _volatile_ (“mv x11, %" :: "r*(word)); 0001024¢ chacha20qr2 a0,a0,al
asm __volatile_ (".word 0x00B5050B\n" ::: “x10"); 00010250: chacha20qr3 a0,a0,a1 [’
asm __volatile__(".word 0x00851508\n" ::: “x10%) 00010254 a0,a0,al
asm __volatile__ (" word 0x00B5250B\n" :: x10%) 00010258 a0,a0,al
asm __volatile_ (".word 0x00B5350B\n" ::: “x10") 0001025¢ a0,a0,al
asm __volatile__ (" word 0x00B50508\n" x10") 00010260 : a0,ab,al
asm __volatile__(".word 0x00851508\n* ::: “x10") 00010264 chacha20qrd a0, a0, a1
asm __volatile__(".word 0x00B52508\n" ::: "x10"); = 00010268 00050793 mv as,a0 (vl

L EEEEEEEEEEE————————————————————.§(

@ Debugger Console 3 | & ki - =2 0 Bconsol 8 &

Platform Launch [imperas - Connect to running simulator] mpd.exe (7.5)
signed int), 1, fp)) {

idebug (cpuwd) > 32 res = processLine(res, word);
1debug (cpu@) > processLine (1nput=2222400358, word=2804990272) at test_custc)

/ Tasks * Proble () Execut {N\Debug [FiProf [JMemor = 0O

I

e New custom instructions,

5
unsigned int res = input; |]
1debug (cpwo) >

T ——— b

new additional state registers

Page 37

Tools

Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info

Info

Info

Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info

Info

© 2023 Imperas Software Ltd.

RES = 84772366

Ilperas

Cputlanagertultl started: Thu Rug 23 12:02:30 2018

(OR_OF) Target 'iss/cpud’ has cbyect file read from 'application/test_custom RISCVI2 elf’
(OR_PH) Program Headers:
(OR_PH) Tupe 0ffset Virthdd Physidd FileSiz MemSiz Flags Align
(OR_PD) LORD 0x00000000 000010000 (x00010000 0x00017270 0x00017270 R-E 1000
(OR_PD) LORD 0x00017270 0x00028270 0x00028270 On00000SCO Ox00000a24 R~ 1000
(OR_OF) Target 'tss/cpud” has object file read from 'application/exception RISCVE2 elf’
(OR_PH) Program Headers:
(OR_PH) Tupe Offoet VirtAdd: Phw\d& FileSiz MenSiz Flags Rlign
(0R_| Pﬁ) LORD 0500001000 0x00000000 000000000 (0000000 Ox0000000c R-E 1000
1330: "se/cpud’, Ox00O0000000010228(processlinesc): Fead2el3 sw a0,-35(30)
1331 “1ss/epud’, O0x000000000001022¢(processl ine+10): febd2c23 sw al,-40(s0)
1332: 'lu/ww‘. 0000000000001 0230(processL ine+14): Fdcd2783 v 5.-B(x0)

a5 a730c140 -> 84772366
1333: “ise/cpud’, Ox0000000000010234(processline+18): fefd2623 sw #5,-20(s0)
1334: “fss/epu0’, 0x0000000000010238(processl ine*lc): fecd2?83 lv o5,-20(s0)
1335: "1ss/cpu0’, 0x000000000001023¢ (processl ine+20): 00078513 mv 80,85
1336: "1ss/cpud’, 0x0000000000010240(processl ine+24): dBA2783 1w a5,-40(20)

o B4772365 > a730c140

1337; "tss/cpud’, Ox0000000000010244(processl ine+28): 00078533 mv al, ¥

1338: “1sa/cpud’, Ox0000000000010248(processline*2c): chacha20grl a0,a0,a1
o0 BA772366 > «2262347

1339; “as/epud’, Ox000000000001024c(processline+30): chachal0qr2 a0, a0, al
a0 &"252347 - Be207451

13403 “es/epud’, OxOOO000000001 0250 processl ine+34) : chachal0qr3 a0,a0,al
a0 &%7451 -> 106511c8

1341 'iss/epu’, Ox 0254(processline*38): chachal0grd a0,00,al
o0 106511c9 =) c2e844dd

1342: "iss/epud’, 0x0000000000010258(processl ine+3c):
a0 2eB44d ~> B5ESIB8

1343: “iss/cpd’, 0x000000000001025¢c(processline+40): chacha20qrf a0,20.al
o) B55065d8 <> bad3E22s

1344; "fss/epud’, 0x0000000000010260(processl inesdd) chachalOgr] 20,4021
a0 bad3822s > 7T943Eald

1345: “lss/cpu0’, 0x0000000000010264(processline*48): chacha20grq a0.00.a1
a0 79436ald - 39Baeef

1346: “1ss/cpud’ . Ox0000000000010Q68(processlinesdc): 00050793 a5.%0
a5 a730c140 -> 39dSaeef

1347: “1es/cpud’ . 0000000000001 026c (processline+50): Fefd2623 #5.-20(s0)

1348: 'ise/cpud’, Ox0000000000010270{ processl ine+54): fecd2783 1w o5,-20(=0)

1349: “iss/cpud’, Ox0000000000010274(processlines58): 00078513 mv 80,85

A
L 20,80,a1

Tupe

Noninal HIPS

Final program counter
Sinulated instructions
Sinulated MIPS

New custom instructions

in trace disassembly

14-Sep-23

_
mperas

Hybrid Simulation-Emulation for
HW-SW Co-Verification

Helium™ Virtual Platform

* It takes more than just the RTL simulator
for comprehensive processor verification

* An additional tool is the hardware
emulator, e.g. Cadence Palladium

* The interface to Palladium is via the
Cadence Helium SystemC simulator

Page 38 © 2023 Imperas Software Ltd. 14-Sep-23

_
mperas

Agenda

* RISC-V and processor verification
* RISC-V processor models
* RISC-V processor verification methodology

* Processor verification success
* Summary

Page 39 © 2023 Imperas Software Ltd. 14-Sep-23

RISC-V Processor DV Results |m@eras

OpenHW Core-V-Verif e =
Agent Agent SRR
OpenHW users now on 3™ generation of Core- _ | | " IsAacov
V-Verif DV flow | svA| Agent
CV32E40P successfully taped out | L =¥ &9 || |
Memory | CORE-V"|S §’ . RWI ‘
CV32E40Pv2, CV32E40S, CV32E40X, CV32E20 Gaents) cvazear [EF T
using this flow today; all expected to complete - =L CRWI
DV this year imperas]
Open HW ”WaIIy” core ImperasDV VIP S
_ _ SV - DPI Wrapper
Other successful DV projects using Imperas SystemVerilog UVM Environment

include Codasip, MIPS, Nagra, NSITEXE,
Nvidia Networking, Skyworks, ...

© 2023 Imperas Software Ltd. 14-Sep-23

.
Case Study: Wally RISC-V Core IMDE€ras

* Configurable core:
* RV32l, RV32E, RV64l, RV64E HARVEY
* A, C, F, D, M extensions, privileged modes, CSRs MUD
* MMU/TLB virtual memory, caches COLLEGE

* Developed at Harvey Mudd College / Oklahoma State University
* Focus: high quality core for processor architecture education
* Now in OpenHW as CORE-V Wally (https://github.com/openhwgroup/cvw)

25

* Status in January 2023 — before starting to use RVVI + ImperasDV for verification:

* Passing all RISC-V International compliance tests, Imperas compatibility tests
* Using Compliance Level post-simulation signature file compare

* Boots Linux

Page 41 © 2023 Imperas Software Ltd. 14-Sep-23

https://github.com/openhwgroup/cvw

I —
Wally + RVVI — Status (July 2023) lMNPeras

& openhwgroup / cvw | Public
’ RVVI Tracer + teStbenCh |ntegrat|0n: 3 <> Code (©) Issues 6 1 Pullrequests ©J) Discussions (») Actions [Projects () Security [~ Insights
days of effort
P Res u |ts . Releases / CVW_v0.9
* 20+ bugs found in simulation almost
immediately using ImperasDV and riscv-dv Arty A7 board support, ImperasDV Linux boot
* Reached Linux prompt with continuous
checking: 2 days of simulation @ ross144 released this Apr 27 - 150 commits to main since this release © CVW_v0.9 -0 e43de9c &
* One bug found just after the Linux
command prompt (!) Additional support for Arty A7 FPGA board.
° FU nCtionaI Coverage achieved by booting Lock step simulation with ImperasDV completes Linux boot from ground zero to 542M instructions.
Linux: covergroups 37%
(bins 3%)
« Future work: Fixes bug 203 and linux/ImperasDV mismatch at 571M instructions #304
° Boot Linux With CO—Sim USing hardwa re davidharrishmc merged 1 commit into openhwgroup:main from rossi44:main (5 last week

assisted verification

* Achieve 100% functional coverage using
constrained-random tests

Page 42 © 2023 Imperas Software Ltd. 14-Sep-23

_
mperas

Agenda

* RISC-V and processor verification

* RISC-V processor models

* RISC-V processor verification methodology
* Processor verification success

* Summary

Page 43 © 2023 Imperas Software Ltd. 14-Sep-23

Processor Verification:
The Key to the RISC-V Castle imperas

High quality reference models
Asynchronous continuous compare methodology

Verification IP
Verification standards (RVVI)
Verification metrics (functional coverage)

© 2023 Imperas Software Ltd. 14-Sep-23

N
Ilperas

Thank you

Larry Lapides

LarryL@imperas.com

Page 45 © 2023 Imperas Software Ltd. 14-Sep-23

