
© 2023 Renesas Electronics Corporation. All rights reserved. 

RENESAS’S 
CONTRIBUTION TO 
ACCELLERA UVM-(A)MS

14TH SEPTEMBER 2023

PETER GROVE / STEVEN HOLLOWAY

MEMBERS OF TECHNICAL STAFF

RENESAS ELECTRONICS CORPORATION



© 2023 Renesas Electronics Corporation. All rights reserved. 

Agenda

▪ Why UVM-MS

▪ Verilog-AMS Simulator DC OP / Transient behavior

▪ UVM MS Bridge to analog resource (UVM->AMS/DMS Connection)

▪ UVM-MS Phasing Requirement

▪ UVM messaging from AMS files and $root cells



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪ UVM is the industry standard methodology for reusable metric driven verification

▪ UVM-MS is the standardisation of analogue/mixed signal extensions for UVM

▪ Allows UVM to be more mixed-signal aware

▪ Improved verification of analogue/mixed-signal designs

▪ Same degree of thoroughness for both analogue and digital parts

▪ Originally named UVM-AMS but focus is to support any MS system; DMS, RNM, Spice or a mixture

▪ Metric-driven verification suits following objectives due to verification space size

▪ Verifying analogue performance under large set of digital configurations

▪ Digital control system transitions interacting with analogue functions

▪ Dynamic control between analogue & digital circuits under wide range of conditions

▪ Finding problems with A/D interaction in unexpected corner cases

▪ Randomisation is not mandatory and benefits are gained even when using directed tests

▪ Standard methodology

▪ Plug & play reuse of existing UVM components

▪ Rich debug & messaging scheme integrated with simulator

WHY UVM-MS



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪ Apply UVM methods and techniques to AMS circuits and systems while allowing DMS/RNM.

▪ Enable a single environment to work whether it is DMS/RNM or AMS by changing the abstraction of the DUT.

▪ Extend the use of UVM components, and extensions thereof, into the physical layer enabling AMS verification. 

▪ Allow predictable coordination of stimulating/measuring a signal

▪ Adhere to the sequence/sequence-item mechanism used by UVM

▪ Independent of the abstraction level of the AMS signals (electrical, RNM, UDT, etc.)

▪ Eliminate the need to rely on conversion elements to change the abstraction level of the DUT signals. 

▪ Use existing language standards; SV and Verilog-AMS

▪ Changes take years to get agreement.

UVM-MS REQUIREMENTS



© 2023 Renesas Electronics Corporation. All rights reserved. 

Agenda

▪ Why UVM-MS

▪ Verilog-AMS Simulator DC OP / Transient behavior

▪ UVM MS Bridge to analog resource (UVM->AMS/DMS Connection)

▪ UVM-MS Phasing Requirement

▪ UVM messaging from AMS files and $root cells



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪ Understanding of UVM-MS DC OP is important;

▪ Knowing the sequence when variable assignment/initial block(s) all execute 

▪ To avoid race conditions between digital blocks.

▪ To avoid odd issues at initialization of analog/digital constructs.

▪ To avoid process initialization issues. 

▪ To make sure the correct value is captured between the analog/digital engines.

▪ Knowing the effects of DC Op on certain AMS filters as they are different to the transient response.

▪ e.g. transition, absdelta, above, cross, absdelay, Laplace.

▪ Skipping DC op will cause odd results and vendor specific.

▪ Enable UVM DUT configuration prior to analog circuit initialization (DC Op). 

▪ E.g. Make a Cap open for a particular test before DC op or short/open a path saving multiple testbenches of configurations.

▪ Assist in debug when DC OP fails as there is often nothing in the waveform files to debug.

▪ Use @(initial_step) $strobe() statement to print out values via ifdef

▪ Using #0 is not good practice as it shows poor coding and understanding of the simulator(s) schedular.

▪ Must raise a UVM objection before DC OP otherwise the simulation finishes.

DC Op – Steady State operating point of all the nodes/branch currents

VERILOG-AMS SIMULATOR DC OP



© 2023 Renesas Electronics Corporation. All rights reserved. 

VERILOG-AMS SIMULATOR SCHEDULING – TIME 0

Analog initial block(s)

Digital initial block(s)

DC Operating Point at time Zero

Executed before analogue 

matrix formation. Allows 
$analog_node_alias and 
$analog_port_alias

commands plus analog

variable initialization. 

Iterative process to 

find stable operating 

point.

All initial blocks executed 

till they consume time. 

Order of initial blocks non-

deterministic. UVM phases 

(< run_phase) included .

Variable Initialization
All variables apply declaration 

initial values and class 

constructors called. e.g.

real              my_var = 1.2;

ams_class my_class=new();

All defined in LRM’s so nothing new!



© 2023 Renesas Electronics Corporation. All rights reserved. 

t1?

VERILOG-AMS SIMULATOR SCHEDULING - TRANSIENT

Analog

Digital

t0 t1 t2?

@cross, above, 

timer or internal 

time-step

Some digital to 

analogue event.

t2

• Analogue engine always leads.

• Digital to analogue events cause matrix re-evaluation and timestep backtrack.

• Most simulators see any digital var in the analog block as a D2A to monitor.



© 2023 Renesas Electronics Corporation. All rights reserved. 

• Variables are ‘owned’ by one engine, but can be read by another.

• AMS can’t access digital variables that are dynamic. (Everything in the matrix is fixed at time 0)

• Generally avoid ‘string’ datatypes in Verilog-AMS as support is flaky and the LRM is not clear.

• OOMR to analog owned variables not allowed – they are not part of the analog matrix.

VERILOG-AMS BEST PRACTICES

Analog 

Simulator

/ Engine

Digital 

Simulator

/ Engine

Variables

Real, integers, 

strings

Variables

Real, integers, 

strings, logic, …



© 2023 Renesas Electronics Corporation. All rights reserved. 

Agenda

▪ Why UVM-MS

▪ Verilog-AMS Simulator DC OP / Transient behavior

▪ UVM MS Bridge to analog resource (UVM->AMS/DMS Connection)

▪ UVM-MS Phasing Requirement

▪ UVM messaging from AMS files and $root cells



© 2023 Renesas Electronics Corporation. All rights reserved. 

MIXED SIGNAL BRIDGE & ANALOG RESOURCE

MS Bridge (SV)

Analog Resource 
(AMS/DMS)

PLUS

MINUS

Proxy

SV IF

REF_VSS

REF_VDD

• MS Bridge (SystemVerilog) to connect the UVM layer to the analog resource. 

• The analog resource could be DMS/RNM/AMS based on DUT pin abstraction.

• Proxy Features (mandatory)

❖ Can’t contain wires needed for logic strength by some digital type IO’s only logic/reg are valid.

• Push analog resource controls using function calls.

• Push-Sync contain registers for end of transition detection or other synchronisation from resource control.

• Pull analog resource values via functions calls.

• Monitored ‘reals’ for monitored continuous signals.

• SystemVerilog Interface (optional) digital signals as they are currently

• Enable logic strength/ports on wires.

• More suited to allow reuse of existing IF with a MS Bridge.

• PLUS/MINUS/REF_VDD/REF_VSS set as ‘interconnect’ in MS Bridge.

• Allow shared DMS/AMS/RNM analog resource.

• REF_VDD/REF_VSS for SV IF logic level to electrical conversion.

• OOMR’s work around datatype limitations on AMS modules IO’s.



© 2023 Renesas Electronics Corporation. All rights reserved. 

Ensure OOMR, port, paramaters from MS Bridge to analog_resource abstractions are the same!

ANALOG RESOURCE – WHAT DOES IT LOOK LIKE

module analog_resource (PLUS, MINUS);

output PLUS, MINUS;

electrical PLUS, MINUS;

parameter real res_val = 1.0;

parameter real res_tr = 1.0e-9;

parameter real res_tf = 1.0e-9;

`include "uvm_ms.vamsh"

function real getVoltage(input dummy);

begin

getVoltage = V(PLUS,MINUS);

end

endfunction

...

module analog_resource (PLUS, MINUS);

output PLUS, MINUS;

real PLUS, MINUS;

parameter real res_val = 1.0;

parameter real res_tr = 1.0e-9;

parameter real res_tf = 1.0e-9;

import uvm_pkg::*;

`include “uvm_ms.dmsh” 

function real getVoltage(input dummy);

return PLUS-MINUS;

endfunction

module ms_bridge #(parameter real res_val = 1.0,

parameter real res_tf = 1.0e-9,

parameter real res_tf = 1.0e-9

)(inout interconnect PLUS, inout interconnect MINUS);

import uvm_pkg::*;

import uvm_ms_pkg::*;

`include "uvm_macros.svh"

`include "uvm_ms.svh"

//Proxy declaration + proxy instance + SV IF + Instance of analog_resource

DMSAMS

SV

Verilog-AMS functions 

must have input!

Required for 

UVM messaging



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪ For logic signal the analog_resource must convert the logic to the DUT pin abstraction.

▪ Proxy can be used to control the properties of the conversion element. Logic to UDN/Real/Electrical

▪ For logic DUT pin abstraction it is a short. alias in = out;

▪ Classical RNM would drive real numbers from UVC sequence/driver within the agent.

▪ In AMS this would generate to many D2A events or not give enough finesse to the signal.

▪ Place the signal generator is located in the domain of the DUT I/O it will connect to.

▪ A generator could be made of many components; ramp noise, sinewave, logic conversion.

▪ A sine wave is made up of 4 properties; frequency, phase, amplitude, and DC bias.

▪ UVM transaction encodes the properties of the sine wave as real values in the uvm_sequence_item

▪ Properties passed to analog_resource to generate the sine wave. 

▪ Still honors the UVM paradigm of having a relatively simple interface for the test writer

▪ Change from classical UVM sequencer/drivers for UVM-MS⚠

ANALOG RESOURCE – DOES WHAT?



© 2023 Renesas Electronics Corporation. All rights reserved. 

• Proxy is designed to be a “thin layer” between UVM and the analog resource implementation

• Alternative style of connection between UVM classes and SV static hierarchy

• Proxy class derived from uvm_ms_proxy which is derived from uvm_report_object

• Embedded class definition placed inside SV bridge module – called “MSProxy” – concrete class

• Class instance must be called __uvm_ms_proxy for messaging to work. 

• A handle to the embedded proxy class is obtained by hierarchical reference and placed in the 

uvm_config_db for access by UVM components. Same as SV Virtual IF!

• Implementation of proxy API methods in bridge module in turn execute analog resource “core” 

methods – hence “proxy” pattern.

PROXY CLASS 



© 2023 Renesas Electronics Corporation. All rights reserved. 

UVM-MS AGENT BLOCK DIAGRAM

uvm_ms_agent

p
ro

x
y

v
if

driver

monitor

sequencer

config

ms_bridge (SV)

p
ro

x
y

in
tf

analog

resource

(VAMS/SV)

• Proxy MUST always be present and instanced as __uvm_ms_proxy – more later on this! 

• SV IF is optional but must be placed in ms_bridge.

• Agent could use override using the UVM factory to extend the pure digital solution to a mixed signal one.



© 2023 Renesas Electronics Corporation. All rights reserved. 

MS PROXY “HOOK-UP”

class cap_proxy extends uvm_ms_proxy;

…

virtual function void setCapacitance(…);

virtual function real getCapacitance(…);

…

endclass

module tb;

…

cap_bridge i_cap_bridge (.PLUS(cap_node),.MINUS(gnd));

…

initial begin

uvm_config_db#(cap_proxy)::set(null, "uvm_test_top.env", "c_proxy", i_cap_bridge.__uvm_ms_proxy);

…

run_test("uvm_ams_test");

end  

endmodule

module cap_bridge(…);

…

cap_core #(…) i_core (…); // AMS model

…

class MSProxy extends cap_proxy;

…

function void setCapacitance(real val, real tr, real tf);

i_core.setCapacitance(val, tr, tf);

…

endfunction

…

endclass

MSProxy __uvm_ms_proxy= new(“__uvm_ms_proxy”);

…

endmodule

Implement

UVM config setting

Proxy Template (API) Proxy instance in bridge module

Calls function in analog resource to 

ensure no race/synchronization 

issues.

Instance of analog

resource

Must be called__uvm_ms_proxy*

Register proxy in config_db



© 2023 Renesas Electronics Corporation. All rights reserved. 

Analog Resource (AMS/DMS)

real tf,tR, target;

function integer setRamp(input real val,tx);
   begin
          tf = tx; tr = tx;  target = val;
          setRamp = 1;
   end
endfunction

analog 
    V(PLUS,MINUS) <+ transition(target,0,tr,tf);

function real getVoltage(input dummy);
   begin
      getVoltage = V(PLUS,MINUS);
   end
endfunction

real V_PLUS_MINUS;
always@(absdelta(V(PLUS,MINUS),...)) V_PLUS_MINUS = V(PLUS,MINUS);

PLUS

MINUS

MS Proxy Class

function void setRamp(input real val,tx);
    void  i_core.setRamp(val,tx));
endfunction

function real getVoltage();
    return i_core.getVotlage(0);
endfunction

real V_PLUS_MINUS;

assign i_proxy.V_PLUS_MINUS = i_core.V_PLUS_MINUS;

REF_VSS

REF_VDDPROXY → ANALOG RESOURCE

Push

Pull

Monitored

Interpolated value

If target is different its 

seen as a D2A event

Analog generates update



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪ Transition filter in AMS is used to convert discrete signals to a continuous time one.

▪ Use some AMS code to detect if the transition filter has completed. Useful feedback to agent.

vdc_tran = transition(vdc, 0,vdc_tr, vdc_tf );

...

eot_vdc = (abs(vdc_tran - vdc) < tol) ? 1:0;

▪ Use function calls from UVM to the Analog Resource to ensure stack has completed.

▪ Updated eot_vdc in proxy as part of this function stack

▪ Use @(eot_vdc) to block further agent execution until request has completed.

▪ Can’t use #(delay) in UVM agent as it requires analogue timestep to update eot_vdc!

▪ Might not happen if the new value of vdc was the same as the last or transition tolerance is big.

▪ UVM agents can use sync items in the proxy to implement reactive behaviour to AMS conditions

▪ e.g. blocking call to voltage ramp which returns when target is reached

PROXY – PUSH ANALOG RESOURCE WITH SYNCHRONIZATION (PUSH-SYNC)

tolerance

Start/Stop have 

tolerances!



© 2023 Renesas Electronics Corporation. All rights reserved. 

MS Bridge

Analog Resource

PROXY – PUSH ANALOG RESOURCE WITH 
SYNCHRONIZATION (PUSH-SYNC)

reg cap_eot; 

... 

function void setCapacitance(real val, real tr, real tf);

void’(i_core.setCapacitance(val, tr, tf)); 

cap_eot = i_core.cap_eot; //Ensure value is updated before function returns

endfunction

... 

endclass

... 

AMSProxy i_proxy = new(); 

... 

always begin i_proxy.cap_eot = i_core.cap_eot; @(i_core.cap_eot); end

function automatic integer setCapacitance(input real val, tr, tf); 

begin 

cap = val; cap_tr = tr; cap_tf = tf; 

cap_eot = (abs(cap_tran-cap) < 1e-7) ? 1:0; 

setCapacitance = 1; //Always return 1.

end 

endfunction

reg cap_eot;

analog begin 

... 

cap_tran = transition(cap, 0,cap_tr, cap_tf ); 

analog_clk = 1 - analog_clk; 

... 

end 

always@(absdelta(analog_clk,1,0,0, 1)) 

cap_eot = (abs(cap_tran-cap) < 1e-7) ? 1:0;

proxy.setCapacitance(txn.farads, txn.trise, txn.tfall); 

wait(proxy.cap_eot); // VAMS handshake in proxy



© 2023 Renesas Electronics Corporation. All rights reserved. 

MS BRIDGE FOR LOGIC SIGNAL

MS Bridge (SV)

Analog Resource 
(AMS/DMS)

DUT IOProxy

SV IF

REF_VSS

REF_VDD module analog_resource (inout interconnect VDD, VSS, output wire dout);

wire din; //OOMR 

alias din = dout; //short dout to be din 

//OOMR Vars 

real tr = 0.4e-9; //Voltage ramp time 

... 

//OOMR Dummy functions to replicate whats in the AMS/DMS abstraction

function automatic integer setLogicSupply(...);

setLogicSupply = 1’b1;

endfunction

... 

module analog_resource (input real VDD, VSS, output real dout);

wire din; //OOMR 

//OOMR Vars 

real tr = 0.4e-9; //Voltage ramp time 

... 

//functions to control conversion

function automatic integer setLogicSupply(...);

...

setLogicSupply = 1’b1;

endfunction

... Some assignment to dout as a real number

DUT is logic

DUT is RNM/DMS

module analog_resource (inout electrical VDD, VSS, dout);

wire din; //OOMR 

//OOMR Vars 

real tr = 0.4e-9; //Voltage ramp time 

... 

//functions to control conversion

function automatic integer setLogicSupply(...);

...

setLogicSupply = 1’b1;

endfunction

... Analog block to contribute onto the electrical dout pin

DUT is AMS

• Abstraction of analog_resource to match DUT IO

• OOMR, IO, Parameters align.

• More powerful than using conversion elements.

• Dynamic or static supplies.

• Control all aspect.

• Examples to be provided!



© 2023 Renesas Electronics Corporation. All rights reserved. 

Agenda

▪ Why UVM-MS

▪ Verilog-AMS Simulator DC OP / Transient behavior

▪ UVM MS Bridge to analog resource (UVM->AMS/DMS Connection)

▪ UVM-MS Phasing Requirement

▪ UVM messaging from AMS files and $root cells



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪MS Bridges will have parameters.

▪ UVM should have a means to read/modify/write params before simulation consuming time

▪ Implement methods getParameters() / setParameters() in proxy

▪ Use existing UVM phases to guarantee read/modify/write order

UVM PHASING REQUIREMENTS FOR AMS

UVM Phase What should happen for AMS resources

build

connect Read parameters values from ‘SV+VAMS’ module (Instrument/Passive) into the 

agent’s configuration.

end_of_elaboration Modify agents parameters based on test requirements

start_of_simulation Apply agents parameters to ‘SV+VAMS’ module (Instrument/Passive) 

run Must consume some time to allow DC OP to happen before agents drive sequence 

items so that synchronization system works. Recommend run_phase() in the base test 

to have a if($realtime <= 0.0) #1step; to cause a DC OP to happen.

extract

check

report

final



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪ Analog components tend to be placed with initial values as parameters. E.g. A decoupling cap on a LDO output.

▪ Allow the MS Bridge to have parameters that are copied UVM configuration in connect_phase.

▪ Test cases can override the configuration, which are then set in the analog resource in start_of_simulation_phase.

▪ This is pre DC OP so you can do step changes to analog values!

ANALOG RESOURCE CONFIGURATION

module analog_resource (PLUS, MINUS);

inout PLUS, MINUS;

electrical PLUS, MINUS; //Values read by getParamters in MS Bridge

parameter real res_val = 1.0;

parameter real res_tr = 1.0e-9;

parameter real res_tf = 1.0e-9;

//Initial values set from parameter, then set 

//by setParameter in MS Bridge 

real rseries_val = res_val;

real rseries_tr = res_tr;

real rseries_tf = res_tf; ...

module ms_bridge #(parameter real res_val = 1.0, …)

(inout interconnect PLUS, MINUS );

import uvm_pkg::*;

import uvm_ms_pkg::*;

`include "uvm_macros.svh"

`include "uvm_ms.svh"

import res_pkg::*;

class MSProxy extends template_proxy;

…

function res_config getParameters();

res_config cfg = new();

cfg.res_val = i_core.rseries_val;

…

return(cfg);

endfunction: getParameters

function void setParameters(res_config cfg);

i_core.rseries = cfg.res_val;

…

endfunction: setParameters

…

analog_resource i_core #(.res_val(res_val),...)(.PLUS (PLUS),.MINUS(MINUS));

Parameter assigned to variable so 

setParameters can override them.

Variable used in rest of code not 

parameters

For DMS this could have 

empty functionality!



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪ AMS models will have parameters!

▪ UVM should have a means to read/modify/write params before simulation consuming time

▪ Use UVM phasing to guarantee read/modify/write order

connect end_of_elaboration start_of_simulation run

AMS START-UP & UVM PHASING

virtual function void 

my_driver::connect_phase(…);

cfg.copy(proxy.getParameters());

endfunction : connect_phase

Read VAMS params into UVM cfg

virtual function void my_test::end_of_elaboration_phase(…);

env.agent.cfg.rseries = 1e4; // 10k rseries in this test

endfunction : end_of_elaboration_phase

(Optional) Modify params from UVM test

virtual function void 

my_driver::start_of_simulation_phase(…);

proxy.setParameters(cfg);

endfunction : start_of_simulation_phase

Set VAMS initial values before t=0



© 2023 Renesas Electronics Corporation. All rights reserved. 

AMS STARTUP IN UVM RUN_PHASE()

Raise test 
objection

Wait for 
DC-OP

Launch 
sequences

virtual task my_ams_test::run_phase(uvm_phase phase);

…

phase.raise_objection(this); // Prevent termination in DC OP

if ($realtime <= 0.0) #1step;

`uvm_info("TEST", "AMS DC-OP finished", UVM_MEDIUM)

my_seq.start(my_seqr); // Launch sequence(s)

…

phase.drop_objection(this); // Test termination

endtask: my_ams_test

Ensures time is 

consumed



© 2023 Renesas Electronics Corporation. All rights reserved. 

Agenda

▪ Why UVM-MS

▪ Verilog-AMS Simulator DC OP / Transient behavior

▪ UVM MS Bridge to analog resource (UVM->AMS/DMS Connection)

▪ UVM-MS Phasing Requirement

▪ UVM messaging from AMS files and $root cells



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪Need to filter and control generation of messages from analog resource

▪UVM offers this control for components in UVM hierarchy

▪But analog resource is not part of the UVM component hierarchy. It’s a module!

▪However, if we extend the MS proxy from uvm_report_object

▪ set_report_handler() can redirect handling to the enclosing UVM MS monitor

▪messages from MS bridge (and below) can use the proxy context

▪ `uvm_info_context(. , . , . , ro) takes reporting object to provide context

▪Messaging macros called from analog resource can use upscoping (see later)  

▪Recommend to include %m in the UVM message body to get a physical path.

UVM MESSAGING REQUIREMENT



© 2023 Renesas Electronics Corporation. All rights reserved. 

MS MESSAGING CONTEXT

uvm_ms_agent

p
ro

x
y

v
if

driver

monitor

sequencer

config

ms_bridge (SV)

p
ro

x
y

in
tf

analog

resource

(VAMS/SV)`uvm_info_context(...,__uvm_ms_proxy)

virtual function void uvm_ms_monitor::connect_phase(uvm_phase phase);

...

proxy.set_report_handler(get_report_handler);

endfunction : connect_phase

UVM_INFO @ 0.000 ns: uvm_test_top.env.ms_agent.monitor [MS_MONITOR] Incorrect bias voltage: 0.125V



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪ UVM reporting system designed for class based structure registered with uvm_report_object

▪ UVM reporting macros not supported in Verilog-AMS modules.

▪ Lets use the up-scoping system to solve this for us. (LRM 6.8) 

▪ `include "uvm_ms.vamsh“ in Verilog-AMS file (analog resource)

▪ localparams to define UVM Verbosity levels as integers to match UVM enum’s

▪ Provide macro’s `uvm_ms_[info|warning|error|fatal](…) to call function in MS bridge

▪ `include "uvm_ms.vdmsh“ in SystemVerilog file (analog resource) don’t forget to import uvm_pkg!

▪ Provide macro’s `uvm_ms_[info|warning|error|fatal](…) to call function in MS bridge

▪ `include "uvm_ms.svh“ in SV file (MS Bridge)

▪ Void functions that wrap `uvm_ms_*() reporting macros into functions of the same name.

▪ Provide macro’s `uvm_ms_[info|warning|error|fatal](…)

▪ Within analog block, many solutions so here is one (calling of digital functions not allowed.)

▪ Use absdelta to trigger on toggle and read string to call up-scoping function.

UVM MESSAGE REPORTING FROM ANALOG RESOURCE.



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪ Use analog domain to detect the issue and toggle a integer.

▪ Integer is detected by absdelta to then report the message via the Digital Engine.

▪ Note this will not be reported if there is a convergence failure!

Example – many other ways

UVM MESSAGE – VERILOG-AMS ANALOG BLOCK

analog begin

if((I_PLUS > 1.0) && !I_thr_triggered) I_thr_triggered = 1;

else if(I_PLUS < 0.9) I_thr_triggered = 0;

end

//Convert the detection in the analog block to a UVM report. 

string message;

always@(absdelta(I_thr_triggered,1,0,0,1)) begin

$sformat(message,"The Current is above the thresholds @ %e",I_PLUS);

if(I_thr_triggered) `uvm_ms_info(P__TYPE,message,UVM_MEDIUM)

end

Upscope function call



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪ Use *_context reporting macros to direct message to relevant component

UVM MESSAGE

string message;

...

$sformat(message,"The Current is above the threshold @ %eA",I_PLUS);  

`uvm_ms_info(P__TYPE,message,UVM_MEDIUM);

function void uvm_ms_info(string id, string message, int verbosity_level, string uvm_path);   

`uvm_info_context(id,message,uvm_verbosity'(verbosity_level),__uvm_ms_proxy)

endfunction: uvm_ms_info

Analog Resource

SV Bridge

UVM_INFO ../../includes/uvm_ams.svh(26) @ 52001.098068ns: uvm_test_top.env.v_agent [vdriver] 

The Current is above the threshold @ 1.178812e+00A

Hence the proxy name 

requirement!



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪ uvm_*_printer print_real() uses %f formatting which truncates very small values

▪ Propose change to UVM implementation otherwise override print_real() in chosen printer

▪ Timestamps with limited precision in UVM-1.2 onwards 

▪ compose_report_message() in uvm_report_server uses $time not $realtime

▪ Issue in UVM (MANTIS 0005807) workaround is to override report server

UVM AMS REPORTING ISSUES 

---------------------------------------------------

Name         Type     Size  Value                  

---------------------------------------------------

cap_txn cap_txn - @4931                  

volts      real     64    0.000000               

amps       real     64    0.000000               

rseries real     64    100.000000             

rparallel real     64    1000000000000000.000000

farads     real     64    0.000000 

henrys     real     64    0.000000               

---------------------------------------------------

---------------------------------

Name         Type     Size  Value

---------------------------------

cap_txn cap_txn - @4917

volts      real     64    0    

amps       real     64    0    

rseries real     64    100  

rparallel real     64    1e+15

farads     real     64    1e-09

henrys     real     64    0    

---------------------------------

%f %e



© 2023 Renesas Electronics Corporation. All rights reserved. 

RECOMMENDED MS SETUP

test_env

MS Bridge

VAMS

PLUS

MINUS

proxy

SV IF

test_case

DUT

• Two $root cells 

• test_case to encapsulate the stimulus generation SV Class based world.

• test_env to encapsulate the physical environment of the PCB components/DUT.

• test_env is independent of how the test_case is setup enabling a DMS/AMS class based environment.

•

• test_env could be a schematic and analog resources drawn or text view

• Proposed system allows parameters to be used.

• Proposed system worth hardware accelerators for the physical design.



© 2023 Renesas Electronics Corporation. All rights reserved. 

Statement Usage

import uvm_ms_pkg::*; Within the MS Bridge and uvm_ms_agent.

`include “uvm_ms.vamsh” For Verilog-AMS modules defined as the analog_resource or hierarchy.

`include “uvm_ms.dmsh” For SV modules defined as the analog_resource or hierarchy. E.g. The Verilog-AMS file

instance in SV module, this `include would allow the SV module to use the same messaging

system.

`include “uvm_ms.svh” For inclusion in the MS Bridge to enable the commincation from the analog_resources. It

requires the MS Proxy instance is named __uvm_ms_proxy.

PROVIDED PACKAGES/INCLUDE FILES



© 2023 Renesas Electronics Corporation. All rights reserved. 

Renesas.com



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪ Logic Conversion needs reference VDD/VSS levels.

1. Dynamic tracking

1. Dedicated pins REF_VDD/REF_VSS in MS_BRIDGE/Analog Resource.

2. OOMR using analog_node_alias() and parameters for AMS only. 

• Can only be parameters as this is setup pre DC OP.

• Ideally it would use ref_vdd/vss but alias to port is not allowed. (Verilog-AMS LRM 9.20)

2. real values set like other controls in the MS Bridge to the analog resource.

LOGIC CONVERSION WITHIN ANALOG RESOURCE

analog initial begin

if((P__VDD_PATH != "NOT_VALID") && ($analog_node_alias(REF_VDD_INT, P__VDD_PATH) == 0))

$error("Unable to resolve power supply: %s", P__VDD_PATH);

if((P__VSS_PATH != "NOT_VALID") && ($analog_node_alias(REF_VSS_INT, P__VSS_PATH) == 0))

$error("Unable to resolve ground supply: %s", P__VSS_PATH);

...

end 

analog begin

if(use_fixed_supply) logic_supply = a2d_supply * logic_tran;

else if(P__VDD_PATH != "NOT_VALID") logic_supply = V(REF_VDD_INT,REF_VSS_INT);

else logic_supply = V(REF_VDD,REF_VSS);

...

end 

OOMR Paths

Voltage Selection



© 2023 Renesas Electronics Corporation. All rights reserved. 

▪ Independent organization founded in 2000 

▪Mission to collaborate to innovate and 

deliver global standards that improve 

design and verification productivity

▪ Partnership with IEEE for formal 

standardisation & governance

▪ Renesas has representatives on many 

working groups, including UVM, UVM-MS, 

SV-AMS, SystemC

ACCELLERA


	Slide 1
	Slide 2
	Slide 3: Why UVM-MS
	Slide 4: UVM-MS Requirements
	Slide 5
	Slide 6: Verilog-AMS Simulator DC OP
	Slide 7: Verilog-AMS Simulator Scheduling – Time 0
	Slide 8: Verilog-AMS Simulator Scheduling - Transient
	Slide 9: Verilog-AMS Best Practices
	Slide 10
	Slide 11: Mixed Signal Bridge & Analog Resource
	Slide 12: Analog Resource – What does it look like
	Slide 13: Analog Resource – Does What?
	Slide 14: Proxy Class 
	Slide 15: UVM-MS Agent Block Diagram
	Slide 16: MS Proxy “hook-up”
	Slide 17: Proxy  Analog Resource
	Slide 18: Proxy – Push analog resource with synchronization (Push-Sync)
	Slide 19: Proxy – Push analog resource with synchronization (Push-Sync)
	Slide 20: MS BRIDGE for Logic Signal
	Slide 21
	Slide 22: UVM Phasing Requirements for AMS
	Slide 23: Analog Resource Configuration
	Slide 24: AMS Start-up & UVM Phasing
	Slide 25: AMS Startup in UVM run_phase()
	Slide 26
	Slide 27: UVM Messaging requirement
	Slide 28: MS Messaging context
	Slide 29: UVM Message Reporting from Analog Resource.
	Slide 30: UVM Message – Verilog-AMS Analog block
	Slide 31: UVM Message
	Slide 32: UVM AMS reporting issues 
	Slide 33: Recommended MS Setup
	Slide 34: Provided Packages/Include files
	Slide 35
	Slide 36: Logic Conversion within Analog Resource
	Slide 40: Accellera

