O KnowHQOw

DOULOS WEBINARS Delivering KnowHow www.doulos.com
k.~
What Cat

Pr;gen't.erD Smith
RERGMeer / Instructor

What Can Formal Do For Me?
= What is formal?

® Where can formal be used?
® Applications for formal

® Wrap-up

A\

DOULOS

What is Formal? b . [.\

DOULOS

“Formal verification uses mathematical formal methods to
prove or disprove the correctness of a system’s design
with respect to formal specifications expressed as
properties....”

(Using Formal Methods to Verify Complex Designs, IBM Haifa Research Lab)

Formal ...
Is mathematical and algorithmic
Proves the correctness of a design
Guarantees the implementation meets the requirements

Requires no testbench or stimulus

Copyright © 2023 Doulos. All Rights Reserved

Simulation vs Formal [.\

DOULOS
Simulation
Tests the design
Testbench generates all stimulus and performs checking
Test input stimulus | Testbench
checker
Formal
Proves the design meets the requirements
Requirements become formal target
Formal generates all input
: Assertion
Formal input
targets

What Can Formal Do For Me?
® What is formal?

=® Where can formal be used?
® Applications for formal

® Wrap-up

A\

DOULOS

Formal Throughout the Design Cycle

Architecture
+

Planning

Architectural
modeling

Processor
ISA
compliance

Verify spec

Automatic
design
checking

Design
exploration

CDC/RDC

Verification

Model
checking

Interface
VIP

Reachability

Equivalence

Coverage

Assertion
quality

Test plan /
test case
generation

lo\

Post-silicon

Post-silicon
debug

Verifying
ECOs

DOULOS

What Can Formal Do For Me?
® What is formal?

® Where can formal be used?
» Applications for formal

® Wrap-up

A\

DOULOS

Applications for Formal

= Design exploration
Automatic design checking
Model checking
Reachability
Equivalence

Sign-off

[.\ Post-silicon

DOULOS

Design Exploration /0\

DOULOS

unique case (State)
Zero: if (Buttons[l]) NextState = Start;
Start: begin
WatchRunning = 1;
if (!'Buttons) NextState = Running;
end
Running: begin
WatchRunning = 1;
if (Buttons[l]) NextState = Stop;
end
Stop: if (!'Buttons) NextState = Stopped;
Stopped: if (Buttons[l]) NextState = Start;
else if (Buttons[2]) NextState = Reset;
Reset: begin
WatchReset = 1;
if (!'Buttons) NextState = Zero;
end
endcase

cover property (State == Stopped);

Formal Generated Trace y f.\

DOULOS

cover property (State == Stopped)

Crystal|
nSysReset
WatchRunning / \
WatchReset
Buttons |2 b!! J2'boo ¥{2'b1o) £
NextState [Start YRunning Jetop Jtopped
Stategé Zero Jstart {Running A5top {Stopped

Design visualization with ...
No testbench

No testcase

Copyright © 2023 Doulos. All Rights Reserved

10

DOULOS

A Design + & x| @)rlfhomefdsmim.work.l‘lormalhmebinarﬁormal_do_for_mefexploraham‘lsrn sv-Defaultiz: + @ || gl replay_FSMTC_65875 - Default + & x|
¥/ Instance [0l Lo [<bi g B G b 3¢ IE €1 fsm 2]
9 ing = 1: 2]
o oW 49 \if?ﬁ;hRunnlng 1; PR——
- : : &= Primary Clocks
w50 if (!Buttons) NextState = Running; Ly
2'ho Stopped 5 st el
51 end = Property Signals
w52 Running: & fismiNexiState
53 begin i fAsmiState
w54 WatchRunning = 1; & fisminSysReset
L = Control Point Sign...
1'he g
w55 if (Buttons[11) NextState = Stop; 8.4 fsm/Butions
[Stopped -4 flsminSysReset
56 end
w57 Stop:
w 38 if (!Buttens) NextState = Stopped;
2'ho Stopped
w59 Stopped: G t I t
w o if (Buttons[1]) Nextstate = Start; enerate exampie trace
[} Stopped §
w61 else if (Buttons[2]) NextState = Reset; m e o el !
o Stopped | Cursorl | 421ns
w62 Reset:
63 begin
E] = | w64 WatchReset = 1;
B -
Project JMLmrary l Directives 1< ¥| |37 2B HJ
4 Cover Checks
[G Waived W [@ Pending W 21 Uninspected W A Bug [Verified o Apply Select
| Type s lodule nstance |Bloc) ile ine ame ner eviewers |Message Al
T |Sta Wodul |Insta |Block Tl L N Own R M
S Transiion (11]
W FSM Transition 2 Uninspected (1:
= M FSM Transition =2 Uninspected fsm (11)
- W FSM Transition)] Uninspected fsm fsm.sv 46 State
- W FSM Transition 2] Uninspected fsm fsm.sv 29 State
W FSM Transition = Uninspected fsm fsm.sy 50 State
- W FSM Transition =21 Uninspected fsm fsm.sy 29 State
- W FSM Transition)] Uninspected fsm fsm.sv 55 State
- W FSM Transition 2] Uninspected fsm fsm.sv 29 State
w FSM Transition 2] Uninspected fsm fsm.sv 58 State
- W FSM Transition =1 Uninspected fsm fsm.sy 29 State -
W FSMTansiion 2 Uninspecka fem = ¢ sy o meswes Select line to reach
~ W FSM Transition 2] Uninspected fsm Source sV 61 State
W FSM Transition 2 Uninspected fsm Filter w0 FsM lsv 65 State T
W FSM State (6) [-
Change Status
El i i Control Point Values] |
=4 Transcript lﬂ Property Checks [ﬂ Cover Checks I—ECuveerup Checks Set Owner Details |3
Summa
|Fillers inuse: 0 ‘fsm Add Message... W_ A
v Inconclusive P

11

Draw a Scenario [.\

DOULOS

Current:1 = Current:1

it to find I;a“

3 4] 6

Buttons

Crystal
nSysReset

4 5 6
WatchReset

WatchRunning
State

Start
Running
Stop

Stopped
Reset

Draw trace ~Jstopped =y

!

Current:1 v Current:1

to find ' abilar

Cryst
S Buttons
> e} e
o gt rr|ERamMmuls BEE-B| vore-hl 1508 v | @k
3]
@ Current:8v
0
S a.insert text to find | ap a. ﬂ 2| 3| 4] 5 6| 7| 8
e # Crystal 1 f 1 / 1 i 1 ! 1 / ! i 1 i |
?E_ -+ Buttons| [Z5® } BT } S | S } B]
3 # Crystal Y e WY s VY ms WY s WY e WY e WY
S
8 # nSysReset
o = WatchReset
8 Cg WatchRunning / \
9 State ||Zere Istart YRunning Ystop Ystopped M
= ' ' Stopped
g Generate wave
& strong

T -

S 12

Applications for Formal

Design exploration

= Automatic design checking
Model checking
Reachability
Equivalence

Sign-off

[.\ Post-silicon

DOULOS

Copyright © 2023 Doulos. All Rights Reserved

Automatic Property Checking

Array bounds

Arithmetic overflow
Priority and unique case
Set and reset both active
Reachable X assignment
Deadlock / livelock
Incomplete sensitivity lists

... and others

A

DOULOS

14

Array Bounds Check

logic [7:0] address;
logic [0:3] array;

int k, n;

assign n = address >> 6;

always @ (posedge clock)
if (write)
array[address] <= data in;
else if (read)
data_out <= array[n];
else

data out <= array[k];

Y .
8 A

DOULOS

Bounds check fails |

Bounds check okay

Bounds check may fail or not

c_k: assume property (@ (posedge clock) k >= 0 && k < 4);

a_1: assert property (@(posedge clock) write |-> address < 4);

Auto
15

Copyright © 2023 Doulos. All Rights Reserved

Arithmetic Overflow Check

logic [7:0] address;

always Q@ (posedge reset or posedge clock)

begin

logic [3:

0] sum;

if (reset)

sum <=
else
sum <=

end

assert property (Q@ (posedge clock) disable iff (reset)

0;

sum + address; Arithmetic overflow may fail or not

Auto

sum + address < 16);

lo\

DOULOS

16

Unique Case Check {.\

DOULOS

logic sel, cl, c2,

always @ (posedge clock)

unique case (sel) full_case and parallel_case both okay
0: out2 <= 0; |

1l: out2 <= 1;

endcase

always @ (posedge clock)
unique case (sel) full_case and parallel_case both fail

cl: out3 <= 0;
c2: out3 <= 1;

endcase

Auto

assert property (@ (posedge clock) cl | c2);
assert property (@ (posedge clock) !(cl & c2));

Copyright © 2023 Doulos. All Rights Reserved

17

Copyright © 2023 Doulos. All Rights Reserved

Other Automated Checking

Clock-domain crossing (CDC)

Reset-domain crossing (RDC)

Low-power UPF checks

Glitch checking

... and others

A

DOULOS

18

Applications for Formal

Design exploration

Automatic design checking
= Model checking

Reachability

Equivalence

Sign-off

[.\ Post-silicon

DOULOS

Copyright © 2023 Doulos. All Rights Reserved

Model Checking

Formal uses SVA for checking requirements

assert property (!(WE & OE));

assert property (Size <= Max);

property incr_size;
int sz;
(We, sz = Size) ##1 'Ready[*1:$] ##1 Ready |-> Siz

endproperty

assert property (incr _size);

FON

DOULOS

== sz + 1;

20

Capturing a Specification {.\

DOULOS

After a start pulse, stop must go true on the next or second clock,
and must remain true for exactly two clocks

start [\
[/ \ 4
[\ 1/ \ V4
stop? / \ X too short
Example traces —) \ X toolong
- X too late

assert property (start |-> ##[1:2] stop [*2])

Copyright © 2023 Doulos. All Rights Reserved

21

Prove Protocol Correctness [0\

DOULOS

stat /T __/ T\

start_k 6 1 [bit [2:0] start k, stop k;
always @ (posedge clk) begin

stop ST\ / T\ if (start)

start k <= start k + 1;
stop_k 6 7 0 e (stop)— —
k=6) J stop k <= stop k + 1;
k:_7\ V end
property overlap start stop; new variable for each

bit [2:0] k;

(start, k = start k)

| -> ##[1:4]

stop && (stop k == k) ;
endproperty

instance of property

- local variable assignment

assert property overlap start stop;

22

Copyright © 2023 Doulos. All Rights Reserved

End-to-End Checking

PWDATA —>
- PENABLE —>

Register
interface

> expected_valid

> expected_data

clock —
reset —»

Formal
Scoreboard

actual_valid

actual data

A

DOULOS

tx_data —

tx_valid -

€

23

Applications for Formal

Design exploration
Automatic design checking
Model checking

= Reachability
Equivalence

Sign-off

[.\ Post-silicon

DOULOS

What Is Reachability? » AN [.\

DOULOS

Reachability — given any legal stimulus, is it possible to reach a
scenario or line of code?

1~

cover property (State == Stopped)

25

Copyright © 2023 Doulos. All Rights Reserved

Many Applications

Deadlock

Livelock

Vacuous assertions

Liveness

X-propagation
Connectivity
Registers

Security

DOULOS

26

Liveness [.\

DOULOS

Does something eventually happen?

assert property (a |-> s_eventually (b));

clk

Hard (impossible) to
prove in simulation

Copyright © 2023 Doulos. All Rights Reserved

27

Copyright © 2023 Doulos. All Rights Reserved

X Propagation

>

>

Non-resettable flops

cover property ($isunknown(dataout));

lo\

DOULOS

Current:1

Current:1 -

[l O.lnsert text to find ab
+| clk
=+ rsthN
- XP_outputs::eg_ad_dataout
[eg_ad_dataout[1]
C.g eg.eg_ad_dataout[1]

undefined

28

2023 Doulos. All Rights Reserved

)
©

Copyright

Connectivity

Memory DMA

Processor
Controller Controller

A

DOULOS

[Network Interconnect

H Bridge]

L

12C USB
Graphics L
UART Ethernet B
(9]
S
SPI CAN W
From the spec &
PCLK Processor Interconnect 0
PWRITE Processor Interconnect 0
sigl Processor Graphics 3 “
assert property (processor.PCLK == interconnect.PCILK) ;
assert property (graphics.sigl == $past(processor.sigl,3));

29

Copyright © 2023 Doulos. All Rights Reserved

Security

Memory

Processor
Controller

DMA
Controller

Encryption
Engine

On-Chip
RAM

\ Graphics

4

Key p
Storage

Limited key access?

Keys unreachable from other paths?

SWNlge]
UART Ethernet 5
= 4
.)
SPI CAN o
C
wn
USB GPIO

A

DOULOS

Provable by formal

30

Register Testing

Memory DMA 0x0 Control
Processor

Controller Controller Ox4 Address
0x8 Count

[Network Interconnect H Bridge]

12C USB

Graphics

UART Ethernet

SPI CAN

sng [eJayduad

From the spec
USB GPIO

3

“Eu’) Config soc.dma.ctrl 0x0

% Address soc.dma.addr 0x4 RW
ié’ Count soc.dma.count 0x8 RW
<

8

5

(@]

g assert property (sel && addr == 0x0 |-> soc.dma.ctrl == ...);
AN

=]

2

o

@)

31

Applications for Formal

Design exploration
Automatic design checking
Model checking
Reachability

= Equivalence

Sign-off

[.\ Post-silicon

DOULOS

Logic Equivalency Checking [.\

DOULOS

RTL Gate level

module selAB (
input logic clk, QB

input 1logic QA, selA, QB, selB,
output logic Q QA
)

always @ (posedge clk)
begin clk
if (selhA) Q <= QA; selA

if (selB) Q <= QOB;
end selB

endmodule

Are they functionally the same?

RTL versus gate-level netlist
Netlist versus netlist

Only works with recognizable equivalency points (signal names)

Copyright © 2023 Doulos. All Rights Reserved

33

Copyright © 2023 Doulos. All Rights Reserved

Sequential Equivalency ChecKing

Dynamic, not static like LEC — advances the clock
Shows equivalency between different implementations
Equivalency at the port-level

RTL <-> RTL, RTL <-> HLS (SystemC/C/C++)

34

Copyright © 2023 Doulos. All Rights Reserved

Many Applications

VHDL <-> Verilog translation

Incremental feature updates
(chicken bits)

ECO fixes

Data path verification

A

DOULOS

C to RTL equivalence
Functional safety
Fault injection

Safety mechanism insertion

35

Fault Injection ¥ Io\
DOULOS

Design
. G g .

Copyright © 2023 Doulos. All Rights Reserved

A

Design
>
!III !Ill

SEC can traverse through state better than model checking

Simply check if outputs are affected by the injected fault
36

Functional Safety [.\

DOULOS
RTL RTL
original = faulted
violated? violated?
SEHEWASS error undetected? SENSWAE eITor detected?
Mechanism Mechanism
int fault;
always @ (Sglobal clock) begin
violation = injected && (original.output != faulted.output);
3 detected = injected && ('original.error && faulted.error);
g) // Inject fault (Tcl pseudo code)
g cut faulted.signal -cond { fault == 1 }
§
| 15026262 Direct formal to a value
%} // Find residual fault(s)
- cover property ((fault == 1) && violation && !detected);
O

37

Copyright © 2023 Doulos. All Rights Reserved

Data Path Verification {.\

DOULOS

// C algorithm
f product = £f16 mul (f multiplier, f multiplicand);

SEC

[
N

// RTL

module fmul #(...) (input logic [SIZE-1:0] multiplier,
input 1logic [SIZE-1:0] multiplicand,
output logic [SIZE-1:0] product,

State space too large for model checking

May only be able to verify with formal using SEC
38

Applications for Formal

Design exploration
Automatic design checking
Model checking
Reachability

Equivalence

= Sign-off

[.\ Post-silicon

DOULOS

Copyright © 2023 Doulos. All Rights Reserved

Areas Formal Helps Sign-off [.\

DOULOS

Achieving coverage closure in simulation

Creating simulation testbenches to hit coverage holes
Measure assertion quality

Formal coverage

Testplan and testcase generation

Reachability

40

Coverage Exclusions for Simulation {.\

DOULOS

Formal finds unreachables and generates exclusions

<formal tool> generate exclude exclude file.tcl

coverage exclude -scope

{/tb_axidlite 2 apb4/dut/u master interface/u apb master s
c} —-srcfile .../src/vlog/apb master sc.v -linerange 88 -
item s 1 -reason "EU"“

coverage exclude -scope

{/tb_axidlite 2 apb4/dut/u master interface/u apb master s
c} -srcfile .../src/vlog/apb master sc.v -linerange 106 -
item s 1 -reason "EU"

Simulation ee e

Filter coverage

Copyright © 2023 Doulos. All Rights Reserved

41

Copyright © 2023 Doulos. All Rights Reserved

Testbench Generation

Generate stimulus to target coverage holes

<formal tool> generate testbenches

module replay vlog;
initial begin

#1;

force
force
force
force
force

axidlite to_apb4
axidlite to_apb4
axidlite to_apb4

axidlite to apb4.
.PSELx i csr = 1'b0;

axidlite to_apb4

.use_1lclk i = 1'b0;
.PRESETn i = 1'b0;
.PREADY i = 1'b0;

PSLVERR i = 1’b0;

Simulation ee e

Lo\

DOULOS

Fill coverage

42

Copyright © 2023 Doulos. All Rights Reserved

Measuring Assertion Quality

assume

KRERRERERRRE

RTL Mutation Coverage

Detected

(assertion fails) Non-activated

Non-detected
(no assertions fail)

RTL

assert

A

v
v

M

DOULOS

43

Copyright © 2023 Doulos. All Rights Reserved

Formal Coverage

Assertion density — are there enough?
Cone-of-influence (COI) coverage

Proof core coverage

Code coverage

Proof core coverage

Functional coverage
Cover properties

Synthesizable covergroups

Assertion quality

Mutation coverage

AN

Merges with
simulation coverage

DOULOS

4.4,

Applications for Formal

Design exploration
Automatic design checking
Model checking
Reachability

Equivalence

Sign-off
{.\ ® Post-silicon

DOULOS

Post-Silicon Debug > [Q\

DOULOS

Formal can reproduce post-silicon results for debug

Post-silicon inputs / outputs

Constrain formal to pin values

assume property (pins == ...);

cover property (state == ERROR) ;

Copyright © 2023 Doulos. All Rights Reserved

46

What Can Formal Do For Me?
® What is formal?

® Where can formal be used?
® Applications for formal

= \Wrap-up

A\

DOULOS

B O N

47

Copyright © 2023 Doulos. All Rights Reserved

Summary [.\

DOULOS

Formal complements your simulation flow

Formal verifies scenarios hard or tedious in simulation

Formal can be part of any verification planning and effort

Why would you not take advantage of what formal can do?

48

Thank you for attending
e @ N

We hope you found this information helpful!

lo\

DOULOS

49

A

lo\

DOULOS Delivering KnowHow www.doulos.com
> T SN, T (T,

SoC Desigh & » SystemVerilog » UVM » Formal

Verification » SystemC » TLM-2.0

FPGA & Hardware » VHDL » Verilog » SystemVerilog

Design » Tcl » Xilinx » Intel FPGA (Altera)

Embedded Software » Emb C/C++ » Emb Linux

» Yocto » RTOS » Security » Arm
Python & Deep Learning P n%

LEARNING

T
SystemVerilog @ UvM

	Slide 1
	Slide 2: What Can Formal Do For Me?
	Slide 3: What is Formal?
	Slide 4: Simulation vs Formal
	Slide 5: What Can Formal Do For Me?
	Slide 6: Formal Throughout the Design Cycle
	Slide 7: What Can Formal Do For Me?
	Slide 8: Applications for Formal
	Slide 9: Design Exploration
	Slide 10: Formal Generated Trace
	Slide 11: Auto Trace from Coverage App
	Slide 12: Draw a Scenario
	Slide 13: Applications for Formal
	Slide 14: Automatic Property Checking
	Slide 15: Array Bounds Check
	Slide 16: Arithmetic Overflow Check
	Slide 17: Unique Case Check
	Slide 18: Other Automated Checking
	Slide 19: Applications for Formal
	Slide 20: Model Checking
	Slide 21: Capturing a Specification
	Slide 22: Prove Protocol Correctness
	Slide 23: End-to-End Checking
	Slide 24: Applications for Formal
	Slide 25: What Is Reachability?
	Slide 26: Many Applications
	Slide 27: Liveness
	Slide 28: X Propagation
	Slide 29: Connectivity
	Slide 30: Security
	Slide 31: Register Testing
	Slide 32: Applications for Formal
	Slide 33: Logic Equivalency Checking
	Slide 34: Sequential Equivalency Checking
	Slide 35: Many Applications
	Slide 36: Fault Injection
	Slide 37: Functional Safety
	Slide 38: Data Path Verification
	Slide 39: Applications for Formal
	Slide 40: Areas Formal Helps Sign-off
	Slide 41: Coverage Exclusions for Simulation
	Slide 42: Testbench Generation
	Slide 43: Measuring Assertion Quality
	Slide 44: Formal Coverage
	Slide 45: Applications for Formal
	Slide 46: Post-Silicon Debug
	Slide 47: What Can Formal Do For Me?
	Slide 48: Summary
	Slide 49: Thank you for attending
	Slide 50

