
Methodology focused

uvmgen.com



Intro
● Who am I?

○ Ben Delsol - DV engineer formerly at Intel, 

Qualcomm, Samsung and Microsoft.

○ Founder of uvmgen.com.

● What I care about?
○ Clean code.

○ Methodology best practices.

○ Not wasting brain energy.

■ Divide, reuse and conquer.

■ Automating redundant problems.



The idea of UVM is spot on
● Common procedures and methodologies across the industry.

● Clear coding and separation of testbench concerns.

● Reusable protocol agents.

● Reusable block level environments.

● Decades of verification best practices rolled into one methodology.



Some best practices from the last 15 years…
● Interface harnesses

● Abstract/concrete classes

● DUT parameter passing to VIP

● Scale UVC, sub-env, config and TLM 

instances at runtime

● Conditional instantiation of static 

verification elements at compile time

● Pass down config object over config db

● Use sequence, BFM and config factory 

overrides

● Use slave sequences with late response 

randomization

● Reset methodology: don’t kill sequences with 

the sequencer

● Use virtual sequences over phase jumping

● No virtual sequencers

● Use objections wisely

● Use constraint policies over inheritance

● Use standalone testbench for UVC development

● And many more…



Interface harness
● Problem:

○ Code which handles connectivity of the design to interfaces, access to BFMs and DUT 

parameters is not reusable from the block level to upper levels of integration.

● Solution:
○ An interface harness defines the connectivity of all interface signals to a design and can be 

reused/bound into the DUT at block level as well as upper levels of integration.

○ It encapsulates VIP to DUT connectivity.

○ It encapsulates access to BFM creation classes.

○ It encapsulates collection of DUT parameters for the testbench.











Abstract/concrete classes
● Problem:

○ Any component which uses a virtual interface handle to a parameterized interface must be 

parameterized, and so too must all its component ancestors (ie test, env, agents, drivers, 

monitors all must be parameterized!).

● Solution:
○ Define a BFM class in the parameterized interface.

○ Drivers and monitors initiate the BFMs construction with the abstract/concrete design pattern. 

○ Ensure the BFM has access to the config object, has context aware UVM printing and can be 

overridden by the factory.

● Can be used for access of protocol checkers and signal checkers too.











DUT parameter passing to VIP
● Problem:

○ The verification environment of a parameterized design must also have access to those 

parameters. Again, type specialization of many classes becomes very cumbersome to manage.

● Solution:
○ Use your interfaces and interface harness’ to collect interface and DUT parameters, respectively.

○ Pass these parameter objects to your UVC and environment config objects via the config db.









Use constraint policies over hard coded constraints
● Problem:

○ Hard coding constraints directly into subclasses runs into scenarios where the constraint code 

must be duplicated. How to reuse constraints?

● Solution:
○ Write your constraint(s) once in a policy object.

○ Apply policy objects on sequence items, sequences or config objects as needed.

○ Use factory overrides to instantiate the objects which apply these policies.









Scale testbench components/objects at runtime

● Problem:
○ Compile-time instance scaling requires class type specializations. And as we know, that’s no 

fun.

● Solution:
○ Collect DUT parameters at runtime and make them available to env and agent configs.

○ Using these parameter variables and dynamic arrays to:

■ Construct agents and sub-env instances.

■ Construct env-configs and agent configs.

■ Construct/connect scoreboard, predictor and coverage TLM.

■ Construct sub-env predictors.











Conditional instantiation of static verification 
elements at compile time
● Problem:

○ Sub-environments and SVA may not be needed in every test regression and can bog down 

full-chip simulation performance.

● Solution:
○ Make instantiation of static verification sub-elements, such as interfaces, protocol checkers 

and signal checkers, conditional at compile time.

○ Create clear, easy to use macro definitions to disable binding of verification elements 

individually or all at once.

○ Enable verification sub-environments and/or SVA as needed for debug.





Does your company use all these best practices?

NOPE!
● Interface harnesses

● Abstract/concrete classes

● DUT parameter passing to VIP

● Scale UVC, sub-env, config and TLM 

instances at runtime

● Conditional instantiation of static 

verification elements at compile time

● Pass down config object over config db

● Use sequence, BFM and config factory 

overrides

● Use slave sequences with late response 

randomization

● Reset methodology: don’t kill sequences with 

the sequencer

● Use virtual sequences over phase jumping

● No virtual sequencers

● Use objections wisely

● Use constraint policies over inheritance

● Use standalone testbench for UVC development

● And many more…



The UVM dream is not today’s reality
● Tight schedules. Large designs. Lots of new features.

● Some UVM best practices are not known to engineers.

● Some UVM best practices are daunting to implement.

● Hard for a large organization to be in sync on methodology.

● Reuse per the UVM dream is not easy and takes a lot of code!



Today’s reality
● Careful implementation of best practices for reuse and scalability.

● Make it work! Get it verified. On time. However possible.

● Monolithic verification decisions made to hit deadlines.
○ It makes sense. Reuse is not quick or easy to implement.

● Hacks to fix hacks.

● Code rot ensues…



Introducing UVMGen Technology
● With the best DV practices across the 

industry distilled and encoded into the 

UVMGen code generator, users can stand 

on the shoulders of DV experts.

● Generate world-class VIP in an instant, 

reuse at a click, integrate and scale with 

ease.

● Now everybody can code like a guru and 

capitalize on the UVM promise.

● Verify more features.

● In less time.

● With higher confidence.

● And less brain juice :p

Go to uvmgen.com and 

Generate your UVCs for free!



uvmgen.com


