
© 2023 Arm

Vivek Vedula
14-Sep-2023

Safety and Security Challenges in
Hardware IP Development

Verification Futures Conference 2023 US

2 © 2023 Arm

Semiconductor Ecosystem: Arm’s Role

Source: Semiwiki.org

3 © 2023 Arm

Key Pillars of Dependable Computing
Functional correctness
• “Does the system behave correctly under normal operating conditions?”
• “For every possible input, does the output satisfy the specification?”
• Pre-silicon: Simulation, Emulation, Formal verification
• Post-silicon: DFT, At-speed functional testing, Board-level testing

Safety and Security
• “Does the functionally-correct system behave predictably under adverse operating conditions?”
• Adverse conditions due to Murphy’s law: Safety

Anything that can go wrong will go wrong, and at the worst possible time.

• Adverse conditions due to Devil’s law: Security
Anything that can go wrong shall be made to go wrong, and at every possible time.

© 2023 Arm

Safety

5 © 2023 Arm

An example of a control system which must demonstrate functional safety
• Must continue to function or at least behave predictably in event of a fault
• By predictable behaviour we mean it must gracefully go into a known “safe” state

Functionally safe systems aim at preventing hazardous
behaviour in event of a fault

Example: Electrical power steering

6 © 2023 Arm

Sources of Failures in E/E Systems
Systematic Failures: Design Faults, wrong specs, software errors

• Requires safety analysis on the design to identify causes

Random Failures: “Acts of God”

• Permanent faults/Hard Errors
Ex: Physical failure of silicon over time

• Transient/Soft Errors
Ex: Atomic particle causing a bit-flip

0 1 1 0 1 0

0 1 1 1 1 0

7 © 2023 Arm

Fault Tolerant Time Interval -FTTI

Safe State

Fault Possible HazardFault Detection

Normal
Operation

Time

Fault Tolerant Time Interval

Undetected Time

Diagnostic Test
Interval Fault Reaction Time

FTTI: Time-span in which a fault or faults can be present in a system before the hazardous event
Fault Reaction Time: Time span from detection of fault to reach the safe state

IP-level
Intervention

8 © 2023 Arm

Safety Product Development Lifecycle at System-level

8

Hazard and Risk Analysis (HARA)

Functional Safety Requirements

Technical Safety Requirements

HW Safety Requirements SW Safety Requirements

Identify and classify hazardous events
caused by malfunctioning behavior

Derive safety goals for each hazardous
event
Generate FSRs to meet each safety goals
Generate TSRs to meet each FSR
Identify requirements for HW and SW

Safety Goals

9 © 2023 Arm 9

Hardware Safety Requirements’ Mitigation

Systematic Failures

Guidance on:
- Methods for design and testing
- FuSa management and culture

Managed through design process,
verification and assessment

Random Failures

Quantitative targets on:
- Probability of failure of a safety function

- Percentage of faults to be detected

Managed by including features
for fault detection and control

10 © 2023 Arm

What makes it challenging for IP-Level design?
Little or no context of how the IP is going to be used
Unknown operating conditions
• False identification of failures (random and systematic)

HARA is highly subjective and unreliable
• Resultant safety goals and requirements are questionable

IPs are expected to be highly configurable for usage in multiple products
• Risk of over-engineering the safety mitigations (such as dual lock-step)

Long duration of products in the field (15+ years in Automotive)
• Higher chance of random failures over the life of the product

10

11 © 2023 Arm

Challenge #1: Assumptions of Use
Identification of potential use-cases
Operating conditions where the system will be deployed
End-of-life for each use-case
Process technologies and their failure rates
Safety functions that will be enabled
Probability of failure of safety functions

12 © 2023 Arm

Challenge #2: Implementation of Safety Requirements
Safety often impacted by interacting entities
Ensuring reasonable design trade-offs with safety functions
Gate-level fault analysis requires functionality to be implemented first
Detection and control need to happen well within FTTI of the product

13 © 2023 Arm

Challenge #3: Verification of the Safety Measures
Traditional fault models are unreliable for modeling all safety-related failures
Safety verification at the IP-level does not directly translate to system-level
Formal-based tools struggle with gate-level analysis
Undetected faults require tedious analysis to ensure their impact on Safety

© 2023 Arm

Security

15 © 2023 Arm

Basic Security Framework
Security is the state of being “protected” against unauthorized/illegal access to the
“assets” through malicious “attacks”
Asset – Something of value

• Examples: data, code, encryption keys.

Attack (aka Exploit) – A deliberate action performed to compromise an asset
• Examples: WannaCry ransomware attack

16 © 2023 Arm

Classification of Attacks: CIA Traid

Confidentiality is the restriction of access
to the asset for approved users only
Integrity is the maintenance of
consistency, accuracy and trustworthiness
of the asset
Availability is providing access to the asset
when required

Any action that could compromise any of
these properties of an asset is referred to
as a Threat

Availability

17 © 2023 Arm

Vulnerabilities Vs Weaknesses

Vulnerability: A flaw or an error in the system that can be used to carry out a threat
• Ex #1: Bypass of normal privilege checks needed to access data belonging to the OS (Meltdown)
• Ex #2: Leakage of data through observable properties of speculative execution and branch prediction

Weakness: A design flaw that could potentially contribute to the introduction of a vulnerability
• Not all weaknesses lead to vulnerabilities
• Ex #1: Processor optimization that removes/modifies security mechanisms
• Ex #2: Information Exposure through Microarchitectural State after Transient Execution

18 © 2023 Arm

Chip-level Vulnerabilities: Examples

Nailgun Attack: Privilege escalation via Arm’s
multi-core debug infrastructure requiring no
physical access

FPGA-based root of trust bitstream
can by modified by attacker

Test and Debug Infrastructure Root-of-Trust

Micro-arch Efficiency

19 © 2023 Arm

Relied upon as the root-of-trust (Crypto,
TEE etc)

• Hardware attack ROI is high; breaks large
investments in cybersecurity

Aggressive Perf/Power optimizations
Higher configurability (Ex: chicken bits) for
performance, maintenance

• Integration challenges

Increased shift towards hardware-based
security architectures

MITRE records an increase in hardware vulnerabilities in the last 10 years

Source: NIST/MITRE 12/2020

0

10

20

30

40

50

60

70

80

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

of

 H
ar

dw
ar

e
Vu

ln
er

ab
ili

tie
s

Year

Why Hardware?

20 © 2023 Arm

Challenge #1: IP-level Scope

IP-level security is foundational
Out-of-context security requirements
Specification cannot capture all possible
malicious intent
Risk analysis is highly subjective
Unknown ROI for mitigations

What is attackable ?

21 © 2023 Arm

“Top 10” Hardware Security Weaknesses
CWE # Description Impact at IP-level

CWE-1189 Improper Isolation of Shared Resources on System-on-a-Chip (SoC) Disable resource sharing between trusted/untrusted
agents

CWE-1191 On-Chip Debug and Test Interface With Improper Access Control Enable authentication of debug interface

CWE-1231 Improper Prevention of Lock Bit Modification Ensure appropriate lock bit protection mechanism

CWE-1233 Security-Sensitive Hardware Controls with Missing Lock Bit Protection Ensure appropriate lock bit protection mechanism

CWE-1240 Use of a Cryptographic Primitive with a Risky Implementation Disallow usage of non-standard crypto primitives

CWE-1244 Internal Asset Exposed to Unsafe Debug Access Level or State Allow only trusted agents to access security-sensitive
assets over debug interface

CWE-1256 Improper Restriction of Software Interfaces to Hardware Features Ensure access control for SW-controllable features
such as frequency and voltage (Ex: DVFS)

CWE-1260 Improper Handling of Overlap Between Protected Memory Ranges Ensure priority scheme for programmable memory
protection regions

CWE-1272 Sensitive Information Uncleared Before Debug/Power State Transition During state transitions, ensure clearing of data that is
not required in the next state.

CWE-1274 Improper Access Control for Volatile Memory Containing Boot Code Ensure that the volatile memory region is prevented
from being modified by untrusted agents

Source: cwe.mitre.org

22 © 2023 Arm

Why is security verification so difficult in HW?
Attacking is fundamentally easier than protection
Attackers need just one vulnerability
Verification needs to ensure 100% of the vulnerabilities are covered

• Impossible to know the list of all vulnerabilities

Proving the non-existence of unknown/0-day vulnerabilities is impossible
Attack-oriented bug hunting needs “out-of-the-box”, “malicious” mind-set

23 © 2023 Arm

Challenge #2: Verification Tools and Methodology

Functional Requirements
• FSM must never transition to “Secure” state after

reaching “Test” state
• CPU must not be interrupted if running secure code

Data-Protection Requirements
• Data in secure location must not be visible to the

CPU, if it is not in secure mode (Confidentiality)
• Secure registers must never be written by a non-

secure agent (Integrity)

• Within scope of SVA-based specification
• Lends well to traditional solutions

(Sim/Formal/Emulation)

• Difficult/impossible to specify using SVA
 Do not scale effectively due to difficulty of identifying

all prop paths in large designs

 Legacy EDA solutions are inadequate

How do you measure coverage?

24 © 2023 Arm

Environment

Safety vs. Security

System under
consideration

Security Safety

Security
How to prevent the environment
from affecting your system

Safety
How to prevent your system
from affecting the environment

© 2023 Arm

Security meets Safety

26 © 2023 Arm

Safety and Security: Examples

Safety application

Patient-controlled
drug delivery

Safety application

Braking system

Safety application

Avionics

Safety application

Nuclear Power

27 © 2023 Arm

Security and Safety: Challenges with co-existence of reqs

Safety Hazards can potentially cause violation of Security goals and vice versa

A security attack may result in a new safety failure mode previously thought to be
benign
• Ex: a fault made observable through a malicious attack

A safety failure mode may expose a security vulnerability that was previously
considered secure
• Ex: a fault on register access control may expose the register contents to an external interface

Long safety-product deployment lifecycle makes threat-modeling difficult

28 © 2023 Arm

Potential Conflicts in Requirements

Trade-off between performance overhead to process security functions vs hard real-
time safety function to respond to hazards
• Conflict between “fail-safe” state and “fail-secure” state

Countermeasures for a security threat could exacerbate a safety hazard

Security threat of malware trying to read out the private keys from the HSM or
forcefully overwrite its firmware
• When detected, the countermeasure (HSM) would shut down which is a violation to safety

29 © 2023 Arm

Examples of Safety and Security Failures

Function Potential Risk Safety Security

Authentication or check integrity of flash content Authentication is ok while flash is
corrupted

High High

Authentication or check integrity of flash content Authentication is not ok while flash is not
corrupted

Low low

Authorization of transmission to COM buses Authorization ok to untrusted destination Low High

Decryption of secure data Decrypted data is erroneous Low High

Reset Reset asserted when not expected High Low

Detection of side-channel attack Do not signal failure while attack High High

Detection of side-channel attack Assert signal when there is no attack High* High

*Depending on how frequent this happen, it might cause denial of service.

Impact

30 © 2023 Arm

Summing it all up..

Safety and Security are key pillars of dependable electronic/electronic systems
IP from multiple providers used in these systems
Assumptions-of-use could have a significant impact
Customized solutions needed to address the challenges
Both requirements within the same IP magnifies these challenges multi-fold

31 © 2023 Arm

Questions/Comments?

E-MAIL: VIVEK.VEDULA@ARM.COM

© 2023 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धɊवाद

Kiitos
شكرًا

ধনƟবাদ
תודה

33 © 2023 Arm

Functional Safety Standards

ISO International Organization of Standards

ISO 26262 is for Automotive Developed with OEM

IEC 61508
Functional Safety for E/E Safety Related Systems

ISO 15598
Earth

Moving
Machinery

IEC 62061
Machinery

IEC 61513
Nuclear

industries

ISO 26262
Road Vehicles

IEC 50126
IEC 501129

Railway
IEC 61511

Process industries

34 © 2023 Arm

Common Criteria
International standard/guidelines for computer-security certification
Enables objective evaluation of a product’s compliance to defined set of requirements
Two key components: Protection profiles and EALs

Protection Profiles

Standard set of security requirements
for a specific type of product
 Derived through threat modeling
 Identification of vulnerabilities
 Risk-assessment

Evaluation Assurance Level

Rating of the rigor/depth of evaluation
of the mitigations (SARs)
 Defines how thoroughly the product is

evaluated/tested
 Higher EAL =/=> Higher security

35

Security Standards

ISO International Organization of Standards
SAE Society of Automotive Engineers
IEC International Electrotechnical Commission
UL Underwriters Laboratories

ISO/IEC 27001:2022
Information Security, Cybersecurity and Privacy protection

IEC 62443
Industrial

UL 2900
Medical

NERC 1300
Electrical

Power

ISO/SAE 21434
Automotive

SAE J3061
Cyber-

Physical
Vehicles

ETSI EN 303 645
Internet of Things

