Confidential Information

Vladislav Rumiantsev 08/06/2022

Advanced Signal Processing Components

Company Overview

- Fabless Semiconductor company based in Austin, Texas
- \$1.8 B in revenue
- Design centres in Edinburgh, Newbury, London
 - Around 400 employees in the UK
 - More than 1,500 employees worldwide

Our Technology Bridges the Physical and Digital Worlds

Analog

Digital (The World of Data)

Measure, digitize the real world, process control algorithms, Convert, boost, amplify, power the output on single IC

Our focus - Low Power, Mixed-Signal Processing

Our core products

1,100+ Engineers

IC Designers, System and Application Engineers, and Software Experts

3,900+ Patents

pending & issued patents worldwide

\$300M in R&D Spending in the 12 months

Key Customer Products

What Is HWSW Co-Verification?

What Is HWSW Co-Verification?

HW Verification

- Output correct based on stimulus?
- Are timings within specs?
- Do protocols adhere to standards?

SW Verification

- Algorithms working as expected?
- Is memory allocated correctly?
- Are processing blocks functional?

HWSW Co-Verification

- Verify Interaction between HW & SW
 - HW Design matches SW use cases
 - SW executes correctly on HW
- Run SW on simulated HW
- Target features at HW-SW boundary

Modern Chip Example – Audio Amplifier

How Do HW and SW Work Together?

- HW Blocks/Features
 - Interfaces
 - Signal Converters
 - Amplification
- SW Blocks/Features CPU
 - Audio Processing
 - Speaker/Battery Protection
 - Security

Why We Need HWSW Co-Verification?

- Parallel HW & SW development
- Ensures embedded software (ESW) is bug free
 - \rightarrow Increased usage of Read Only Memory (ROM)
- Ensures hardware is properly designed for ESW usage
- Ensures HW and ESW work together seamlessly
- Exposes issues that are difficult to reveal on other platforms (eg FPGA)
 - Clocking reproduced more accurately than on FPGAs
 - More randomisation capabilities than hardware test platforms

How HWSW Co-Verification Works?

HWSW Scenario – HW Perspective

- **1. Apply required Clocks**
- 2. Generate an Audio signal from TB
- 3. Write to HW registers to configure Audio path
- 4. Signal arrives at DSP input

HWSW Scenario – SW Perspective

HWSW Scenario – SW Perspective

How HWSW Co-Verification Works - Debugging

What Makes HWSW Interesting?

- Multidisciplinary work
- Gather info from different teams
- Understand full chip
- Use various technologies
 - Testbench SystemVerilog + UVM
 - Embedded C/C++
 - HW Debugging
 - SW Debugging
 - Scripting

HWSW Co-Verification – Early Careers

- Learn something not taught at universities
- Exposure to Verification, Firmware and Design
- Real responsibility

Our Award-Winning Work Culture

Questions

Past projects | Interviews Important Dates

Contact

www.linkedin.com/in/vladislav-rumiantsev Vladislav.Rumiantsev@cirrus.com

Online

http://www.cirrus.com/careers/students

