
Example

Vulnerability Assessment

and Penetration Testing

Model Report

for

SampleCompany

FILE COPY

D

Example

Page 2 of 89

Document Submission Details

Company

SampleCompany

Document Title

VA & PT Report – v 1.0

Date

10/03/2014

Reference

INFY/VAPT/

Classification

Document Type

Report

Recipient Details

Name

Title

Company

SampleCompany

Address

Contact Numbers

Other E–Mails

Document History

Date

Version

Author

Comments

V1.0

Rough Draft

V1.0

Rough Draft

V1.0

Fair Draft

V1.0

Client Interaction

Example

Page 3 of 89

Copyrights:
Notice

The information in this document is confidential and may be legally privileged. It is intended solely for the

addressee and access to this document by anyone else is unauthorized. If you are not the intended recipient,

any disclosure, copying or distribution of the document, or any action taken by you in reliance on it, is

prohibited and may be unlawful.

The Tessolve logo is a trademark of Tessolve Semiconductor Pvt. Ltd. All other product names, trademarks,

and/or company names are used solely for identification and belong to their respective owners.

 Tessolve Semiconductor Pvt. Ltd. Contact Details

Name

Ponni Carlin

Title

Associate Director – Business Development Sales & Marketing

Company

Tessovle Semiconductor Pvt. Ltd.

Address

 Plot No: 31 (P2), Electronic City
 Phase II,
 Bangalore – 560 100
 Karnataka, India

Telephone +91 80 4181 2626

Mobile
+1 (408) 204-8998

E – Mail

ponni.carlin@tessolve.com

Example

Page 4 of 89

Organisation Details:

S.No Particulars Details to be furnished

1
Name of the Information System Auditor/Consultant

/Company

Tessolve Semiconductor Private Limited

2

Location of Registered Office (India)

 Plot No: 31 (P2), Electronic City
 Phase II,
 Bangalore – 560 100
 Karnataka, India

3

Location of Registered Office (UK)

Engine Shed
Station Approach
Temple Meads
Bristol
BS1 6QH
United Kingdom

4

Year of Establishment Within India: 2004

United Kingdom: 2020

5

Mailing Address (India)

Plot No: 31 (P2), Electronic City
Phase II,
Bangalore – 560 100

 Karnataka, India

6

Mailing Address (UK)

Engine Shed

Station Approach

Temple Meads

Bristol

BS1 6QH

United Kingdom

7 Registered Company Number

8 Official Contact Numbers +91- 80 4181 2626

9

Telephone Numbers of the contact person +1 (408) 204-8998

10

E-mail address of the contact person Ponni.carlin@tessolve.com

sales@tessolve.com

11

Name and designation of the person authorized to

make commitments to the bank

12

Description of business and business background Redefining the threshold of
semiconductor technology

mailto:Ponni.carlin@tessolve.com

Example

Page 5 of 89

Contents

EXECUTIVE SUMMARY 6

ABOUT APPLICATION 6
SCOPE OF THE PROJECT 6
OUT OF SCOPE 6
PROJECT SUMMARY: 7
VULNERABILITY TEST CASES 8
ENVIRONMENT DETAILS: 10
RISK OVERVIEW: 10
WEBSITE DNS DETAILS: 11
WEBSITE HOSTED ON SAME SERVER: 12

APPLICATION RISK DETAILS:

TESTING FOR CREDENTIALS TRANSPORTED OVER AN ENCRYPTED CHANNEL

13

13

TESTING FOR USER ENUMERATION AND GUESSABLE USER ACCOUNT 15
TESTING FOR WEAK PASSWORD CHANGE OR RESET FUNCTIONALITIES 17
TESTING FOR BYPASSING SESSION MANAGEMENT SCHEMA 19
TESTING FOR CROSS SITE REQUEST FORGERY (CSRF) 21
TESTING FOR STORED CROSS SITE SCRIPTING 25
TESTING FOR SQL INJECTION 29
TESTING FOR BUFFER OVERFLOW 32
SEARCH ENGINE DISCOVERY/RECONNAISSANCE 35
IDENTIFY APPLICATION ENTRY POINTS 39
TESTING FOR WEB APPLICATION FINGERPRINT 41
APPLICATION DISCOVERY 43
TESTING FOR WEAK SSL/TSL CIPHERS, INSUFFICIENT TRANSPORT LAYER PROTECTION 44
TESTING FOR APPLICATION CONFIGURATION MANAGEMENT WEAKNESS 47
TESTING FOR FILE EXTENSIONS HANDLING 49
OLD, BACKUP AND UNREFERENCED FILES 51

TESTING FOR COOKIES ATTRIBUTES (COOKIES ARE SET NOT ‘HTTP ONLY’, ‘SECURE’, AND NO TIME VALIDITY) 53
TESTING FOR EXPOSED SESSION VARIABLES 55
TESTING FOR INCUBATED VULNERABILITIES 57
SPIDERS, ROBOTS AND CRAWLERS 65
TESTING FOR DEFAULT CREDENTIALS 66
TESTING FOR BYPASSING AUTHENTICATION SCHEMA 68
TESTING DIRECTORY TRAVERSAL/FILE INCLUDE 69
ANALYSIS OF ERROR CODES 71
TESTING FOR INFRASTRUCTURE CONFIGURATION MANAGEMENT TESTING WEAKNESS 74
INFRASTRUCTURE AND APPLICATION ADMIN INTERFACES 75
TESTING FOR BAD HTTP METHODS 76
TESTING FOR BROWSER CACHE WEAKNESS 78
TESTING FOR CAPTCHA 79
TESTING FOR SESSION FIXATION 80
TESTING FOR PRIVILEGE ESCALATION 81
TESTING FOR LDAP INJECTION 82
TESTING FOR HTTP SPLITTING/SMUGGLING 83
TESTING FOR SQL WILDCARD ATTACKS 84
LOCKING CUSTOMER ACCOUNTS 85
WS INFORMATION GATHERING 86
WSDL TESTING 87
WEAK XML STRUCTURE TESTING 88
XML CONTENT-LEVEL TESTING 89

Example

Page 6 of 89

Executive Summary

About Application
This is a complete Application Assessment Report comprising the outcomes of testing
undertaken on the SampleCompany.com application for SampleCompany. The purpose of the
testing was to review the application vulnerabilities. This platform is for the security
vulnerabilities and provides remediation advice. Testing was conducted from the perspective of
a malicious user attempting to compromise the payment gateway application

This penetration test raised a 39 issues relating to the security stance of the
SampleCompany.com web application. There were multiple findings of a High, Medium, Low and
Informational severities. Multiple application level vulnerabilities were discovered which are
considered contrary to security best practice, and contrary to the OWASP (Open Web
Application Security Project) developer guidelines.

Scope of the project

The following checks were performed on web application as part of Web application security

Assessment achieved using tool and manual approach.

 Application Vulnerability Assessment

 Penetration Testing – White box&Blackbox.

 OWASP Standard 2013 coverage.

Out of scope

The below are considered as out of scope.

 Functional Testing

 Regression Testing

 Performance Testing

 Secure Code Audit

 Stress and Load (DOS & DDOS) Testing

 Test Environment Management Activities

 Any other testing activity not listed in Section 1.2

Example

Page 7 of 89

Project Summary:

Project Name – SampleCompany.com Penetration Testing

Project Start Date - 28th February 2014 Project End date - 12th March 2014

S.No

Activity Description
Planned Actual Percentage of

completion Start Date End Date Start Date End Date

1
Information
gatherings

1-Mar-14

1-Mar-14

1-Mar-14

1-Mar-14

100%

2 Vulnerability Scanning 3-Mar-14 3-Mar-14 3-Mar-14 4-Mar-14 100%

3 Penetration Testing 5-Mar-14 5-Mar-14 5-Mar-14 7-Mar-14 100%

4 Report Preparation 8-Mar-14 8-Mar-14 11-Mar-14 11-Mar-14 100%

5 Report Submission 12-Mar-14 12-Mar-14 12-Mar-14 12-Mar-14 100%

Example

Page 8 of 89

Vulnerability Test Cases

S.No Test Name Status Risk

1
Credentials transport over an encrypted channel -

Credentials transport over an encrypted channel

Done

H

2 Testing for user enumeration - User enumeration Done H

3
Testing for Guessable (Dictionary) User Account - Guessable

user account

Done

H

4
Testing for vulnerable remember password and pwd reset -

Vulnerable remember password, weak pwd reset

Done

H

5
Testing for Session Management Schema - Bypassing

Session Management Schema, Weak Session Token

Done

H

6 Testing for CSRF - CSRF Done H

7 Testing for Stored Cross Site Scripting - Stored XSS Done H

8 SQL Injection - SQL Injection Done H

9 Buffer overflow - Buffer overflow Done H

10 Search Engine Discovery/Reconnaissance Done M

11 Identify application entry points Done M

12 Testing for Web Application Fingerprint Done M

13 Application Discovery Done M

14
Application Configuration Management Testing -

Application Configuration management weakness

Done

M

15
Testing for File Extensions Handling - File extensions

handling

Done

M

16
Old, backup and unreferenced files - Old, backup and

unreferenced files

Done

M

17
Testing for Cookies attributes - Cookies are set not ‘HTTP

Only’, ‘Secure’, and no time validity

Done

M

18
Testing for Exposed Session Variables - Exposed sensitive

session variables

Done

M

19 Incubated vulnerability - Incubated vulnerability Done M

20 Default / Brute Force Testing - Credentials Done L

21
Testing for bypassing authentication schema - Bypassing

authentication schema

Done

L

22 Testing for Path Traversal - Path Traversal Done L

23 Spiders, Robots and Crawlers Done I

24 Analysis of Error Codes Done I

25
Infrastructure Configuration Management Testing -

Infrastructure Configuration management weakness

Done

I

26
SSL/TLS Testing (SSL Version, Algorithms, Key length, Digital

Cert. Validity) - SSL Weakness

Done

I

27

Infrastructure and Application Admin Interfaces - Access to

Admin interfaces

Done

I

Example

S.No Test Name Status Risk

28
Testing for HTTP Methods and XST - HTTP Methods

enabled, XST permitted, HTTP Verb

Done

I

29

Testing for Logout and Browser Cache Management - -

Logout function not properly implemented, browser cache

weakness

Done

I

30 Testing for CAPTCHA - Weak Captcha implementation Done I

31 Testing for Session Fixation - Session Fixation Done I

32 LDAP Injection - LDAP Injection Done I

33
Testing for HTTP Splitting/Smuggling - HTTP Splitting,

Smuggling

Done

I

34
Testing for SQL Wildcard Attacks - SQL Wildcard

vulnerability

Done

I

35 Locking Customer Accounts - Locking Customer Accounts Done I

36 WS Information Gathering - N.A. Done I

37 Testing WSDL - WSDL Weakness Done I

38 XML Structural Testing - Weak XML Structure Done I

39 XML content-level Testing - XML content-level Done I

40 Testing for Privilege Escalation - Privilege Escalation Done I

41
Testing for bypassing authorization schema - Bypassing

authorization schema

Not Done

NA

42
Testing Multiple Factors Authentication - Weak Multiple

Factors Authentication

Not Done

NA

43 Testing for Race Conditions - Race Conditions vulnerability Not Done NA

44
Testing for bypassing authorization schema - Bypassing

authorization schema

Not Done

NA

45 Testing for Business Logic - Bypassable business logic Not Done NA

46 Testing for Reflected Cross Site Scripting - Reflected XSS Not Done NA

47 Testing for DOM based Cross Site Scripting - DOM XSS Not Done NA

48 Testing for Cross Site Flashing - Cross Site Flashing Not Done NA

49 ORM Injection - ORM Injection Not Done NA

50 XML Injection - XML Injection Not Done NA

51 SSI Injection - SSI Injection Not Done NA

52 XPath Injection - XPath Injection Not Done NA

53 IMAP/SMTP Injection - IMAP/SMTP Injection Not Done NA

54 Code Injection - Code Injection Not Done NA

55 OS Commanding - OS Commanding Not Done NA

56 Testing for DoS Buffer Overflows - Buffer Overflows Not Done NA

57
User Specified Object Allocation - User Specified Object

Allocation

Not Done

NA

58 User Input as a Loop Counter - User Input as a Loop Counter Not Done NA

59
Writing User Provided Data to Disk - Writing User Provided

Data to Disk

Not Done

NA

60
Failure to Release Resources - Failure to Release Resources

Not Done

NA

Page 9 of 89

Example

Page 10 of 89

S.No Test Name Status Risk

61
Storing too Much Data in Session - Storing too Much Data in

Session

Not Done

NA

62
HTTP GET parameters/REST Testing - WS HTTP GET

parameters/REST

Not Done

NA

63
Naughty SOAP attachments - WS Naughty SOAP

attachments

Not Done

NA

64 Replay Testing - WS Replay Testing Not Done NA

65 AJAX Vulnerabilities - N.A. Not Done NA

66 AJAX Testing - AJAX weakness Not Done NA

Environment Details:

Details of application, environment and access to the same are as below

Item Description

Website name SampleCompany.com

URL Details

Technology

Type of testing Vulnerability Assessment & Penetration Testing

Risk Overview:

CVSS and Severity Ratings

Where applicable Security-Assessment rates all discovered vulnerabilities against the CVSS v2

(Common Vulnerability Scoring System). CVSS is an open framework for communicating the

characteristics and impact of IT vulnerabilities. The system is a quantitative model which ensures

repeatable accurate measurement, while allowing users to see the underlying vulnerability metrics

that were used to calculate the final risk.

Example

Page 11 of 89

Severity Description

High

High severity findings relate to an issue which requires immediate attention

and should be given the highest priority by the business. Vulnerabilities will be

labelled

High severity.

Medium
Medium severity finding relates to an issue which has the potential to present a
serious

risk to the business. Vulnerabilities will be labelled Medium severity.

Low
Low severity findings contradict security best practice and have minimal impact on
the

project or business. Vulnerabilities are labelled Low severity.

Informational

Informational findings relate primarily to none compliance to security best

practices or are considered a security feature that would increase the security

stance of the environment.

Website DNS Details:

DNS Records:

DNS Records –SampleCompany.com

Record Type TTL Priority Content

SampleCompany.com A 1 minute 4.1.20.14 ()

SampleCompany.com A 1 minute 4.1.20.14 ()

SampleCompany.com A 1 minute 4.1.20.14 ()

SampleCompany.com A 1 minute 4.1.20.14 ()

SampleCompany.com A 1 minute 4.1.20.14 ()

SampleCompany.com A 1 minute 4.1.20.14 ()

SampleCompany.com A 1 minute 4.1.20.14 ()

SampleCompany.com MX 1 minute 1 amxl.google.com

SampleCompany.com MX 1 minute 10 amx2.googlemail.com

SampleCompany.com MX 1 minute 10 amx3.googlemail.com

SampleCompany.com MX 1 minute 10 amx4.googlemail.com

SampleCompany.com MX 1 minute 10 amx5.googlemail.com

SampleCompany.com MX 1 minute 5 alt1.amx.l.google.com

SampleCompany.com MX 1 minute 5 alt2.amx.l.google.com

SampleCompany.com NS 2 days ns-115.awsdns-15.com

SampleCompany.com NS 2 days ns-153.awsdns-53.org

SampleCompany.com NS 2 days ns-164.awsdns-18.co.uk

SampleCompany.com NS 2 days ns-81.awsdns-39.net

SampleCompany.com

SOA
15
minutes

 ns-184.awsdns-18.co.uk. awsdns-
hostmaster.amazon.com. 1 720 900 129600 86400

SampleCompany.com

TXT

1 minute

 v=sf1 include:spf-a. SampleCompany.com
include:sf-b. SampleCompany.com include:spf-1.
SampleCompany.com include:spf-2.
SampleCompany.com include:_sf.google.com
include:_sf.elasticemail.com ~all

SampleCompany.com A 1 minute 4.1.20.14 ()

Example

Page 12 of 89

DNS Records –SampleCompany.com

Record Type TTL Priority Content

SampleCompany.com A 1 minute 4.1.20.14 ()

SampleCompany.com A 1 minute 4.1.20.14 ()

SampleCompany.com A 1 minute 4.1.20.14 ()

blog.
SampleCompany.com

A

1 minute

4.1.20.14 ()

blog.
SampleCompany.com

A

1 minute

4.1.20.14 ()

blog.
SampleCompany.com

A

1 minute

4.1.20.14 ()

blog.
SampleCompany.com

A

1 minute

4.1.20.14 ()

help.
SampleCompany.com

CNAME

1 minute

samplecompany.zemdesk.com

mail.
SampleCompany.com

CNAME

1 minute

ghx.google.com

www.
SampleCompany.com

A

1 minute

4.1.20.14 ()

www.
SampleCompany.com

A

1 minute

4.1.20.14 ()

www.
SampleCompany.com

A

1 minute

4.1.20.14 ()

www.
SampleCompany.com

A

1 minute

4.1.20.14 ()

www.
SampleCompany.com

A

1 minute

4.1.20.14 ()

www.
SampleCompany.com

A

1 minute

4.1.20.14 ()

www.
SampleCompany.com

A

1 minute

4.1.20.14 ()

Website hosted on same server:

Reverse IP Look Up details

SampleCompany.com 4.1.20.14 ()

SampleCompany.com.my 4.1.20.14 ()

SampleCompany.my 4.1.20.14 ()

Example

Page 13 of 89

Application Risk Details:

Risk : High Status: Pass Reference ID: 01

Vulnerability Name:

Testing for Credentials Transported over an Encrypted

Channel

Description:

There is a flaw in the credentials transported on this application which may lead to disclosure of highly sensitive

user information.

Details:

Nowadays, the most common impact of this issue is the login page and the payment page of a web application. It

should be aware that user's credentials are transmitted via an encrypted channel. In order to log into a web site,

usually, the user has to fill a simple form that transmits the inserted data with the POST method. What is less

obvious is that this data can be passed using the HTTP protocol, that means, in a non-secure way, or using HTTPS,

which encrypts the data. To further complicate things, there is the possibility that the site has the login page

accessible via HTTP (making us believe that the transmission is insecure), but then it actually sends data via HTTPS.

Testing for credentials transport means to verify that the user's authentication data are transferred via an

encrypted channel to avoid being intercepted by malicious users. if the data travels unencrypted from the web

browser to the server, or if the web application takes the appropriate security measures using a protocol like

HTTPS. The HTTPS protocol is built on TLS/SSL to encrypt the data that is transmitted and to ensure that user is

being sent towards the desired site. Clearly, the fact that traffic is encrypted does not necessarily mean that it's

completely safe. The security also depends on the encryption algorithm used and the robustness of the keys that

the application is using.

Reference:

http://www.instantssl.com/ssl-certificate-products/https.html

http://webdesign.about.com/od/ecommerce/a/aa070407.htm

http://en.wikipedia.org/wiki/HTTP_Secure

http://searchsoftwarequality.techtarget.com/definition/HTTPS

http://www.chmag.in/article/may2012/https-hyper-text-transfer-protocol-secure

Recommendation:

It is always recommended that, whenever the user sends information to the server, like login credentials and

purchase information, the values must be encrypted. The encryption is suggested to be triple layered encryption

like triple DES or a three layered combination of MD5, SHA and base 64 hashes. This is because cracking those

encrypted data will be surely a hard time for the attacker. Even though it is encrypted, to be in a very safer side

and also as the best way for transmitting data through web server, using of SSL/TLS in http traffic is highly

recommended.

http://www.instantssl.com/ssl-certificate-products/https.html
http://webdesign.about.com/od/ecommerce/a/aa070407.htm
http://en.wikipedia.org/wiki/HTTP_Secure
http://en.wikipedia.org/wiki/HTTP_Secure
http://searchsoftwarequality.techtarget.com/definition/HTTPS
http://searchsoftwarequality.techtarget.com/definition/HTTPS
http://www.chmag.in/article/may2012/https-hyper-text-transfer-protocol-secure
http://www.chmag.in/article/may2012/https-hyper-text-transfer-protocol-secure

Example

Page 14 of 89

Proof of concept:

Example

Page 15 of 89

Risk : High Status: Pass Reference ID: 02

Vulnerability Name:

Testing for User Enumeration and Guessable User Account

Description:

It is possible to collect a set of valid usernames by interacting with the authentication mechanism of the application

Details:

Often, web applications reveal when a username exists on system, either as a consequence of a misconfiguration or

as a design decision. For example, sometimes, when we submit wrong credentials, we receive a message that states

that either the username is present on the system or the provided password is wrong. The information obtained

can be used by an attacker to gain a list of users on system. This information can be used to attack the web

application, for example, through a brute force or default username/password attack. The attacker interacts with

the authentication mechanism of the application to understand if sending particular requests causes the

application to answer in different manners. This issue exists because the information released from web application

or web server when we provide a valid username is different than when we use an invalid one. In some cases, we

receive a message that reveals if the provided credentials are wrong because an invalid username or an invalid

password was used. Sometimes, we can enumerate the existing users by sending a username and an empty

password. If the application is vulnerable, we receive a response message that reveals, directly or indirectly, some

information useful for enumerating users.

Reference:

http://www.amazon.com/dp/0735617465/?tag=stackoverfl08-20

http://www.steveworkman.com/web-design/2008/best-practice-error-messages/

http://h30499.www3.hp.com/t5/Quality-Center-Support-and-News/Failed-to-Login-Error-message/td-p/5826787

http://stackoverflow.com/questions/117083/error-message-text-best-practices

Recommendation:

Due to over curiosity, the developers set responses for different scenarios like incorrect username, incorrect

password and incorrect username & password. It is suggested to provide error message saying “Incorrect login

credentials” or other equivalent messages.

Proof of concept:

http://www.amazon.com/dp/0735617465/
http://www.steveworkman.com/web-design/2008/best-practice-error-messages/
http://h30499.www3.hp.com/t5/Quality-Center-Support-and-News/Failed-to-Login-Error-message/td-p/5826787
http://h30499.www3.hp.com/t5/Quality-Center-Support-and-News/Failed-to-Login-Error-message/td-p/5826787
http://stackoverflow.com/questions/117083/error-message-text-best-practices
http://stackoverflow.com/questions/117083/error-message-text-best-practices

Example

Page 16 of 89

Example

Risk : High Status: Pass Reference ID: 03

Vulnerability Name:

Testing for weak password change or reset functionalities

Description:

Forgot password or password reset function allows the attacker to view the password of the user.

Details:

It is common for an application to have a mechanism that provides a means for a user to gain access to their

account in the event they forget their password. Very often the password recovery mechanism is weak, which

has the effect of making it more likely that it would be possible for a person other than the legitimate system

user to gain access to that user's account.

This weakness may be that the security question is too easy to guess or find an answer to (e.g. because it is too

common). Or there might be an implementation weakness in the password recovery mechanism code that may

for instance trick the system into e-mailing the new password to an e-mail account other than that of the user.

There might be no throttling done on the rate of password resets so that a legitimate user can be denied service

by an attacker if an attacker tries to recover their password in a rapid succession. The system may send the

original password to the user rather than generating a new temporary password. In summary, password recovery

functionality, if not carefully designed and implemented can often become the system's weakest link that can be

misused in a way that would allow an attacker to gain unauthorized access to the system. Weak password

recovery schemes completely undermine a strong password authentication scheme.

Reference:

http://wordpress.org/extend/plugins/force-strong-passwords/

http://nileshkumar83.blogspot.in/2010/03/weak-password-recovery-mechanism.html

http://chingshiong.blogspot.in/2013/01/facebook-bug-4-password-reset.html

http://threatpost.com/en_us/blogs/facebook-patches-password-reset-vulnerability-010813

Recommendation:

• Make sure that all input supplied by the user to the password recovery mechanism is thoroughly filtered and

validated.

• Do not use standard weak security questions and use several security questions.

• Make sure that there is throttling on the number of incorrect answers to a security question. Disable the

password recovery functionality after a certain (small) number of incorrect guesses.

• Require that the user properly answers the security question prior to resetting their password and sending the

new password to the e-mail address of record.

• Never allow the user to control what e-mail address the new password will be sent to in the password recovery

mechanism.

• Assign a new temporary password rather than revealing the original password.

Page 17 of 89

http://wordpress.org/extend/plugins/force-strong-passwords/
http://nileshkumar83.blogspot.in/2010/03/weak-password-recovery-mechanism.html
http://chingshiong.blogspot.in/2013/01/facebook-bug-4-password-reset.html
http://chingshiong.blogspot.in/2013/01/facebook-bug-4-password-reset.html
http://threatpost.com/en_us/blogs/facebook-patches-password-reset-vulnerability-010813
http://threatpost.com/en_us/blogs/facebook-patches-password-reset-vulnerability-010813

Example

Proof of concept:

Page 18 of 89

Example

Risk : High Status: Pass Reference ID: 04

Vulnerability Name:

Testing for Bypassing Session Management Schema

Description:

In order to avoid continuous authentication for each page of a website or service, web applications implement

various mechanisms to store and validate credentials for a pre-determined timespan. These mechanisms are

known as Session Management and, while they're most important in order to increase the ease of use and user-

friendliness of the application, they can be exploited by a penetration tester to gain access to a user account,

without the need to provide correct credentials. In this test, we want to check that cookies and other session

tokens are created in a secure and unpredictable way. An attacker who is able to predict and forge a weak cookie

can easily hijack the sessions of legitimate users.

Details:

Cookies are used to implement session management. In a nutshell, when a user accesses an application which

needs to keep track of the actions and identity of that user across multiple requests, a cookie (or more than one) is

generated by the server and sent to the client. The client will then send the cookie back to the server in all

following connections until the cookie expires or is destroyed. The data stored in the cookie can provide to the

server a large spectrum of information about who the user is, what actions he has performed so far, what his

preferences are, etc. therefore providing a state to a stateless protocol like HTTP.

A typical example is provided by an online shopping cart. Throughout the session of a user, the application must

keep track of his identity, his profile, the products that he has chosen to buy, the quantity, the individual prices,

the discounts, etc. Cookies are an efficient way to store and pass this information back and forth (other methods

are URL parameters and hidden fields).

Due to the importance of the data that they store, cookies are therefore vital in the overall security of the

application. Being able to tamper with cookies may result in hijacking the sessions of legitimate users, gaining

higher privileges in an active session, and in general influencing the operations of the application in an

unauthorized way.

Usually the main steps of the attack pattern are the following:

cookie collection: collection of a sufficient number of cookie samples;

cookie reverse engineering: analysis of the cookie generation algorithm;

cookie manipulation: forging of a valid cookie in order to perform the attack. This last step might require a large

number of attempts, depending on how the cookie is created

Another pattern of attack consists of overflowing a cookie. Here the attempt is amde to overflow a memory area,

thereby interfering with the correct behavior of the application and possibly injecting (and remotely executing)

malicious code

Reference:

http://www.w3schools.com/PHP/php_cookies.asp

http://www.w3schools.com/asp/asp_cookies.asp

http://www.w3schools.com/php/php_sessions.asp

http://www.w3schools.com/asp/asp_sessions.asp

http://wblinks.com/notes/secure-session-management-tips

Recommendation:

Page 19 of 89

http://www.w3schools.com/PHP/php_cookies.asp
http://www.w3schools.com/asp/asp_cookies.asp
http://www.w3schools.com/php/php_sessions.asp
http://www.w3schools.com/php/php_sessions.asp
http://www.w3schools.com/asp/asp_sessions.asp
http://www.w3schools.com/asp/asp_sessions.asp
http://wblinks.com/notes/secure-session-management-tips
http://wblinks.com/notes/secure-session-management-tips

Example

Applications should NOT use as variables any user personal information (user name, password, home address,

etc.,). Highly protected applications should not implement mechanisms that make automated requests to prevent

session timeouts.

Highly protected applications should not implement "remember me" functionality. Highly protected applications

should not use URL rewriting to maintain state when cookies are turned off on the client. Applications should NOT

use session identifiers for encrypted HTTPS transport that have once been used over HTTP.

Proof of concept:

Page 20 of 89

Example

Risk : High Status: Pass Reference ID: 05

Vulnerability Name:

Testing for Cross Site Request Forgery (CSRF)

Description:

CSRF is an attack which forces an end user to execute unwanted actions on a web application in which he/she is

currently authenticated. With a little help of social engineering (like sending a link via email/chat), an attacker may

force the users of a web application to execute actions of the attacker's choosing. A successful CSRF exploit can

compromise end user data and operation, when it targets a normal user. If the targeted end user is the

administrator account, a CSRF attack can compromise the entire web application

Details:

Cross-Site Request Forgery (CSRF) is an attack that tricks the victim into loading a page that contains a malicious

request. It is malicious in the sense that it inherits the identity and privileges of the victim to perform an undesired

function on the victim's behalf, like change the victim's e-mail address, home address, or password, or purchase

something. CSRF attacks generally target functions that cause a state change on the server but can also be used to

access sensitive data. For most sites, browsers will automatically include with such requests any credentials

associated with the site, such as the user's session cookie, basic auth credentials, IP address, Windows domain

credentials, etc. Therefore, if the user is currently authenticated to the site, the site will have no way to distinguish

this from a legitimate user request. Synonyms: CSRF attacks are also known by a number of other names, including

XSRF, "Sea Surf", Session Riding, Cross-Site Reference Forgery, and Hostile Linking. Microsoft refers to this type of

attack as a One-Click attack in their threat modeling process.

Reference:

http://www.cgisecurity.com/articles/csrf-faq.shtml

https://www.owasp.org/index.php/File:RequestRodeo-MartinJohns.pdf

https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project

https://code.google.com/p/pinata-csrf-tool/

http://yehg.net/lab/pr0js/view.php/A_Most-Neglected_Fact_About_CSRF.pdf

Recommendation:

• Add a per-request nonce to URL and all forms in addition to the standard session. This is also referred to as

"form keys". Many frameworks (ex, Drupal.org 4.7.4+) either have or are starting to include this type of protection

"built-in" to every form so the programmer does not need to code this protection manually.

• Checking the referrer in the client's HTTP request will prevent CSRF attacks. By ensuring the HTTP request have

come from the original site means that the attacks from other sites will not function. It is very common to see

referrer checks used on embedded network hardware due to memory limitations. XSS can be used to bypass both

referrer and token based checks simultaneously. For instance the Sammy Worm used an XHR to obtain the CSRF

token to forge requests.

• "Although cross-site request forgery is fundamentally a problem with the web application, not the user, users

can help protect their accounts at poorly designed sites by logging off the site before visiting another, or clearing

their browser's cookies at the end of each browser session."

Page 21 of 89

http://www.cgisecurity.com/articles/csrf-faq.shtml
http://www.owasp.org/index.php/
http://www.owasp.org/index.php/
http://yehg.net/lab/pr0js/view.php/
http://yehg.net/lab/pr0js/view.php/

Example

Proof of concept:

Page 22 of 89

Example

Page 23 of 89

Example

Page 24 of 89

Example

Risk : High Status: Pass Reference ID: 06

Vulnerability Name:

Testing for Stored Cross Site Scripting

Description:

It is possible to perform Stored Cross Site Scripting (XSS), which has potentially high level threat which stores data

in the database.

Details:

Stored XSS occurs when a web application gathers input from a user which might be malicious, and then stores

that input in a data store for later use. The input that is stored is not correctly filtered. As a consequence, the

malicious data will appear to be part of the web site and run within the user’s browser under the privileges of the

web application. Since this vulnerability typically involves at least two requests to the application, this may also

called second-order XSS.

This vulnerability can be used to conduct a number of browser-based attacks including:

• Hijacking another user's browser

• Capturing sensitive information viewed by application users

• Pseudo defacement of the application

• Port scanning of internal hosts

• Directed delivery of browser-based exploits

Other malicious activities

• Attacker stores malicious code into the vulnerable page

• User authenticates in the application

• User visits vulnerable page

• Malicious code is executed by the user's browser

Stored XSS is particularly dangerous in application areas where users with high privileges have access. When the

administrator visits the vulnerable page, the attack is automatically executed by their browser. This might expose

sensitive information such as session authorization tokens.

Reference:

http://en.wikipedia.org/wiki/Cross-site_scripting

http://seclists.org/bugtraq/2013/Feb/84

http://deadlytechnology.com/web-development/xss/

Recommendation:

XSS can only be prevented by carefully sanitizing all input which is not known to be secure. Classes of input which

is known NOT to be secure include:

• GET parameters

• POST parameters

• window.location

• document.referrer

• document.location

• document.URLUnencoded

• Cookie data

Page 25 of 89

http://en.wikipedia.org/wiki/Cross-site_scripting
http://seclists.org/bugtraq/2013/Feb/84
http://deadlytechnology.com/web-development/xss/
http://deadlytechnology.com/web-development/xss/

Example

Page 26 of 89

• Potentially data from your own database

Example

Page 27 of 89

Proof of concept:

Example

Page 28 of 89

Example

Risk : High Status: Pass Reference ID: 07

Vulnerability Name:

Testing for SQL Injection

Description:

SQL injection vulnerability is found in the application, which is considered as the most potential attack vector,

since it can be used and database values are retrieved.

Details:

SQL Injection vulnerabilities occur whenever input is used in the construction of a SQL query without being

adequately constrained or sanitized. The use of dynamic SQL (the construction of SQL queries by concatenation of

strings) opens the door to these vulnerabilities. SQL injection allows an attacker to access the SQL servers. It

allows for the execution of SQL code under the privileges of the user used to connect to the database. A SQL

injection attack consists of insertion or "injection" of either a partial or complete SQL query via the data input or

transmitted from the client (browser) to the web application. A successful SQL injection attack can read sensitive

data from the database, modify database data (insert/update/delete), execute administration operations on the

database (such as shutdown the DBMS), recover the content of a given file existing on the DBMS file system or

write files into the file system, and, in some cases, issue commands to the operating system. SQL injection attacks

are a type of injection attack, in which SQL commands are injected into data-plane input in order to affect the

execution of predefined SQL commands.

Reference:

http://en.wikipedia.org/wiki/SQL_injection

http://pastebin.com/ruDvYW7u

Recommendation:

SQL injection can be prevented using the following methods.

• Use dynamic SQL only if absolutely necessary.

• Escape user input.

• Assume magic quotes is always off.

• Install patches regularly and timely.

• Remove all functionality you don't use.

Page 29 of 89

http://en.wikipedia.org/wiki/SQL_injection
http://pastebin.com/ruDvYW7u

Example

Proof of concept:

Page 30 of 89

Example

Page 31 of 89

Example

Risk : High Status: Pass Reference ID: 08

Vulnerability Name:

Testing for Buffer overflow

Description:

A buffer overflow condition exists when a program attempts to put more data in a buffer than it can hold or when a

program attempts to put data in a memory area past a buffer. In this case, a buffer is a sequential section of

Page 32 of 89

Example

memory allocated to contain anything from a character string to an array of integers.

Details:

Buffer overflow is probably the best known form of software security vulnerability. Most software developers know

what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and newly-developed

applications are still quite common. Part of the problem is due to the wide variety of ways buffer overflows can

occur, and part is due to the error-prone techniques often used to prevent them.

Buffer overflows are not easy to discover and even when one is discovered, it is generally extremely difficult to

exploit. Nevertheless, attackers have managed to identify buffer overflows in a staggering array of products and

components.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack

buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The

data sets the value of the return pointer so that when the function returns, it transfers control to malicious code

contained in the attacker's data.

Recommendation:

Keep up with the latest bug reports for your web and application server products and other products in your

Internet infrastructure. Apply the latest patches to these products. Periodically scan your web site with one or more

of the commonly available scanners that look for buffer overflow flaws in your server products and your custom

web applications. For your custom application code, you need to review all code that accepts input from users via

the HTTP request and ensure that it provides appropriate size checking on all such inputs. This should be done even

for environments that are not susceptible to such attacks as overly large inputs that are uncaught may still cause

denial of service or other operational problems.

Page 33 of 89

Example

Proof of concept:

Page 34 of 89

Example

Risk : Medium Status: Pass Reference ID: 09

Vulnerability Name:

Search Engine Discovery/Reconnaissance

Description:

It is possible to discover sensitive information through search engines search and passive reconnaissance.

Details:

Once the Google Bot has completed crawling, it commences indexing the web page based on tags and associated

attributes, such as <TITLE>, in order to return the relevant search results. Once the Google Bot has completed

crawling, it commences indexing the web page based on tags and associated attributes, such as <TITLE>, in order to

return the relevant search results. If the robots.txt file is not updated during the lifetime of the web site, then it is

possible for web content not intended to be included in Google's Search Results to be returned.

Reference:

http://rusecure.rutgers.edu/category/topic/search-engine-reconnaissance

http://www.google.com/support/webmasters/bin/answer.py?answer=70897

http://www.google.com/help/operators.html

http://code.google.com/apis/soapsearch/reference.html#1_2

http://www.google.com/support/webmasters/bin/topic.py?topic=8459

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=1663691

Recommendation:

Restricting the search engines to certain sensitive folders can be done using robots.txt. Robots.txt can be configured

using the following scripts

User-agent: *

Allow: /allowed_folder/

Disallow: /restricted_folder/

Even if it is done, it must be available in Google Cache, on late update of robots.txt. Therefore, it must be removed

from the Google Cache. The cached pages can be removed from Google Cache using n number of tools like webmaster

tools (Google public URL removal tool) from Google.

Page 35 of 89

http://rusecure.rutgers.edu/category/topic/search-engine-reconnaissance
http://www.google.com/support/webmasters/bin/answer.py
http://www.google.com/help/operators.html
http://www.google.com/help/operators.html
http://code.google.com/apis/soapsearch/reference.html#1_2
http://code.google.com/apis/soapsearch/reference.html#1_2
http://www.google.com/support/webmasters/bin/topic.py
http://www.google.com/support/webmasters/bin/topic.py
http://support.google.com/webmasters/bin/answer.py
http://support.google.com/webmasters/bin/answer.py

Example

Proof of concept:

Registrant Information

Registrant Name

PDR LTD. D/B/A PUBLICDOMAINREGISTRY.COM

Registry Domain ID 6275432502_DOMAIN_COM-VRSN

Registrar IANA ID 334

Registrar Abuse Contact
Email: Email Masking

Image@publicdomainregistry.com

Registrar Abuse Contact
Phone

-2013567751

Registry Registrant ID DI_3456324

Registrant Name

Registrant Organisation MobileSampleCompany.com

Registrant Street

Registrant City Kuala Lumpur

Registrant State/Province

Wilayah Kuala Lumpur

Registrant Postal Code 55244

Registrant Country MY

Registrant Phone 603.95678956

Registrant Email: Email
Masking

Image@mobileSampleCompany.com

Registry Admin ID DI_41354674324

SampleCompany.com

Ip Address of
pentest3405346.SampleCompany.com

4.17.24.1

Ip Addresses of SampleCompany.com

4.17.24.1, 4.17.24.2, 4.17.24.3, 4.17.24.4

IP address 4.17.24.1

Country

 SG

State/Province SINGAPORE

City SINGAPORE

Zip or postal code -

Latitude 1.26378

Longitude 103.111

Timezone +08:00

Hostname
ec2-46-137-220-142.ap-southeast-1.compute.
s.com

Web Server IIS 7.5

System Details Microsoft-HTTP API/2.0

Server technologies Microsoft ASP.Net

Operating System Microsoft Windows Server 2008 R2

HTTP version used 1.1

Page 36 of 89

mailto:Image@publicdomainregistry.com
mailto:Image@mobileSampleCompany.com

Example

Name Servers
ns-121.awsdns-15.com 25.21.12.11

ns-1453.awsdns-53.org 25.21.12.11

ns-1684.awsdns-18.co.uk

25.21.12.11

ns-831.awsdns-39.net 25.21.12.11

Expires on 10-Oct-16

Registered on 10-Oct-06

Updated on 10-Aug-11

Sub-Domain

blog.SampleCompany.com 4.1.24.5

dvl3.

SampleCompany.com

21.2.20.2

SOA Record – SampleCompany.com

Name Server ns-1684.awsdns-18.co.uk

Email Email Masking Image@amazon.com

Serial Number 1

Refresh 2 hours

Retry 15 minutes

Expiry 14 days

Minimum 1 day

HTTP Request Headers

Host SampleCompany.com

Accept */*

Cache-Control no-cache

Connection keep-alive

Accept-Encoding gzip,deflate

HTTP Response Headers

Server Dungeon9

Date Mon, 03 Mar 2014 06:51:01 GMT

Content-Type text/html

Transfer-Encoding chunked

Connection keep-alive

Keep-Alive timeout=600

Vary Accept-Encoding

Cache-Control max-age=1800

Page 37 of 89

mailto:Image@amazon.com

Example

Set-Cookie

ASPSESSIONIDSCAQTQRA=MHDPFEACAEEMHBFIOEOHPALC; path=/

Set-Cookie

AWSELB=D711A57F12C5D33D241A23D20C225834B6664BC8153E48DFB602
48FCE5A2B30BA2D3DD1417D6518BF4B684210682C0BC7952F9867EBBCE3
854BCA1F1804367D0E7D882462E;PATH=/;MAX-AGE=7200

X-Powered-By ASP.NET

Expires Mon, 03 Mar 2014 07:21:01 GMT

Content-Encoding Gzip

Page 38 of 89

Example

Risk : Medium Status: Pass Reference ID: 10

Vulnerability Name:

Identify application entry points

Description:

Some interesting application entry points can tempt the attacker with information about where to start the

attack.

Details:

The input fields can be the following three. Any attacks can be initiated from any one of the three application

entry points. They are GET, POST and html tags. The GET and POST methods are used to transfer any

information from one web page to the other. The GET method is usually used to get information from the

web page, which will be seen in the URL. The POST method is usually used to get information from the form

to a web page or self. The main difference between GET and POST is that, GET is visible in the URL and POST

is not. However both the GET and POST can be viewed. This GET and POST can be used to get information

about the application entry points. The third method which is the entry point through analyzing HTML tags.

HTML tags like <input>, <select>, <options> are used to get inputs from the user. So these are attracted by

attacker. Also the input tag with hidden field always contains sensitive information. So these are analyzed to

gather information about the application entry points.

Reference:

http://social.msdn.microsoft.com/Forums/en-US/sharepointdevelopment/thread/75415586-502d-475c-

b2ab-d6df97ae4c17

http://www.w3schools.com/tags/ref_httpmethods.asp

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

http://www.w3.org/2001/tag/doc/whenToUseGet-20040321

Recommendation:

Use GET if the interaction is more like a question (i.e., it is a safe operation such as a query, read operation,

or lookup). Use POST if the interaction is more like an order, or the interaction changes the state of the

resource in a way that the user would perceive (e.g., a subscription to a service), or the user be held

accountable for the results of the interaction. You should never change anything in your database (other

than logging information or other ephemeral data) from a GET request. The issue is that there is various web

spidering software, web accelerators, anti-virus programs, and the like, that will perform a GET request on

every URL they find; you would not want them to delete items automatically when they do so. GET is also

vulnerable to cross-site request forgery; if an attacker makes one of your users click on a link that performs a

bad action (for instance, creating a tinyurl that redirects to a delete URL), then they can trick the user into

using their permissions to delete something without realizing it. Making a field "hidden" has pretty much

nothing to do with security, and should be considered a UI decision. Any "hacker" will read your HTML

source anyway. Better to either not show sensitive information at all, or, if you must, to use SSL (to prevent

data interception by network intermediaries) and some combination of login challenges (to prevent

unauthorized access).

Proof of concept:

Page 39 of 89

http://social.msdn.microsoft.com/Forums/en-US/sharepointdevelopment/thread/75415586-502d-475c-
http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3.org/2001/tag/doc/whenToUseGet-20040321
http://www.w3.org/2001/tag/doc/whenToUseGet-20040321

Example

A Possible Sensitive Directories

1 /epayment/admin

2 /epayment/Admin

3 /epayment/ADMIN

4 /epayment/inc

5 /epayment/include

6 /epayment/testing

B Possible Sensitive Files

1 /epayment/test.asp

Page 40 of 89

Example

Risk : Medium Status: Pass Reference ID: 11

Vulnerability Name:

Testing for Web Application Fingerprint

Description:

Knowing the version and type of a running web server allows attackers to determine known vulnerabilities

and the appropriate exploits to use during attack.

Details:

There are several different vendors and versions of web servers on the market today. Knowing the type of

web server that you are testing significantly helps in the testing process, and will also change the course of

the test. This information can be derived by sending the web server specific commands and analyzing the

output, as each version of web server software may respond differently to these commands. By knowing

how each type of web server responds to specific commands and keeping this information in a web server

fingerprint database, a penetration tester can send these commands to the web server, analyze the

response, and compare it to the database of known signatures. Please note that it usually takes several

different commands to accurately identify the web server, as different versions may react similarly to the

same command. Rarely, however, different versions react same to all HTTP commands.

Reference:

http://pentestlab.wordpress.com/2012/08/01/web-application-fingerprinting/

http://resources.infosecinstitute.com/prototype-model-web-application-fingerprinting/

http://www.quickonlinetips.com/archives/2012/05/turn-off-server-signature/

http://www.unixmen.com/how-to-disable-server-signature-using-htaccess-or-by-editing-apache/

http://www.port80software.com/support/articles/maskyourwebserver

http://httpd.apache.org/docs/2.2/mod/core.html#serversignature

Recommendation:

Most Web servers politely identify themselves and the OS to anyone who asks. Using a network query tool

like free ieHTTPHeaders or this Header Check, you can discern the HTTP Server header. Just request a Web

site's home page and examine the resulting HTTP headers or "banners" sent back by the server. Among

them, you will likely find something like this:

Server: Microsoft-IIS/5.0

You can remove or obscure this HTTP Server header in a variety of ways, depending on your

platform. Apache 2.x users who have the mod_headers module loaded can use a simple directive

in their httpd.conf file, as follows:

Header set Server "New Server Name Goes Here"

Proof of concept:

Page 41 of 89

http://pentestlab.wordpress.com/2012/08/01/web-application-fingerprinting/
http://resources.infosecinstitute.com/prototype-model-web-application-fingerprinting/
http://resources.infosecinstitute.com/prototype-model-web-application-fingerprinting/
http://www.quickonlinetips.com/archives/2012/05/turn-off-server-signature/
http://www.quickonlinetips.com/archives/2012/05/turn-off-server-signature/
http://www.unixmen.com/how-to-disable-server-signature-using-htaccess-or-by-editing-apache/
http://www.unixmen.com/how-to-disable-server-signature-using-htaccess-or-by-editing-apache/
http://www.port80software.com/support/articles/maskyourwebserver
http://www.port80software.com/support/articles/maskyourwebserver
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/
http://www.blunck.se/iehttpheaders/iehttpheaders.html
http://www.port80software.com/support/p80tools#headercheck
http://httpd.apache.org/docs/1.3/mod/mod_headers.html

Example

Page 42 of 89

Example

Risk : Medium Status: Pass Reference ID: 12

Vulnerability Name:

Application Discovery

Description:

Finding the applications used in the web server may lead the attacker to a specific approach in compromising the

system.

Details:

Many applications have known vulnerabilities and known attack strategies that can be exploited in order to gain

remote control or to exploit data. In addition, many applications are often misconfigured or not updated, due to

the perception that they are only used "internally" and therefore no threat exists. Unpatched application will

always lead to existance of vulnerabilities. With the proliferation of virtual web servers, the traditional 1:1-type

relationship between an IP address and a web server is losing much of its original significance. It is not

uncommon to have multiple web sites / applications whose symbolic names resolve to the same IP address.

Reference:

http://dcid.me/texts/fingerprinting-web-apps.html

http://resources.infosecinstitute.com/prototype-model-web-application-fingerprinting/

http://www.openbsd.org/faq/pf/

http://www.openbsd.org/faq/pf/config.html

https://calomel.org/pf_config.html

http://en.wikipedia.org/wiki/PF_(firewall)

Recommendation:

It is possible to address specific issues and disable specific types of known fingerprinting software by determining

what parameter it relies on most and then changing it. For example, certain packet-filtering solutions, such as pf

in OpenBSD, provide a packet normalization service that ensures that all outgoing traffic "looks the same."

Although this might prevent some aspects of fingerprinting to some degree or might simply make fingerprinting

more difficult by rendering some popular programs less accurate, it does not solve the problem completely.

Proof of concept:

Application Discovery

Web Server IIS 7.5

System Details Microsoft-HTTP API/2.0

Server

technologies

Microsoft ASP.Net

Operating

System

Microsoft Windows Server
2008 R2

Page 43 of 89

http://dcid.me/texts/fingerprinting-web-apps.html
http://resources.infosecinstitute.com/prototype-model-web-application-fingerprinting/
http://resources.infosecinstitute.com/prototype-model-web-application-fingerprinting/
http://www.openbsd.org/faq/pf/
http://www.openbsd.org/faq/pf/
http://www.openbsd.org/faq/pf/config.html
http://en.wikipedia.org/wiki/PF_
http://en.wikipedia.org/wiki/PF_

Example

Risk : Medium Status: Pass Reference ID: 13

Vulnerability Name:

Testing for Weak SSL/TSL Ciphers, Insufficient Transport

Layer Protection

Description:

Insufficient Transport layer protection is found due to weak SSL/TLS ciphers.

Details:

The http clear-text protocol is normally secured via an SSL or TLS tunnel, resulting in https traffic. In addition to

providing encryption of data in transit, https allows the identification of servers (and, optionally, of clients) by

means of digital certificates.

Historically, there have been limitations set in place by the U.S. government to allow cryptosystems to be

exported only for key sizes of, at most, 40 bits, a key length which could be broken and would allow the

decryption of communications. Since then, cryptographic export regulations have been relaxed (though some

constraints still hold); however, it is important to check the SSL configuration being used to avoid putting in

place cryptographic support which could be easily defeated. SSL-based services should not offer the possibility

to choose weak ciphers.

Reference:

http://www.stardothosting.com/blog/2009/05/testing-for-weak-ssl-ciphers-for-security-audits/

http://www.plynt.com/blog/2007/12/enforcing-strong-ssltls-cipher/

http://www.sslshopper.com/article-how-to-disable-weak-ciphers-and-ssl-2.0-in-apache.html

http://www.rapid7.com/vulndb/lookup/ssl-weak-ciphers

Recommendation:

A cipher suite is specified by an encryption protocol (DES, RC4, AES), the encryption key length (such as 40, 56,

or 128 bits), and a hash algorithm (SHA, MD5) used for integrity checking. The best cipher will be the one which

uses triple DES algorithm, with encryption key length of 128 bits and MD5 hash algorithm.

Page 44 of 89

http://www.stardothosting.com/blog/2009/05/testing-for-weak-ssl-ciphers-for-security-audits/
http://www.plynt.com/blog/2007/12/enforcing-strong-ssltls-cipher/
http://www.sslshopper.com/article-how-to-disable-weak-ciphers-and-ssl-2.0-in-apache.html
http://www.sslshopper.com/article-how-to-disable-weak-ciphers-and-ssl-2.0-in-apache.html
http://www.rapid7.com/vulndb/lookup/ssl-weak-ciphers
http://www.rapid7.com/vulndb/lookup/ssl-weak-ciphers

Example

Proof of concept:

Page 45 of 89

Example

Page 46 of 89

Example

Risk : Medium Status: Pass Reference ID: 14

Vulnerability Name:

Testing for Application Configuration Management

weakness

Description:

Improper configuration of an application created a major hole in the entire architecture.

Details:

Proper configuration of the single elements that make up application architecture is important in order to prevent

mistakes that might compromise the security of the whole architecture. Many applications that come default in a web

server have been later known to be vulnerable. This was the case, for example, for CVE-1999-0449 (Denial of Service

in IIS when the Exair sample site had been installed), CAN-2002-1744 (Directory traversal vulnerability in CodeBrws.asp

in Microsoft IIS 5.0), CAN-2002-1630 (Use of sendmail.jsp in Oracle 9iAS), or CAN-2003-1172 (Directory traversal in the

view-source sample in Apache’s Cocoon). CGI scanners include a detailed list of known files and directory samples that

are provided by different web or application servers and might be a fast way to determine if these files are present. It is

very common, and even recommended, for programmers to include detailed comments on their source code in order

to allow for other programmers to better understand why a given decision was taken in coding a given function.

Programmers usually do it too when developing large web-based applications. However, comments included inline in

HTML code might reveal to potential attacker internal information that should not be available to them. Sometimes,

even source code is commented out since functionality is no longer required, but this comment is leaked out to the

HTML pages returned to the users unintentionally. The web server or application server configuration takes an

important role in protecting the contents of the site and it must be carefully engineered.

Reference:

http://m.safaribooksonline.com/hd/public/content?portal=my&fpid=0735615608&s250=6275&s250w=800&s250h=5

72&s250uaw=800&s250uah=600#id=0735615608\firstchapter

Recommendation:

The recommended configuration varies depending on the site policy, and the functionality that should be provided by

the server software. In most cases, however, configuration guidelines (either provided by the software vendor or

external parties) should be followed in order to determine if the server has been properly secured. It is impossible to

generically say how a server should be configured, however, some common guidelines should be taken into account:

Only enable server modules (ISAPI extensions in the IIS case) that are needed for the application.

Make sure that the server software runs with minimized privileges in the operating system.

Make sure the server software properly logs both legitimate access and errors.

Do not store sensitive information in these files if it should be for administrator eyes only.

Encrypt sensitive information that should be read by the IIS worker processes only and not by other users on the

machine.

Page 47 of 89

http://m.safaribooksonline.com/hd/public/content

Example

S.No List of file with input

1 /epayment - 1 inputs

2 /epayment/admin/index.asp - 1 inputs

3 /epayment/testing/default.asp - 1 inputs

S.No List of external hosts

1 mart.mobile.com.my

2 twitter.com

3 go.microsoft.com

S.No List of client side scripts

1 /epayment/admin/dtree.js

2 /epayment/admin/admincountdowntimer.js

S.No List of file extensions

1 asp - 8 files

2 css - 2 files

3 js - 2 files

Page 48 of 89

Example

Risk : Medium Status: Pass Reference ID: 15

Vulnerability Name:

Testing for File Extensions Handling

Description:

File extension handling must be concentrated for better security of the application.

Details:

File extensions are commonly used in web servers to easily determine which technologies / languages / plugins

must be used to fulfil the web request. Using standard file extensions provides the attacker useful information

about the underlying technologies used in a web appliance and greatly simplifies the task of determining the

attack scenario to be used on particular technologies. In addition, misconfiguration in web servers could easily

reveal confidential information about access credentials. Extension checking is often used to validate files to be

uploaded, which can lead to unexpected results because if the content is not what is expected, or because of

unexpected OS filename handling. Determining how web servers handle requests corresponding to files having

different extensions may help us to understand web server behaviour depending on the kind of files we try to

access. For example, it can help us understand which file extensions are returned as text/plain versus those

which cause execution on the server side. The latter are indicative of technologies / languages / plugins which

are used by web servers or application servers, and may provide additional insight on how the web application

is engineered. For example, a “.pl” extension is usually associated with server-side Perl support.

Reference:

http://en.wikipedia.org/wiki/MIME http://www.ltsw.se/knbase/internet/mime.htp

http://www.iis.net/configreference/system.webserver/security/requestfiltering/fileextensions

Recommendation:

The following example Web.config file will configure two options. It will configure request filtering to allow

WebDAV access to all file name extensions, and it will configure IIS to deny access to files with a file name

extension of .inc, which are sometimes used as include files for applications.

<requestFiltering>

<fileExtensions applyToWebDAV="false">

<add fileExtension=".inc" allowed="false" />

</fileExtensions>

</requestFiltering>

Page 49 of 89

http://en.wikipedia.org/wiki/MIME
http://www.ltsw.se/knbase/internet/mime.htp
http://www.iis.net/configreference/system.webserver/
http://www.iis.net/configreference/system.webserver/

Example

Proof of concept:

Page 50 of 89

Example

Risk : Medium Status: Pass Reference ID: 16

Vulnerability Name:

Old, Backup and Unreferenced Files

Description:

Old, backup and unreferenced files are very critical issue in the security and they can even disclose the source

code of the application.

Details:

Most common scenario includes the presence of renamed old versions of modified files, inclusion files that are

loaded into the language of choice and can be downloaded as source, or even automatic or manual backups in

form of compressed archives. All these files may grant the attacker access to inner workings, backdoors,

administrative interfaces, or even credentials to connect to the administrative interface or the database server. An

important source of vulnerability lies in files which have nothing to do with the application, but are created as a

consequence of editing application files, or after creating on-the-fly backup copies, or by leaving in the web tree

old files or unreferenced files. That happens because backup copies may be generated with file extensions

differing from those of the original files. A .tar, .zip or .gz archive that we generate (and forget) has obviously a

different extension, and the same happens with automatic copies created by many editors. As a result, these

activities generate files which are not needed by the application, may be handled differently than the original file

by the web server.

Reference:

http://technet.microsoft.com/en-us/library/cc736787%28v=ws.10%29.aspx

Recommendation:

As a security best practice, log on to your computer using an account that is not in the Administrators group, and

then use the Run as command to run IIS Manager as an administrator. At the command prompt, type runas

/user:administrative_accountname mmc %systemroot%\system32\inetsrv\iis.msc.

To create a portable backup (password required)

1. In IIS Manager, right-click the local computer, click All Tasks, and then click Backup/Restore

Configuration.

2. Click Create Backup.
3. In the Configuration backup name box, type a name for the backup file.

4. Select the Encrypt backup using password check box, type a password into the Password box, and then

type the same password in the Confirm password box.

5. Click OK, and then click Close.

The IIS metabase is created in the systemroot\system32\inetsrv\MetaBack folder.

Page 51 of 89

http://technet.microsoft.com/en-us/library/cc736787%28v

Example

Proof of concept:

A Dirs found with a 200 response:

1 /epayment/

B
Dirs found with a 403
response:

1 /epayment/images/

2 /epayment/image/

3 /epayment/security/

4 /epayment/Images/

5 /epayment/general/

6 /epayment/demo/

7 /epayment/registration/

8 /epayment/mobile/

9 /epayment/images/index/

C
Dirs found with a 302
response:

1 /epayment/admin/

2 /epayment/report/

D
Files found with a 200
responce:

1 /epayment/index.asp

Page 52 of 89

Example

Risk : Medium Status: Pass Reference ID: 17

Vulnerability Name:

Testing for Cookies attributes (Cookies are set not ‘HTTP

Only’, ‘Secure’, and no time validity)

Description:

Cookies are often a key attack vector for malicious users and, as such, the application should always take due

diligence to protect cookies. The application has not taken the necessary precautions when assigning cookies and

these attributes are not correctly configured.

Details:

If an attacker were by some means able to acquire a session token (for example, by exploiting a cross site scripting

vulnerability or by sniffing an unencrypted session), then he/she could use this cookie to hijack a valid session.

The following is a list of the attributes that can be set for each cookie and what they mean.

• Secure - This attribute tells the browser to only send the cookie if the request is being sent over a secure channel

such as HTTPS. This will help protect the cookie from being passed over unencrypted requests. If the application can

be accessed over both HTTP and HTTPS, then there is the potential that the cookie can be sent in clear text.

• Http Only - This attribute is used to help prevent attacks such as cross-site scripting, since it does not allow the

cookie to be accessed via a client side script such as JavaScript. Note that not all browsers support this functionality.

• Domain - This attribute is used to compare against the domain of the server in which the URL is being requested. If

the domain matches or if it is a sub-domain, then the path attribute will be checked next.

Reference:

https://www.owasp.org/index.php/SecureFlag

https://www.owasp.org/index.php/Httponly

Recommendation:

By the framework cookies marked as httpOnly cannot be accessed from JavaScript and a Major benefit of using these

flags are that they stop stealing through XSS vulnerabilities. The cookie cannot be accessed through client side script

if the httponly flag is set. The purpose of the secure flag is to prevent cookies from being observed by unauthorized

parties due to the transmission of a the cookie in clear text. A Secure cookie is a file that is stored on a user’s hard

drive. It is used for transmitting http or https over the internet where https is a secure protocol and provides a secure

transmission of data over your internet connection.

Page 53 of 89

http://www.owasp.org/index.php/
http://www.owasp.org/index.php/

Example

Proof of concept:

Page 54 of 89

Example

Risk : Medium Status: Pass Reference ID: 18

Vulnerability Name:

Testing for Exposed Session Variables

Description:

The Session Tokens (Cookie, SessionID, Hidden Field), if exposed, will usually enable an attacker to impersonate a

victim and access the application illegitimately. As such, it is important that they are protected from eavesdropping

at all times – particularly whilst in transit between the Client browser and the application servers.

Details:

The information here relates to how transport security applies to the transfer of sensitive Session ID data rather

than data in general, and may be stricter than the caching and transport policies applied to the data served by the

site. Using a personal proxy, it is possible to ascertain the following about each request and response:

Protocol used (e.g., HTTP vs. HTTPS)

HTTP Headers

Message Body (e.g., POST or page content)

Each time Session ID data is passed between the client and the server, the protocol, cache, and privacy directives

and body should be examined. Transport security here refers to Session IDs passed in GET or POST requests,

message bodies, or other means over valid HTTP requests.

Reference:

http://www.ietf.org/rfc/rfc2965.txt

http://www.ietf.org/rfc/rfc2616.txt

Recommendation:

The interaction between the Client and Application should be tested at least against the following criteria.

• How are Session IDs transferred? e.g., GET, POST, Form Field (including hidden fields)

• Are Session IDs always sent over encrypted transport by default?

• Is it possible to manipulate the application to send Session IDs unencrypted? e.g., by changing HTTP to HTTPS?

• What cache-control directives are applied to requests/responses passing Session IDs?

• Are these directives always present? If not, where are the exceptions?

• Are GET requests incorporating the Session ID used?

• If POST is used, can it be interchanged with GET?

Page 55 of 89

http://www.ietf.org/rfc/rfc2965.txt
http://www.ietf.org/rfc/rfc2616.txt

Example

Proof of concept:

Page 56 of 89

Example

Risk : Medium Status: Pass Reference ID: 19

Vulnerability Name:

Testing for incubated vulnerabilities

Description:

It is possible for an attacker to plant a piece of data that will later be retrieved by an unsuspecting user or other

component of the system, exploiting some vulnerability.

Details:

Incubated vulnerability is also often refered to as persistent attacks, incubated testing is a complex testing method

that needs more than one data validation vulnerability to work. This section describes a set of examples to test an

Incubated Vulnerability. This type of asynchronous attack covers a great spectrum of attack vectors, among them

the following:

• File upload components in a web application

• Cross-site scripting issues in public forums post

• SQL/XPATH Injection allowing the attacker to upload content to a database

• Misconfigured servers allowing installation of Java packages or similar web site components

Reference:

http://www.cert.org/advisories/CA-2000-02.html

http://lists.grok.org.uk/pipermail/full-disclosure/2006-July/048059.html

http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting

Recommendation:

Incubated vulnerabilities must be prevented by validating all the input fields for all the vulnerabilities. This is always

exploited due to the coding phase. There will be measures taken for all the attacks. But the last preventive measure

could make the first prevention invalid. This must be taken care for better security.

Page 57 of 89

http://www.cert.org/advisories/CA-2000-02.html
http://lists.grok.org.uk/pipermail/full-disclosure/2006-July/048059.html
http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting
http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting

Example

Proof of concept:

Page 58 of 89

Example

Page 59 of 89

Example

Page 60 of 89

Example

Page 61 of 89

Example

Page 62 of 89

Example

Page 63 of 89

Example

Page 64 of 89

Example

Risk : Low Status: Pass Reference ID: 20

Vulnerability Name:

Spiders, Robots and Crawlers

Description:

It is possible to get information about sensitive web pages; the developers don’t want the spiders to crawl,

through Web crawlers, spiders and robots analysis.

Details:

Web spiders/robots/crawlers retrieve a web page and then recursively traverse hyperlinks to retrieve further

web content. Their accepted behavior is specified by the ‘Robots Exclusion Protocol’ of the ‘robots.txt’ file in

the web root directory.

As an example, the robots.txt file will be like,

User-agent: *

Allow: /allowed_folder/

Disallow: /restricted_folder/

The User-Agent directive refers to the specific web spider/robot/crawler. The Disallow directive specifies

which resources are prohibited by spiders/robots/crawlers. Web spiders/robots/crawlers can intentionally

ignore the Disallow directives specified in a robots.txt file. But the attackers can intentionally view the

sensitive folders and get information about the application.

Reference:

http://www.motive.co.nz/glossary/spider.php

http://en.wikipedia.org/wiki/Web_crawler

http://en.wikipedia.org/wiki/Robots_exclusion_standard

http://www.robotstxt.org/

http://tools.seobook.com/robots-txt/

Recommendation:

The sensitive folders which are listed in the robots.txt should not be accessed in public (i.e. available to

anyone in the world with internet access). This can be done using .htaccess file. These files provide a way to

make configuration changes on a per-directory basis. htaccess file can be configured such that, no public user

is allowed to view the content. To be more convenient, it can be configured that a certain users or IPs alone

can access those files. Now a days most of the servers are engineered to protect access for htaccess and

htpasswd files from public.

Proof of Concept:

Page 65 of 89

http://www.motive.co.nz/glossary/spider.php
http://en.wikipedia.org/wiki/Web_crawler
http://en.wikipedia.org/wiki/Robots_exclusion_standard
http://en.wikipedia.org/wiki/Robots_exclusion_standard
http://www.robotstxt.org/
http://www.robotstxt.org/
http://tools.seobook.com/robots-txt/
http://tools.seobook.com/robots-txt/

Example

Risk : Low Status: Failed Reference ID: 21

Vulnerability Name:

Testing for default credentials

Description:

Use of default username and password or forgetting to remove the default credentials could make compromise of

the entire system.

Details:

Nowadays web applications often make use of popular open source or commercial software that can be installed

on servers with minimal configuration or customization by the server administrator. Moreover, a lot of hardware

appliances (i.e. network routers and database servers), offer web-based configuration or administrative interfaces.

Often these applications, once installed, are not properly configured and the default credentials provided for

initial authentication and configuration are never changed. These default credentials are well known by

penetration testers and, unfortunately, also by malicious attackers, who can use them to gain access to various

types of applications. Furthermore, in many situations, when a new account is created on an application, a default

password (with some standard characteristics) is generated. If this password is predictable and the user does not

change it on the first access, this can lead an attacker to gain unauthorized access to the application. The following

usernames - "admin", "administrator", "root", "system", "guest", "operator", "super" or "superuser" are popular

among system administrators and are often used. Additionally the other usernames frequently used are "test",

"test1", "test123", "testing123", "testing". The vulnerable passwords are "password", "pass123", "password123",

"admin", or "guest" with the above accounts or any other enumerated accounts.

Reference:

http://www.totaldefense.com/blogs/security-advisor/2012/01/24/password-best-practices.aspx

http://security.stackexchange.com/questions/7982/creating-username-policies-and-best-practices

http://serverfault.com/questions/348912/best-practices-in-username-standards-avoiding-problems

http://community.spiceworks.com/topic/90229-username-best-practices

Recommendation:

Use of the above specified username and password should not be practiced. Especially the above username and

password combination should not be done. Use of names like the Personal Identifiable Information like name,

company name, firend’s name, birthday, age, pet’s name. Password must not be used as a full dictionary word.

Password must be a combination of alpha numerical, at least.

Page 66 of 89

http://www.totaldefense.com/blogs/security-advisor/2012/01/24/password-best-practices.aspx
http://security.stackexchange.com/questions/7982/creating-username-policies-and-best-practices
http://serverfault.com/questions/348912/best-practices-in-username-standards-avoiding-problems
http://serverfault.com/questions/348912/best-practices-in-username-standards-avoiding-problems
http://community.spiceworks.com/topic/90229-username-best-practices
http://community.spiceworks.com/topic/90229-username-best-practices

Example

Page 67 of 89

Proof of concept:

Example

Page 68 of 89

Risk : Low Status: Pass Reference ID: 22

Vulnerability Name:

Testing for bypassing authentication schema

Description:

It is possible to bypass authentication using some techniques which should not be done for secured login.

Details:

While most applications require authentication for gaining access to private information or to execute tasks, not

every authentication method is able to provide adequate security. Negligence, ignorance, or simple

understatement of security threats often result in authentication schemes that can be bypassed by simply

skipping the login page and directly calling an internal page that is supposed to be accessed only after

authentication has been performed. In addition to this, it is often possible to bypass authentication measures by

tampering with requests and tricking the application into thinking that we're already authenticated. This can be

accomplished either by modifying the given URL parameter or by manipulating the form or by counterfeiting

sessions.

There are several methods to bypass the authentication schema in use by a web application:

• Direct page request (forced browsing)

• Parameter Modification

• Session ID Prediction

• SQL Injection

Reference:

http://googlecode.blogspot.in/2011/03/best-practices-for-user-authentication.html

http://stackoverflow.com/questions/1624846/php-best-practices-for-user-authentication-and-password-

security

http://stackoverflow.com/questions/5876859/php-best-practice-on-user-authentication-for-a-website

Recommendation:

It is always recommended to use valid session for authentication. Also it is very important than anything to use a

session generation which is very hard to predict. Don’t forget to destroy the user’s inpersistent session if there is

an inactivity/logout/close activity detected. Don’t disclose the token which is used to activate session like

‘login=failure’. Then it is obvious for the attacker to manipulate the token to ‘login=success’ to validate the login

attempt.

Proof of concept:

S.No Not Authorised pages

1 Bank - Alliance Bank

2 Point - View Point Maintenance

3 Refund - Search transaction, view transaction, refund transaction report

http://googlecode.blogspot.in/2011/03/best-practices-for-user-authentication.html
http://stackoverflow.com/questions/1624846/php-best-practices-for-user-authentication-and-password-
http://stackoverflow.com/questions/5876859/php-best-practice-on-user-authentication-for-a-website

Example

Risk : Low Status: Pass Reference ID: 23

Vulnerability Name:

Testing Directory traversal/file include

Description:

It is possible to traverse directory and files without hyperlinks.

Details:

Many web applications use and manage files as part of their daily operation. Using input validation methods that

have not been well designed or deployed, an aggressor could exploit the system in order to read/write files that

are not intended to be accessible. In particular situations, it could be possible to execute arbitrary code or system

commands. A Path Traversal attack aims to access files and directories that are stored outside the web root

folder. By browsing the application, the attacker looks for absolute links to files stored on the web server. By

manipulating variables that reference files with “dot-dot-slash (../)” sequences and its variations, it may be

possible to access arbitrary files and directories stored on file system, including application source code,

configuration and critical system files, limited by system operational access control. The attacker uses “../”

sequences to move up to root directory, thus permitting navigation through the file system. This attack is also

known as “dot-dot-slash”, “directory traversal”, “directory climbing” and “backtracking”.

Reference:

http://en.wikipedia.org/wiki/Directory_traversal_attack

https://www.owasp.org/index.php/Path_Traversal

http://www.acunetix.com/websitesecurity/directory-traversal/

Recommendation:

• Use the tighest possible permissions when developing and deploying web applications

• Remove all “Everyone:Full Control” ACLs on Windows, and all mode 777 (world writeable directories) or mode

666 files (world writeable files) on Unix systems

• Strongly consider removing “Guest”, “everyone,” and world readable permissions wherever possible

• Use robots.txt – this will prevent most search engines looking any further than what you have in mind, but be

aware that attackers can view the contents of this directory and fuzz it for content, as well.

• Use a “garbage collector” to delete old temporary files, either at the end of a session or within a timeout

period, such as 20 minutes.

• If deployed under Unix-like operating systems, use chroot jails to isolate the application from the primary

operating system. On Windows, use the inbuilt ACL support to prevent the IIS users from retrieving or overwriting

the files directly.

• Rename include files to be normal extension (such as foo.inc ?foo.jsp or foo.aspx).

• Map all files that need to remain, such as .xml or .cfg to an error handler or a renderer that will not disclose the

file contents. This may need to be done in both the web application framework’s configuration area or the web

server’s configuration.

Page 69 of 89

http://en.wikipedia.org/wiki/Directory_traversal_attack
http://www.owasp.org/index.php/
http://www.acunetix.com/websitesecurity/directory-traversal/
http://www.acunetix.com/websitesecurity/directory-traversal/

Example

Proof of concept:

Page 70 of 89

Example

Risk : Informational Status: Pass Reference ID: 24

Vulnerability Name:

Analysis of Error Codes

Description:

Error codes can disclose information about the application and its version which may be vulnerable or lead to

future vulnerabilities.

Details:

It's possible to cause these errors to be displayed by using a particular request, either specially crafted with

tools or created manually. These codes are very useful to attackers during their activities in attack because

they reveal a lot of information about databases, bugs, and other technological components directly linked

with web applications. Within this section we'll analyze the more common codes (error messages) and bring

into focus the steps of vulnerability assessment.

Reference:

https://www.owasp.org/index.php/Information_Leakage

http://projects.webappsec.org/w/page/13246936/Information%20Leakage

http://www.thesitewizard.com/archive/custom404.shtml

http://wiki.dreamhost.com/Creating_custom_error_pages

http://kb.mediatemple.net/questions/8/Creating+custom+error+pages#gs

http://techtalk.virendrachandak.com/404-error-page-best-practices/

http://www.flintstudio.com/blog/6-best-practices-when-designing-developing-404-error-pages/

http://support.microsoft.com/kb/834452

Recommendation:

To create a custom error page for your account, please login to cPanel and click Error Pages, under Advanced.

Select the domain or subdomain you want and click the page you want to edit. Insert your own custom page

code (in HTML or SHTML). The changes will be applied after you click Save. Add error code to your .htaccess file

in the root directory.

For Example:

ErrorDocument 403 /403.shtml

ErrorDocument 404 /404.shtml

ErrorDocument 500 /500.shtml

Page 71 of 89

http://www.owasp.org/index.php/
http://projects.webappsec.org/w/page/13246936/Information%20Leakage
http://www.thesitewizard.com/archive/custom404.shtml
http://www.thesitewizard.com/archive/custom404.shtml
http://wiki.dreamhost.com/Creating_custom_error_pages
http://wiki.dreamhost.com/Creating_custom_error_pages
http://kb.mediatemple.net/questions/8/Creating+custom+error+pages#gs
http://kb.mediatemple.net/questions/8/Creating+custom+error+pages#gs
http://techtalk.virendrachandak.com/404-error-page-best-practices/
http://techtalk.virendrachandak.com/404-error-page-best-practices/
http://www.flintstudio.com/blog/6-best-practices-when-designing-developing-404-error-pages/
http://www.flintstudio.com/blog/6-best-practices-when-designing-developing-404-error-pages/
http://support.microsoft.com/kb/834452
http://support.microsoft.com/kb/834452

Example

Proof of concept:

Page 72 of 89

Example

Page 73 of 89

Example

Risk : Informational Status: Pass Reference ID: 25

Vulnerability Name:

Testing for Infrastructure Configuration Management Testing

weakness

Description:

It is found that the infrastructure configuration is not managed properly and is exposed to various types of exploit.

Details:

Proper configuration management of the web server infrastructure is very important in order to preserve the security

of the application itself. If elements such as the web server software, the back-end database servers, or the

authentication servers are not properly reviewed and secured, they might introduce undesired risks or introduce new

vulnerabilities that might compromise the application itself.

The different elements that make up the infrastructure need are analyzed in order to understand how they interact

with a web application and how they affect its security. All the elements of the infrastructure are reviewed in order to

make sure that they don’t hold any known vulnerabilities. A review is made of the administrative tools used to

maintain all the different elements.

The authentication systems, if any, are reviewed in order to assure that they serve the needs of the application and

that they cannot be manipulated by external users to leverage access. Lists of ports which are used by the server are

analyzed.

In small setups, such as a simple CGI-based application, a single server might be used that runs the web server which

executes the C, Perl, or Shell CGIs application, and perhaps also the authentication mechanism. On more complex

setups, such as an online bank system, multiple servers might be involved including: a reverse proxy, a front-end web

server, an application server and a database server or LDAP server

Reference:

http://arstechnica.com/gadgets/2012/11/how-to-set-up-a-safe-and-secure-web-server/

http://community.spiceworks.com/topic/154956-what-is-the-best-way-to-setup-a-redundant-web-server-and-

database

http://security.stackexchange.com/questions/10004/is-it-worth-to-implement-a-firewall-on-a-web-server-you-

control

http://support.microsoft.com/kb/309814

Recommendation:

Each of these servers will be used for different purposes and might be even be divided in different networks with

firewalling devices between them, creating different DMZs so that access to the web server will not grant a remote

user access to the authentication mechanism itself, and so that compromises of the different elements of the

architecture can be isolated in a way such that they will not compromise the whole architecture. A list of defined

ports which are required for the application should be maintained and kept under change control.

Page 74 of 89

http://arstechnica.com/gadgets/2012/11/how-to-set-up-a-safe-and-secure-web-server/
http://community.spiceworks.com/topic/154956-what-is-the-best-way-to-setup-a-redundant-web-server-and-
http://community.spiceworks.com/topic/154956-what-is-the-best-way-to-setup-a-redundant-web-server-and-
http://security.stackexchange.com/questions/10004/is-it-worth-to-implement-a-firewall-on-a-web-server-you-
http://support.microsoft.com/kb/309814

Example

Page 75 of 89

Vulnerability Name:

Infrastructure and Application Admin Interfaces

Description:

Disclosure of admin interface allows the attacker to try brute force which results in gaining access of the entire

application.

Details:

Administrator interfaces may be present in the application or on the application server to allow certain users to

undertake privileged activities on the site. An application may require an administrator interface to enable a

privileged user to access functionality that may make changes to how the site functions. Such changes may include:

- user account provisioning

- site design and layout

- data manipulation

- configuration changes

In many instances, such interfaces are usually implemented with little thought of how to separate them from the

normal users of the site. Attackers aim at discovering these administrator interfaces and accessing functionality

intended for the privileged users.

Once an administrative interface has been discovered, a combination of the some techniques may be used to

attempt in bypassing authentication. If this fails, the tester may wish to attempt a brute force attack.

Reference:

http://docs.geoserver.org/latest/en/user/gettingstarted/web-admin-quickstart/index.html

http://getsymphony.com/learn/concepts/view/admin-interface/

http://forum.joomla.org/viewtopic.php?p=919504

http://drupal.org/node/105260

Recommendation:

Renaming the application admin interface for a different name rather than usual names like admin, owner, user,

author etc., In content management systems like Joomla, Drupal, Wordpress, the admin previlage can be easily

identified. It is better to rename those interfaces manually. Even though it can be found by some advanced

methods and brute force is possible. In such an instance the developers should be aware of the potential for

administrative account lockout. Emailing after a particular account with reset password is considered as industry’s

best practice.

Risk : Informational Status: Pass Reference ID: 26

http://docs.geoserver.org/latest/en/user/gettingstarted/web-admin-quickstart/index.html
http://getsymphony.com/learn/concepts/view/admin-interface/
http://forum.joomla.org/viewtopic.php
http://forum.joomla.org/viewtopic.php
http://drupal.org/node/105260
http://drupal.org/node/105260

Example

Risk : Informational Status: Pass Reference ID: 27

Vulnerability Name:

Testing for Bad HTTP Methods

Description:

HTTP methods can be used for gathering information about the web server due to misconfiguration in the

server.

Details:

HTTP offers a number of methods that can be used to perform actions on the web server. Many of these

methods are designed to aid developers in deploying and testing HTTP applications. These HTTP methods can be

used for nefarious purposes if the web server is misconfigured. Additionally, Cross Site Tracing (XST), a form of

cross site scripting using the server's HTTP TRACE method is possible.

GET and POST are by far the most common methods that are used to access information provided by a web

server, the Hypertext Transfer Protocol (HTTP) allows several other (and somewhat less known) methods. HEAD,

GET, POST, PUT, DELETE, TRACE, OPTIONS, CONNECT.

The OPTIONS HTTP method provides some way to figure out which HTTP methods are supported by the web

server. TRACE method can be used for performing XST attack. HTTP offers a number of methods that can be

used to perform actions on the web server. Many of these methods are designed to aid developers in deploying

and testing HTTP applications. These HTTP methods can be used for nefarious purposes if the web server is

misconfigured. Additionally, Cross Site Tracing (XST), a form of cross site scripting using the server's HTTP TRACE

method is possible.

GET and POST are by far the most common methods that are used to access information provided by a web

server, the Hypertext Transfer Protocol (HTTP) allows several other (and somewhat less known) methods. HEAD,

GET, POST, PUT, DELETE, TRACE, OPTIONS, CONNECT

The OPTIONS HTTP method provides some way to figure out which HTTP methods are supported by the web

server. TRACE method can be used for performing XST attack. All the HTTP methods can be used as per their

function.

Reference:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

http://www.httpwatch.com/httpgallery/methods/

http://annevankesteren.nl/2007/10/http-methods

http://www-01.ibm.com/support/docview.wss?uid=swg21201202

Recommendation:

Disable the HTTP methods which are not used

Page 76 of 89

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.httpwatch.com/httpgallery/methods/
http://annevankesteren.nl/2007/10/http-methods
http://www-01.ibm.com/support/docview.wss

Example

Proof of concept:

The following HTTP methods are allowed in this website

S.No Allowed Methods

1 OPTIONS

2 TRACE

3 GET

4 HEAD

5 POST

Page 77 of 89

Example

Risk : Informational Status: Pass Reference ID: 28

Vulnerability Name:

Testing for Browser cache weakness

Description:

Browser cache weakness can cause the disclosure of browser saved files which may contain the user credentials

Details:

The application must automatically logs out a user when that user has been idle for a certain amount of time, and

that no sensitive data remains stored in the browser cache. If actions like logout, page redirect, idle session are not

properly carried out, an attacker could replay these session tokens in order to “resurrect” the session of a legitimate

user and impersonate him/her (this attack is usually known as 'cookie replay'). Of course, a mitigating factor is that

the attacker needs to be able to access those tokens (which are stored on the victim's PC), but, in a variety of cases,

this may not be impossible or particularly difficult. The most common scenario for this kind of attack is a public

computer that is used to access some private information (e.g., webmail, online bank account): when the user has

finished using the application and logs out, if the logout process is not properly enforced, the following user could

access the same account, for instance, by simply pressing the “back” button of the browser. Another scenario can

result from Cross Site Scripting vulnerability (XSS) or a connection that is not 100% protected by SSL: a flawed logout

function would make stolen cookies useful for a much longer time, making life for the attacker much easier. The

third test of this chapter is aimed to check that the application prevents the browser to cache sensitive data, which

again would pose a danger to a user accessing the application from a public computer.

Recommendation:

Logging out from an application obviously does not clear the browser cache of any sensitive information that might

have been stored. Therefore, another test that is to be performed is to check that our application does not leak any

critical data into the browser cache. The logout function must effectively destroy all session token, or at least

renders them unusable. The server must perform proper checks on the session state, disallowing an attacker to

replay some previous token. A timeout must enforce and properly checked by the server. If the server uses an

expiration time that is read from a session token that is sent by the client, the token must be cryptographically

protected

Page 78 of 89

Example

Risk : Informational Status: Pass Reference ID: 29

Vulnerability Name:

Testing for CAPTCHA

Description:

CAPTCHA ("Completely Automated Public Turing test to tell Computers and Humans Apart") is a type of challenge-

response test used by many web applications to ensure that the response is not generated by a computer. CAPTCHA

implementations are often vulnerable to various kinds of attacks even if the generated CAPTCHA is unbreakable.

Details:

Although CAPTCHA is not an authentication control, its use can be very efficient against:

• enumeration attacks (login, registration or password reset forms are often vulnerable to enumeration attacks -

without CAPTCHA the attacker can gain valid usernames, phone numbers or any other sensitive information in a

short time)

• automated sending of many GET/POST requests in a short time where it is undesirable (e.g., SMS/MMS/email

flooding), CAPTCHA provides a rate limiting function

• automated creation/using of the account that should be used only by humans (e.g., creating webmail accounts,

stop spamming)

• automated posting to blogs, forums and wikis, whether as a result of commercial promotion, or harassment and

vandalism

• any automated attacks that massively gain or misuse sensitive information from the application

These vulnerabilities are quite common in many CAPTCHA implementations:

generated image CAPTCHA is weak, this can be identified (without any complex computer recognition systems) only

by a simple comparison with already broken CAPTCHAs

• generated CAPTCHA questions have a very limited set of possible answers

• the value of decoded CAPTCHA is sent by the client (as a GET parameter or as a hidden field of POST form). This

value is often:

• encrypted by simple algorithm and can be easily decrypted by observing of multiple decoded CAPTCHA values

• hashed by a weak hash function (e.g., MD5) that can be broken using a rainbow table

• possibility of replay attacks

Reference:

http://www.captcha.net/

http://securesoftware.blogspot.in/2007/11/captcha-placebo-security-control-for.html

http://www.cs.sfu.ca/~mori/research/gimpy/

http://www.puremango.co.uk/2005/11/breaking_captcha_115/

Recommendation:

Secured CAPTCHAs like google’sreCAPTCHA API can be used which are trustworthy. It contains a large number of

combinations. However CAPTCHAs are used OCR(Optical Character Recognition) is used to break CAPTCHAs by

reading the characters in the screen. This can be avoided using 3D CAPTCHA and Intelligent CAPTCHA. There are

advanced CAPTCHAs which allows you to draw an image using mouse to authenticate.

Page 79 of 89

http://www.captcha.net/
http://securesoftware.blogspot.in/2007/11/captcha-placebo-security-control-for.html
http://www.cs.sfu.ca/~mori/research/gimpy/
http://www.cs.sfu.ca/~mori/research/gimpy/
http://www.puremango.co.uk/2005/11/breaking_captcha_115/
http://www.puremango.co.uk/2005/11/breaking_captcha_115/

Example

Risk : Informational Status: Pass Reference ID: 30

Vulnerability Name:

Testing for Session Fixation

Description:

When an application does not renew its session cookie(s) after a successful user authentication, it could be possible

to find session fixation vulnerability and force a user to utilize a cookie known by the attacker. In that case, an

attacker could steal the user session (session hijacking).

Details:

Session fixation vulnerabilities occur when:

• A web application authenticates a user without first invalidating the existing session ID, thereby continuing to use

the session ID already associated with the user.

• An attacker is able to force a known session ID on a user so that, once the user authenticates, the attacker has

access to the authenticated session.

• In the generic exploit of session fixation vulnerabilities, an attacker creates a new session on a web application and

records the associated session identifier. The attacker then causes the victim to authenticate against the server using

the same session identifier, giving the attacker access to the user's account through the active session.

• Furthermore, the issue described above is problematic for sites which issue a session identifier over HTTP and then

redirect the user to a HTTPS login form. If the session identifier is not reissued upon authentication, the identifier may

be eavesdropped and may be used by an attacker to hijack the session.

Reference:

http://shiflett.org/articles/session-fixation

http://www.acrossecurity.com/papers/session_fixation.pdf

https://www.owasp.org/index.php/Session_Fixation

http://vulncat.fortifysoftware.com/

http://www.cookiecentral.com/faq/#3.3

http://en.wikipedia.org/wiki/Session_fixation

Recommendation:

Some platforms make it easy to protect against Session Fixation, while others make it a lot more difficult. In most

cases, simply discarding any existing session is sufficient to force the framework to issue a new sessionid cookie, with

a new value. Unfortunately, some platforms, notably Microsoft ASP, do not generate new values for sessionid

cookies, but rather just associate the existing value with a new session. This guarantees that almost all ASP apps will

be vulnerable to session fixation, unless they have taken specific measures to protect against it. The idea is that, since

ASP prohibits write access to the ASPSESSIONIDxxxxx cookie, and will not allow us to change it in any way, we have to

use an additional cookie that we do have control over to detect any tampering. So, we set a cookie in the user's

browser to a random value, and set a session variable to the same value. If the session variable and the cookie value

ever don't match, then we have a potential fixation attack, and should invalidate the session, and force the user to log

on again.

Page 80 of 89

http://shiflett.org/articles/session-fixation
http://www.acrossecurity.com/papers/session_fixation.pdf
http://www.owasp.org/index.php/
http://vulncat.fortifysoftware.com/
http://vulncat.fortifysoftware.com/
http://www.cookiecentral.com/faq/#3.3
http://www.cookiecentral.com/faq/#3.3
http://en.wikipedia.org/wiki/Session_fixation
http://en.wikipedia.org/wiki/Session_fixation

Example

Risk : Informational Status: Pass Reference ID: 31

Vulnerability Name:

Testing for Privilege Escalation

Description:

It is possible to escalate privilege due to improper authorization.

Details:

Privilege escalation occurs when a user gets access to more resources or functionality than they are normally allowed,

and such elevation/changes should have been prevented by the application. This is usually caused by a flaw in the

application. The result is that the application performs actions with more privileges than those intended by the

developer or system administrator. The degree of escalation depends on which privileges the attacker is authorized

to possess, and which privileges can be obtained in a successful exploit. For example, a programming error that allows

a user to gain extra privilege after successful authentication limits the degree of escalation, because the user is

already authorized to hold some privilege. Likewise, a remote attacker gaining superuser privilege without any

authentication presents a greater degree of escalation. Usually, we refer to vertical escalation when it is possible to

access resources granted to more privileged accounts (e.g., acquiring administrative privileges for the application),

and to horizontal escalation when it is possible to access resources granted to a similarly configured account (e.g., in

an online banking application, accessing information related to a different user).

Reference:

http://en.wikipedia.org/wiki/Privilege_escalation

http://www.techrepublic.com/blog/security/mitigating-the-privilege-escalation-threat/3445

http://docs.oracle.com/cd/E19253-01/816-4557/privref-20/index.html

http://searchsecurity.techtarget.com/definition/privilege-escalation-attack

http://www.brighthub.com/computing/smb-security/articles/39675.aspx

Recommendation:

Validate session for user with admin privilege, super user privilege and normal user privilege each in different

manner.

Page 81 of 89

http://en.wikipedia.org/wiki/Privilege_escalation
http://www.techrepublic.com/blog/security/mitigating-the-privilege-escalation-threat/3445
http://docs.oracle.com/cd/E19253-01/816-4557/privref-20/index.html
http://docs.oracle.com/cd/E19253-01/816-4557/privref-20/index.html
http://searchsecurity.techtarget.com/definition/privilege-escalation-attack
http://searchsecurity.techtarget.com/definition/privilege-escalation-attack
http://www.brighthub.com/computing/smb-security/articles/39675.aspx
http://www.brighthub.com/computing/smb-security/articles/39675.aspx

Example

Risk : Informational Status: Pass Reference ID: 32

Vulnerability Name:

Testing for LDAP Injection

Description:

LDAP injection can be performed and it is possible to retrieve username & password of users

Details:

LDAP is an acronym for Lightweight Directory Access Protocol. LDAP is a protocol to store information about users,

hosts, and many other objects. LDAP injection is a server side attack, which could allow sensitive information about

users and hosts represented in an LDAP structure to be disclosed, modified, or inserted. This is done by manipulating

input parameters afterwards passed to internal search, add, and modify functions. A web application could use LDAP

in order to let users authenticate or search other users' information inside a corporate structure. The goal of LDAP

injection attacks is to inject LDAP search filters meta characters in a query which will be executed by the application.

A successful exploitation of LDAP injection vulnerability could allow the attacker to:

• Access unauthorized content

• Evade application restrictions

• Gather unauthorized information

• Add or modify Objects inside LDAP tree structure.

Reference:

http://www.networkdls.com/articles/ldapinjection.pdf

http://www.redbooks.ibm.com/redbooks/SG244986/wwhelp/wwhimpl/js/html/wwhelp.htm

Recommendation:

The escape sequence for properly using user supplied input into LDAP differs depending on if the user input is used to

create the DN (Distinguished Name) or used as part of the search filter. The listing below shows the character that

needs to be escape and the appropriate escape method for each case.

Used in DN - Requires \ escape Used in Filter- Requires {\ASCII} escape

& ({\28}

!) {\29}

| \ {\5c}

= * {\2a}

< / {\2f}

> NUL {\0}

,

+

-

"

'

;

Page 82 of 89

http://www.networkdls.com/articles/ldapinjection.pdf
http://www.redbooks.ibm.com/redbooks/SG244986/wwhelp/wwhimpl/js/html/wwhelp.htm

Example

Risk : Informational Status: Pass Reference ID: 33

Vulnerability Name:

Testing for HTTP Splitting/Smuggling

Description:

It is possible to attacks that leverage specific features of the HTTP protocol, either by exploiting weaknesses of the

web application or peculiarities in the way different agents interpret HTTP messages.

Details:

HTTP Smuggling or HTTP response smuggling is a technique to "smuggle" 2 HTTP responses from a server to a

client, through an intermediary HTTP device that expects (or allows) a single response from the server. HTTP

Splitting (or HTTP Response splitting) is method of attacking web applications by exploiting poor input validation

and by taking advantage of the HTTP protocol. We will analyze two different attacks that target specific HTTP

headers: HTTP splitting and HTTP smuggling. The first attack exploits a lack of input sanitization which allows an

intruder to insert CR and LF characters into the headers of the application response and to 'split' that answer into

two different HTTP messages. The goal of the attack can vary from a cache poisoning to cross site scripting. In the

second attack, the attacker exploits the fact that some specially crafted HTTP messages can be parsed and

interpreted in different ways depending on the agent that receives them. HTTP smuggling requires some level of

knowledge about the different agents that are handling the HTTP messages (web server, proxy, firewall) and

therefore will be included only in the Gray Box testing section.

Reference:

https://www.owasp.org/images/1/1a/OWASPAppSecEU2006_HTTPMessageSplittingSmugglingEtc.ppt

http://www.securityfocus.com/archive/1/411418

http://packetstormsecurity.com/papers/general/whitepaper_httpresponse.pdf

http://www-142.ibm.com/software/products/us/en/subcategory/SWI10

Recommendation:

Many applications do not plan input validation, and leave it up to the individual developers. This is a recipe for

disaster, as different developers will certainly all choose a different approach, and many will simply leave it out in

the pursuit of more interesting development. Applications should NOT use as variables any user personal

information (user name, password, home address, etc.). Highly protected applications should not implement

mechanisms that make automated requests to prevent session timeouts. Highly protected applications should not

implement "remember me" functionality. Highly protected applications should not use URL rewriting to maintain

state when cookies are turned off on the client. Applications should NOT use session identifiers for encrypted

HTTPS transport that have once been used over HTTP.

Page 83 of 89

http://www.owasp.org/images/1/1a/OWASPAppSecEU2006_HTTPMessageSplittingSmugglingEtc.ppt
http://www.securityfocus.com/archive/1/411418
http://packetstormsecurity.com/papers/general/whitepaper_httpresponse.pdf
http://packetstormsecurity.com/papers/general/whitepaper_httpresponse.pdf
http://www-142.ibm.com/software/products/us/en/subcategory/SWI10
http://www-142.ibm.com/software/products/us/en/subcategory/SWI10

Example

Risk : Informational Status: Pass Reference ID: 34

Vulnerability Name:

Testing for SQL Wildcard Attacks

Description:

SQL wildcard attack results in the unavailability of the service for legitimate user.

Details:

SQL Wildcard Attacks are about forcing the underlying database to carry out CPU-intensive queries by using

several wildcards. This vulnerability generally exists in search functionalities of web applications. Successful

exploitation of this attack will cause Denial of Service. SQL Wildcard attacks might affect all database back-ends

but mainly affect SQL Server because the MS SQL Server LIKE operator supports extra wildcards such as

"[]","[^]","_" and "%". In a typical web application, if you were to enter "foo" into the search box, the resulting

SQL query might be:

SELECT * FROM Article WHERE Content LIKE '%foo%' In a decent database with 1-100000 records the query above

will take less than a second. The following query, in the very same database, will take about 6 seconds with only

2600 records.

SELECT TOP 10 * FROM Article WHERE Content LIKE

'%_[^!_%/%a?F%_D)_(F%)_%([)({}%){()}£$&N%_)$*£()$*R"_)][%](%[x])%a][$*"£$-9]_%'

So, if the tester wanted to tie up the CPU for 6 seconds they would enter the following to the search box:

[^!%/%a?F%_D)_(F%)_%([)({}%){()}£$&N%_)$*£()$*R"_)][%](%[x])%a][$*"£$-9]_

Reference:

http://hax.tor.hu/read/MSSQL_DoS/wildcard_attacks.pdf

http://labs.portcullis.co.uk/application/dos-attacks-using-sql-wildcards/

http://www.zdnet.com/blog/security/dos-attacks-using-sql-wildcards-revealed/1134

Recommendation:

SQL wildcard attacks can be prevented by escaping the wildcards (% and _) when using LIKE statements. SQL can

make the wildcards escape by using ‘[]’.

Page 84 of 89

http://hax.tor.hu/read/MSSQL_DoS/wildcard_attacks.pdf
http://labs.portcullis.co.uk/application/dos-attacks-using-sql-wildcards/
http://www.zdnet.com/blog/security/dos-attacks-using-sql-wildcards-revealed/1134

Example

Risk : Informational Status: Pass Reference ID: 35

Vulnerability Name:

Locking Customer Accounts

Description:

An attacker can lock valid user accounts by repeatedly attempting to log in with a wrong password.

Details:

The first DoS case to consider involves the authentication system of the target application. A common defence to

prevent brute-force discovery of user passwords is to lock an account from use after between three to five failed

attempts to login. This means that even if a legitimate user were to provide their valid password, they would be

unable to log in to the system until their account has been unlocked. This defence mechanism can be turned into a

DoS attack against an application if there is a way to predict valid login accounts.

Reference:

http://www.computerhope.com/jargon/a/accolock.htm

http://www.windowsecurity.com/articles-tutorials/authentication_and_encryption/Implementing-

Troubleshooting-Account-Lockout.html

https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks

Recommendation:

There are pros and cons to locking accounts, to customers being able to choose their own account names, to using

systems such as CAPTCHA, and the like. Each enterprise will need to balance these risks and benefits.

Page 85 of 89

http://www.computerhope.com/jargon/a/accolock.htm
http://www.windowsecurity.com/articles-tutorials/authentication_and_encryption/Implementing-
http://www.owasp.org/index.php/

Example

Risk : Informational Status: Pass Reference ID: 36

Vulnerability Name:

WS Information Gathering

Description:

The WS entry points and the communication schema is found which might be a vulnerability at present or in

future.

Details:

The input fields can be the following three. Any attacks can be initiated from any one of the three application

entry points. They are GET, POST and html tags. The GET and POST methods are used to transfer any information

from one web page to the other. The GET method is usually used to get information from the web page, which will

be seen in the URL. The POST method is usually used to get information from the form to a web page or self. The

main difference between GET and POST is that, GET is visible in the URL and POST is not. However both the GET

and POST can be viewed. This GET and POST can be used to get information about the application entry points.

The third method which is the entry point through analyzing HTML tags. HTML tags like <input>, <select>,

<options> are used to get inputs from the user. So these are attracted by attacker. Also the input tag with hidden

field always contains sensitive information. So these are analyzed to gather information about the application

entry points.

Reference:

http://social.msdn.microsoft.com/Forums/en-US/sharepointdevelopment/thread/75415586-502d-475c-b2ab-

d6df97ae4c17

http://www.w3schools.com/tags/ref_httpmethods.asp

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

http://www.w3.org/2001/tag/doc/whenToUseGet-20040321

Recommendation:

Use GET if the interaction is more like a question (i.e., it is a safe operation such as a query, read operation, or

lookup). Use POST if the interaction is more like an order, or the interaction changes the state of the resource in a

way that the user would perceive (e.g., a subscription to a service), or the user be held accountable for the results

of the interaction. You should never change anything in your database (other than logging information or other

ephemeral data) from a GET request. The issue is that there is various web spidering software, web accelerators,

anti-virus programs, and the like, that will perform a GET request on every URL they find; you would not want

them to delete items automatically when they do so. GET is also vulnerable to cross-site request forgery; if an

attacker makes one of your users click on a link that performs a bad action (for instance, creating a tinyurl that

redirects to a delete URL), then they can trick the user into using their permissions to delete something without

realizing it. Making a field "hidden" has pretty much nothing to do with security, and should be considered a UI

decision. Any "hacker" will read your HTML source anyway. Better to either not show sensitive information at all,

or, if you must, to use SSL (to prevent data interception by network intermediaries) and some combination of login

challenges (to prevent unauthorized access).

Page 86 of 89

http://social.msdn.microsoft.com/Forums/en-US/sharepointdevelopment/thread/75415586-502d-475c-b2ab-
http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3.org/2001/tag/doc/whenToUseGet-20040321
http://www.w3.org/2001/tag/doc/whenToUseGet-20040321

Example

Risk : Informational Status: Pass Reference ID: 37

Vulnerability Name:

WSDL Testing

Description:

Web Service Definition Language (WSDL) discloses most of the information about the working and the data flow of

the application.

Details:

The Web services architecture may require exposing a WSDL file that contains information on the publicly

accessible services and how callers of these services should interact with them (e.g. what parameters they expect

and what types they return). The attacker may find sensitive information located in the WSDL file. The WSDL file is

accessible to a wider audience than intended.

• The WSDL file contains information on the methods/services that should not be publicly accessible or

information about deprecated methods.

• This problem is made more likely due to the WSDL often being automatically generated from the code.

• Information in the WSDL file helps guess names/locations of methods/resources that should not be publicly

accessible.

The WSDL for a service providing information on the best price of a certain item exposes the following method:

float getBestPrice(String ItemID) An attacker might guess that there is a method setBestPrice (String ItemID, float

Price) that is available and invoke that method to try and change the best price of a given item to their advantage.

The attack may succeed if the attacker correctly guesses the name of the method, the method does not have

proper access controls around it and the service itself has the functionality to update the best price of the item.

Reference:

http://www.w3.org/TR/wsdl

http://www.w3schools.com/wsdl/

http://en.wikipedia.org/wiki/Web_Services_Description_Language

Recommendation:

1. Limit access to the WSDL file as much as possible. If services are provided only to a limited number of entities, it

may be better to provide WSDL privately to each of these entities than to publish WSDL publicly.

2. Make sure that WSDL does not describe methods that should not be publicly accessible. Make sure to protect

service methods that should not be publicly accessible with access controls.

3. Do not use method names in WSDL that might help an adversary guess names of private methods/resources

used by the service.

Page 87 of 89

http://www.w3.org/TR/wsdl
http://www.w3schools.com/wsdl/
http://en.wikipedia.org/wiki/Web_Services_Description_Language

Example

Risk : Informational Status: Pass Reference ID: 38

Vulnerability Name:

Weak XML Structure Testing

Description:

Weak XML structure can even cause DOS threat to the application.

Details:

XML needs to be well-formed to function properly. XML which is not well-formed shall fail when parsed by the XML

parser on the server side. A parser needs to run thorough the entire XML message in a serial manner in order to

assess the XML well-formedness. An XML parser is also very CPU labour intensive. Some attack vectors exploit this

weakness by sending very large or malformed XML messages. Attackers can create XML documents which are

structured in such a way as to create a denial of service attack on the receiving server by tying up memory and CPU

resources. This occurs via overloading the XML parser ,which, as we mentioned, is very CPU-intensive.

For example, elements which contain large numbers of attributes can cause problems with parsers. This category of

attack also includes XML documents which are not well-formed XML, DOM-based parsing can be vulnerable to DoS

due to the fact that the complete message is loaded into memory.

Reference:

http://www.w3schools.com/schema/schema_intro.asp

http://msdn.microsoft.com/en-us/library/ms187508(v=sql.90).aspx

http://www.xfront.com/BestPracticesHomepage.html

Recommendation:

• Define your XML and encoding

• Use a DTD or XSD

• Remember to validate

• Validation isn't always the answer

• XML structure versus attributes

• Use XPath to find information

• You don't always need a parser to extract information

• When to use SAX over DOM parsing

• When to DOM over SAX parsing

• Use a good XML editor

Page 88 of 89

http://www.w3schools.com/schema/schema_intro.asp
http://msdn.microsoft.com/en-us/library/ms187508
http://www.xfront.com/BestPracticesHomepage.html
http://www.xfront.com/BestPracticesHomepage.html

Example

Risk : Informational Status: Pass Reference ID: 39

Vulnerability Name:

XML Content-Level Testing

Description:

Insecure XML allows the attacker to do DoS and Buffer Overflow attack.

Details:

Web Services are designed to be publicly available to provide services to clients using the Internet as the common

communication protocol. These services can be used to leverage legacy assets by exposing their functionality via

SOAP using HTTP. SOAP messages contain method calls with parameters, including textual data and binary

attachments, requesting the host to perform some function - database operations, image processing, document

management, etc. Legacy applications exposed by the service may be vulnerable to malicious input that when

previously limited to a private network was not an issue. In addition, because the server hosting the Web Service

will need to process this data, the host server may be vulnerable if it is unpatched or otherwise unprotected from

malicious content (e.g., plain text passwords, unrestricted file access).

An attacker can craft an XML document (SOAP message) that contains malicious elements in order to compromise

the target system. Testing for proper content validation should be included in the web application-testing plan.

Content-level attacks target the server hosting a web service and any applications that are utilized by the service,

including web servers, databases, application servers, operating systems, etc. Content-level attack vectors include

1) SQL Injection or XPath injection 2) Buffer Overflow and 3) Command Injection.

Reference:

http://www.osvdb.org/

http://support.citrix.com/proddocs/topic/ns-security-10-map/appfw-checks-xml-sql-con.html

http://carnal0wnage.attackresearch.com/2008/12/so-this-has-been-interesting-week.html

Recommendation:

• Define your XML and encoding

• Use a DTD or XSD

• Remember to validate

• Validation isn't always the answer

• XML structure versus attributes

• Use XPath to find information

• You don't always need a parser to extract information

• When to use SAX over DOM parsing

• When to DOM over SAX parsing

• Use a good XML editor

Page 89 of 89

http://www.osvdb.org/
http://support.citrix.com/proddocs/topic/ns-security-10-map/appfw-checks-xml-sql-con.html
http://carnal0wnage.attackresearch.com/2008/12/so-this-has-been-interesting-week.html
http://carnal0wnage.attackresearch.com/2008/12/so-this-has-been-interesting-week.html

