All Posts By


Tessolve strengthened its work in the field of Near Field Communication (NFC) based on hybrid technology

By | News/Press Releases

Tessolve strengthened its work in the field of Near Field Communication (NFC) based on hybrid technology work as the industry transitioned into the new technological world by adding automation process assistance for NFC tags, barcode scanning, and QR Code scan testing for OEMs/Device Vendors. The user-friendly functionality integrated with widely accessible hardware, such as a 3D printer, and cutting-edge cyber technology employing Python, ADB, Ui Automator, and G Code tools offer the highest efficiency. Testing speed, iteration count, and performance are improved by atomizing the NFC tag scanning test. This technology’s functions are limitless and can be used for multiple applications for various devices. Mobile phones, tablets, and enterprise mobility devices benefited from this stress testing solution for considerable cost savings and increased productivity.

Tessolve Participation in NXP Tech Day – Bangalore, Pune, Detroit, Silicon Valley

By | News/Press Releases

Tessolve kicks off the multi-city, multi-country demonstration of its TERA device, a key next Generation NXP technology (S32G274A based SMARC SoM) based on state-of-the-art Application Gateway at NXP Technology Days 2022 in Taj Westend Hotel Bangalore, on August 23, 2022.

Tessolve developed the TERA device to address cutting-edge automotive applications and Industrial gateway in association with NXP and DynamoEdge, its AI partners.

During the event, we had continued interactive visitors at the Tessolve booth throughout the day. Our Embedded team was explaining the spec and use case of the Tessolve TERA platform to our customers and visitors. The team also discussed with our customers their requirements for home automation/ Gateway.

If you missed us in Bangalore, catch us in the Automotive Hub of India, Pune on the 26th Of Aug @ Ritz Carlton, Pune. And if you are following us internationally, fret not and meet us at the upcoming NXP tech day events at Detroit and Silicon Valley San Jose, CA! Visit us and see the latest in Automotive and industrial gateway application at your nearest NXP tech day event in 2022!

Explore here to know more about NXP S32G2 SMARC SoM and Application Gateway:

DVCon India 2022 Conference

By | Events | No Comments

Join us at the DVCon India 2022 conference, scheduled on 5th to 6th September 2022, at Radisson Blu, Marathalli, Bangalore.

The DVCon India 2022 is a live, in-person conference, the 7th edition of the Design and Verification Conference in India planned as the first live event in the VLSI ecosystem in India.

Tessolve is partnering as the platinum sponsor at the upcoming DVCon India 2022 conference. During this world-class technical conference, we would be looking forward to connecting with the folks from different Systems, Automotive and Technology unicorns, IC companies, and start-ups to discuss innovative designs and chip architectures.

More Details
DVCon India 2022 Conference
Booth Number: 4A & 4B
5th to 6th September 2022
Radisson Blu, Marathalli, Bangalore

Five Reasons to Use System on Modules (SoM) in Embedded System Design

By | Blogs, Thought leadership | No Comments

Time is money, and it must never be wasted. This aphorism applies to everything, including embedded system technology. For this reason, System-on-Modules are so popular right now since they provide all the capabilities you need without requiring you to design, locate, and assemble the components yourself. If this is something new for you, don’t worry. At Tessolve, our team of embedded system development experts are here to help you with the essential guide to understanding SoMs.

What is a System on Modules?

Before delving into any other details, let’s start from the beginning. A module system comprises a small package with all the significant elements of an integrated processing system. This includes everything from processor cores, communication configurations, and memory blocks on a small, production-ready Printed Circuit Board (PCB). A System on Modules is a complete CPU architecture in one tiny container. This approach allows SoM to be embedded in end systems ranging from complicated robots to simple home security cameras.

However, a System on Module should not be confused with a System on a Chip (SoC). An SoC includes a series of crucial compute components, all assembled on one chip. On the contrary, an SoM is based on a board and can include multiple components, and an SoC can be one of these. So, one should keep this in mind while choosing what to incorporate into their technologies.

Blade servers initially led to the development of the system on modules. These small servers were developed to conserve energy use and save storage space. The SOM assembly has been designed in the same sleek style as blade servers, and only the elements necessary for operation are all together in one tiny package. However, this does not prevent them from being used in multiple applications, most of which we will discuss in a moment.

Tessolve provides an extremely integrated software and hardware platform developed for quick advancement and marketing time, along with an assortment of resources and tools for ease of maintenance and scalability of design.

Five Reasons to Use System on Modules (SoM) in Embedded System Design

Now that you understand what system on modules is, let’s start discussing why they must be used in embedded systems:

1. Saves time

The primary reason behind the usage of the system on modules for the embedded device is the time-saving aspect. It takes far less time to build a product based on an SoM than to design a complete system from the start. Creating the CPU infrastructure often takes the most effort when it comes to embedded systems. Instead, one can take advantage of an SoM to save time and effort that could be better spent anywhere else. Tessolve provides the best in class, reliable and secure, embedded SOM solution with integrated wireless connectivity.

2. Customization

System on Modules provides a wide range of features and processor speeds in the same packages. This allows businesses to provide the same carrier board with variable speeds. Customers can easily design custom carrier boards that meet all their requirements without individually thinking about the processor and memory. The issue related to complicated custom cables is also eliminated since most businesses will provide pre-wired connectors that match standard cables. With the help of simple process upgrades and downgrades, anyone can create their dream system without spending their entire budget and a lot of time.

3. Simplicity

Another significant reason is the advancement of semiconductor technologies. Designing an embedded system using a SoC or FPGA requires a significant amount of time and care. Since semiconductors are becoming more and more advanced, there is a lot of information and little nuances to consider during the design process. Instead, one can use an SoM and spend the rest of the time focusing on the personality of your product and taking advantage of the complexity.

4. Development cost

A system on module significantly reduces the development cost of developing an embedded system. As we mentioned at the beginning of the article, time is money, and by spending much less time on development work, most of the engineering expense is minimized.

5. Risk at the end of its useful life

The complications related to the end-of-life product based on a flash chipset or an end-of-life CPU are minimized by using a system of modules. The system may be brought back to life with a simple switch without significant carrier board changes. In addition, customers won’t have to worry about spending a lot of money on boards every year since most SoMs have a lifespan of more than five years.

You can obtain reliable SoMs from Tessolve as we also provide evaluation boards for SoM. Tessolve allows faster time to market for customers by offering a seamless shift from development to production and more.

Software and hardware development

Systems on modules can help achieve edge computing and local data processing without latency. This eliminates the requirement for expert hardware knowledge and experience by providing an intuitive design that anyone can apply. In addition, software developers who interfere with vision applications will appreciate the easily configurable sensors provided by SOMs.

Any hardware developer knows that production needs to be completed as quickly as possible, so limited resources should be focused on the highest-impact tasks. A system on modules provides field-programmable gate array (FPGA) performance and flexibility without all the hassle of PCB design and integration. With a powerful and innovative industrial System-on-Modules, integrated security, sophisticated device management tools and systems software, Tessolve’s embedded solutions minimize the expense of ownership and aid propel OEMs to success in the market.

Security cameras

One of the most common applications of SoMs is security cameras. Many system-on-modules provide 4K vision and video processing capabilities, which makes them ideal for such types of applications. These security cameras not only record videos but also use machine learning to categorize and analyze what they see, consistently delivering accurate real-time data.

Wrapping Up

System-on-Modules are the future of embedded systems development. Some of the examples listed above are just a few of hundreds of applications. Especially during the pandemic, home automation is high on people’s priority list, and most of these embedded devices are made with SoM.

Tessolve has its independent SOM Module Family, MAGIK-2 models, depending on the SMARC/Q7 standard, consisting of an entire software suite involving Device Drivers, assistance for different operating systems permitting efficient productization. SoM by Tessolve supports standard Android SDK that can be personalized for product development needs. Our System-on-Modules solutions and services permit customers to initiate their software development before manufacturing and assists in quick marketing.

Head over to Tessolve and check out our SoMs to start building your dream system today! For better assistance from our experienced engineers, email us today

PCB Stackup Design

By | Blogs, Thought leadership | No Comments

As the name implies, stackup refers to the process of collection of copper and insulation layers that form the PCB before finalizing the board design. With the advent of modern technologies, compact electronics are more than a necessity, and therefore PCB layer stacking is crucial in electronics. For compact design for electronics products, designers believe it is necessary to mount PCBs with multi-layer designs and a 3D appearance. Multilayer hardware design helps to: improve the PCB board’s ability to distribute energy properly, eliminate electromagnetic interference, minimize cross-interference, and support signals at high speeds.

Stackup technologies

With the advent of precision manufacturing, Engineers have options to choose a stackup technology suitable to their requirements. The following factors are considered for a good stackup design: the number of layers, the frequency of the circuit, the Signal and Power Integrity specs and Emission requirements. Different stackup options arise by using combinations of Plated thru vias, Blind & Buried vias and Micro (HDI) vias. Most used stackup technologies are Standard stacking with Plated Thru vias and HDI.

Standard stacking connects Multiple copper layers by Plated Thru vias. The advantage of Standard stacking is it’s straightforward and easier to design and manufacture. The fab yield is more compared to any other stackup technology. Although, designing a dense board with smaller ICs is impossible with Standard stacking.

HDI (High Density Interconnect) stackup, as the name suggests, is best suited for High-Density boards. In a smartphone or tablet, the area is compact, but the PCB must accommodate a lot of circuits in it. HDI stackups are sequentially laminated, multi-layer structures, which help to build such compact boards with components packed on both sides. The laser drilled Micro vias, that connect the layers, are smaller compared to mechanically drilled vias thus helping the compact design. Compared to standard stacking, HDI stacks will consume lesser layers and provide better electrical performance.

Blind vias start from the external layer and end in any internal layer. Buried vias, as the name suggests, start from an inner layer and end in another inner layer. These vias are used when the via stub must be limited or eliminated. Also, they are used when the drill aspect ratio must be lower. The disadvantage is having a greater number of blind vias adds up lamination cycles resulting in higher cost, longer fab lead time, and increased plating thickness on the external layer.

Rules for Proper PCB Stackup Design

Like any other design or product manufacturing, designers need to follow some rules to produce the highest quality products. As you already know, electronics go through several processes which involve different components before producing the final product. Therefore, designers must ensure they identify and follow proven design PCB stack-up best practices. For PCB stack-up design, some rules should be followed to get the best results.

  1. The first and foremost rule is the use of ground planes. They are the best choice due to their ability to route signals in strip lines. In addition, it also plays a vital role in reducing ground noise. Ground noise gets significantly reduced because of the reduced ground impedance.
  2. When it comes to high-speed signals, they must be routed to an intermediate layer that sits between different levels. In this manner, the ground plane acts as a shield and suppresses the radiation emanating from the orbit at maximum speed.
  3. Signal layers must be close to the plane.
  4. Mass planes and power should be carefully connected.
  5. It is necessary to ensure that the configuration is symmetrical.
  6. Signal impedance requirements are met.
  7. It is necessary to consider the thickness of each signal layer.
  8. Moreover, it is also essential to consider the properties of the desired material. Also, pay special attention to such materials’ thermal, electrical, chemical and mechanical properties.

Great PCB hardware design means a great deal. Businesses must have quality products and results. As you already know, circuits today operate at extremely high operating speeds, making it extremely necessary to optimize your PCB design. Comprehensive PCB design needs to make this craft an art. The reason for this is that you can have a good design or a bad design. However, a poorly designed product can seriously degrade or affect the performance of an electronic product. Some of the effects of poor PCB design include poor signal submission, low-quality power output, and reduced durability of electronics. To avoid such occurrences, it is recommended to ensure that the PCB is of high-quality design.


PCB stack-up design is essential for both designers and electronic engineers. The ability to come up with high-quality electronics requires several considerations. Without a high-quality PCB design, the product’s quality and performance can be significantly affected. Therefore, designers must ensure the right stackup construction and PCB materials are selected to obtain a high-quality product. A high-quality PCB stack-up goes a long way in getting the highest quality PCB yield and productivity.

Stackups designed for High-speed designs are costlier than those used for non-high-speed applications. Compensating the stackup quality for cost can result in poor signal integrity which makes the PCB unsuitable for High-speed application.

Usually, designers use standard and HDI stack-ups while designing PCB stack-ups since both provide unique features and benefits that appeal to designers and engineers. Businesses can select the most suitable one based on the design and performance they expect from the PCB.

Tessolve PCB team has rich experience in designing complex Stackups. Be it high layer count (60+), Multi-laminate or HDI stackups, Tessolve can support designing a manufacturable, cost-efficient stackup that still meets all the Electrical requirements.

Tessolve works closely with Fabrication shops to create the right stackup at the design stage and run DFM checks in-house which allows us to achieve an incredibly high first-pass acceptance rate and eliminates delays getting designs onto the production floor.

For better assistance from our experienced engineers, email us today

Tessolve showcased state-of-the-art Test Engineering Practices and more; Participated as a gold sponsor at the ITC India 2022 conference

By | News/Press Releases

Tessolve, a leading semiconductor engineering service partner, was an integral part of the ITC Test Week India 2022, at Radisson Blue Hotel, Bengaluru between July 24-26.

The booth highlighted the innovative test engineering solutions, our Future ready infrastructures & Labs, and glimpses of our wholesome working environment. During the two-day conference, the team exhibited product demos of the various test Load boards, system design, and embedded engineering modules. We had a compelling booth with continued visitors and key stakeholders from different companies, faculties, and students from colleges/universities to know more about Tessolve.

Apart from the booth, our engineering & leadership team has attended the interesting sessions of Tutorial and Conference. Mr. Rajesh Vaddempudi, VP of Test engineering Tessolve, was one of the panel members, who shared his experiences on the topic “Talent Development in Test/Validation Domains”. Altogether, the team was excited to participate in the International Test Conference for three enlightening days.

International Test Conference (ITC) – India 2022

By | Events | No Comments

Join us at the ITC conference 2022, between 24th to 26th July 2022 at Radisson Blue Hotel, Bengaluru Outer Ring Road.

The ITC is the world’s premier venue dedicated to the Test engineering community, a central hub to explore the latest technological innovations and trends, expand industry knowledge, and extend the global professional network.

Tessolve is partnering to be one of the Gold sponsors in the upcoming ITC Test Week India 2022. During this event, we would be looking forward to meeting everyone and showcasing our state-of-the-art Test Engineering Practices, how we are discovering the industry challenges, and addressing these challenges with the combined efforts of our industry leaders, suppliers & engineers.

Happy to participate, showcase, learn, and engage; see you all there!

More Details
International Test Conference (ITC) – India 2022
Booth Number: 4000
July 24-26, 2022
Radisson Blue Hotel,
Bengaluru outer Ring Road

Increased Importance of VLSI Design Ecosystem in India for Worldwide Semiconductor Industry

By | Blogs, Thought leadership | No Comments

In today’s world, semiconductor technologies have the most significant impact on our daily lives. As with engineering products, semiconductors have two parts: the designing aspect and the manufacturing or production part. Both the aspects are coordinated, planned, and organized by VLSI & Embedded engineers all across the industrialized countries in different time zones of the globe for making rapid progress in the field throughout the day.

Likely, India is not an essential contributor to the semiconductor manufacturing sector, but on the other hand, India contributes significantly to the VLSI design sector across the globe. Indian VLSI & Embedded engineers play an essential role in designing VLSI systems for the semiconductor industry.

One of the major factors leading to the remarkable development in the VLSI design sector is the establishment of higher education institutions, including IITs/IISC and other premier institutions, imparting knowledge across the country’s different states. Investing in education will significantly pay off in the future.

Many of them devote themselves to developments in the semiconductor sector, leading to significant advancements in the industry. During the 1980s, most electronics engineers joined premier companies and labs such as Bharat Electronics Ltd, Semiconductor Complex Ltd, the Indian Telephone Industries, etc. They were active in the VLSI design and manufacture in India. Many important private and government companies also marked the industry by planning remarkable strategies and meeting core industry needs while manufacturing indigenous computer systems. Many highly-skilled engineers migrated to foreign countries such as the United States and reached positions of prominence in leading tech companies. The first foreign semiconductor operations center in India was established in Bengaluru in the year 1984 and is known as Texas Instruments. In the following years, multiple talents came together to build a robust infrastructure in the semiconductor industry, VLSI design or silicon design industry, and Indian VLSI & Embedded engineers played a significant part.

What is VLSI?

VLSI or very-large-scale integration is the process of embedding or integrating millions of transistors on a single microchip of silicon semiconductors. The process is of much importance in the contemporary world as it helps build big, more complex chips and memory devices and is utilized in microprocessors and microcontrollers.

The global revenue in the semiconductor sector had crossed USD 440 in 2020, and there has been an increasing demand for producing highly efficient chips that can run advanced modern-day technologies, such as IoT, AR/VR, Cloud, AI/ML, and so on, which are becoming important with every passing day. Growth in consumer electronics, smartphones, computing devices, and other devices has enhanced demand.

Importance of VLSI in Modern Days

VLSI is significant because it is convenient for compact design. It consumes lesser power when compared to a discrete parts circuit, and VLSI can be used for different functions.

Uses of VLSI

  • Sophisticated algorithms can be performed with very little energy by personal entertainment systems.
  • High-definition data videos can be compressed and decompressed smoothly in consumer electronics.
  • Despite a specified function, low-cost terminals require complicated electronics for web browsing.
  • Personal computers and workstations need central processing units and specialized hardware for financial analysis, word-processing, and games.
  • Body functions and other complicated algorithms can be measured through electronic medical systems, and problems can be detected. To identify these complex algorithms, more sophisticated systems are required.

Advantages of VLSI

  1. Minimizes the size of the chips and products.
  2. Enhances the performance and speed of circuits.
  3. Makes the devices cost-effective.
  4. More reliable.
  5. Consumes less power than Discrete components.
  6. Consumes little space.

Contributing Factors to the Improvement in the VLSI Design Sector

  1. Rise of MNCs
  2. The establishment and expansion of multinational companies increased India’s importance in engineering operations. The list of industries is long, and VLSI & Embedded engineers significantly contribute to the brands.

  3. Strong Engineering Services Sector
  4. The business solutions offered by the engineering industry has provided immense flexibility in designing VLSI embedded systems. Although it began as staffing in T&M mode, most successful companies initiated outcome-based project execution, thus sharing greater product design and operation authority.

  5. Expansion of VLSI Education
  6. Many universities have introduced VLSI in the curriculum of fresh graduates. Though the quality of graduates varies, they become productive in a short duration with proper training in the industry to be inducted into the workforce.

  7. A Wide Range of Companies
  8. Many companies have established their design and development centers in India. Intel, Texas Instruments, NXP, Rambus, Qualcomm, Cadence, Synopsys, Mentor Graphics, and Siemens. They have contributed significantly to developing a wide range of products, and their application engineering services improved their competency.

  9. Training Centers
  10. These centers are run by professionals with experience and impart knowledge and skill to passionate engineers who are eager to grab the lucrative opportunities of VLSI design.

  11. Expansion of Operations Across Countries
  12. A lot of work in the semiconductor industry is happening across Bangalore, Hyderabad, Ahmedabad, and Delhi-NCR region. There are high chances that the activity may spread to the other regions.

  13. Final Words
  14. The impact of the VLSI Design ecosystem has been experienced in the past few years. The resonance in hardware design establishments has noted that the proposals of businesses without an engineering design operation were given no consideration. VLSI will continue to power electronic advancement with the endless demand for devices with compact sizes, high performance and functionality, and reliability. The number of job opportunities in India is also expanding rapidly, making designing VLSI embedded systems an attractive career.

Tessolve actively contributes to the global semiconductor industries by efficiently designing and testing VLSI embedded systems. Our experts can resolve all your queries related to VLSI or embedded systems. Visit our website to know more.

For better assistance from our experienced engineers, email us today

Automated Routing for PCB

By | Blogs, Thought leadership | No Comments

Each electronic device comprises several meters of wires and multiple small copper parts. These parts work in unison to run an electronic device successfully, regardless of whether it is a television, smartphone, or remote control. All the wires and parts are attached to a thin-layered board perfectly, also known as a PCB or printed circuit board. Engineers assemble all the components on the surface to provide an organized infrastructure for all the small and separate components to interact and work together.

About PCB Designing

PCBs are made up of conductive material mounted on the insulating material. When PCBs are divided, you get two classes: the single-layer PCB and the double-layer PCB. The difference is that the single-layer PCB has a one-sided conductive coating, and the double layer is coated on both sides.

One way to lessen the heating up of PCB designs is to broaden the traces on the board. It is one of the many routing rules manufacturers follow when developing a PCB design. The more is the distance between the traces; the lesser is the resistance of the current flowing.

Hardware design engineers can introduce advanced technology through automated trace routing in an electronic device.

What Is Automated Routing?

Automated trace routing is a way of designing for the PCB and the integrated circuits. The process of placement is automated by integrating with a PCB. The proper placement for each component of a PCB is identified through the dynamic method.

The automated trace routing method permits you to sanction an automatic routing system that makes all the placements systematically. With the assistance of automated trace routers, the productivity of encoders can increase as they do not have to waste time providing manual routing solutions.

How to Efficiently Achieve PCB Automated Routing

  1. Identify the Number of Layers of PCB
  2. Board size and the amount of routing layers should be considered early during the design process. Suppose the design needs the utilization of high-density ball grid array components. In that case, you must consider the minimum number of routing layers desired for routing the devices—the board size assists in determining the stacking and line width for achieving the required design.

    At the initial stages of designing, it is good to use more layers of the circuit and distribute the copper in an even way to prevent a certain number of signals not abiding by the set rules and requirements at the end and thereby being compelled to add more layers. Careful planning is needed before designing, which helps to minimize many troubles in routing. Hardware design engineers fabricate a design for optimum efficiency.

  3. Design Rules and Restrictions
  4. The routing tool must work as per the proper rules and constraints. Various signal lines have various routing needs, and such memorable signal lines have different classifications. Every signal class has a priority with strict rules, and the rules have a significant impact on the routing tool performance.

  5. The Layout of the Components
  6. For optimizing the assembling process, design for manufacturability regulations put restrictions on the layout of components. If the components are allowed to move by the assembly department, it allows for proper optimization for automated routing. One should consider routing channels and via areas while laying out, and the automatic routing tool can consider only a single signal at a time.

  7. Fan-Out Design
  8. In this phase, every pin of the surface-mount device must have a minimum of one via for the board to perform the circuit reprocessing, inner layer connectivity, and online testing if more connections are required. The routing tool can be made more efficient by using the largest via size and printed routing with the interval set to 50 mils. While performing a fan-out design, you should consider the online test of the circuit.

    After that, the circuit online test design can be done at the beginning of the design and executed afterward in the production process. The kind of via fan-out is selected through the circuit online test and routing path.

  9. Automatic Routing
  10. Routing crucial signals need to consider managing specific electrical parameters while routing, such as minimized distributed inductance and EMC. The input parameters of the automatic routing tool and the effect of the input variables on the routing have to be understood to guarantee the quality of the automatic routing by the printed circuit board manufacturers.

    Generic rules have to be used for automatically routing signals. By putting constraints and prohibiting the routing area from explaining the layers used for a particular signal and the number of vias used, the routing tool can be routed automatically according to the design philosophy of the engineer. If there are no restrictions, every layer can be used for automatic routing, and multiple vias would be created. Some work in terms of finishing may be needed along with other network and signal routing space. When a fraction of the design is completed, the routing process is fixed to prevent it from being altered.

Design Considerations for Automatic Routing Include

  • Modify the settings a little and try different path routing.
  • Keep the fundamental rules unaltered, try various routing layers, different spacing, line widths and printed lines, various kinds of vias such as buried holes, blind holes, and so on to observe how they influence the design results.
  • Allow the routing tools to manage the default networks as required.
  • The less significant the signal, the more the privilege for the automatic routing tool.

Tessolve is one of the best professional printed circuit board manufacturers who excel in the process of automatic routing. They ensure that maximum proficiency is perpetrated through automatic routing. Are you seeking the best-in-class PCBs? Get in touch with us right away!

Ultimate Guide to PCB Layout Design Consideration

By | Blogs, Thought leadership | No Comments

Can you imagine a world without technologies wherein there are no computers, mobile phones, television, automobiles, AC, and airplanes?

Without a proper PCB layout, a device cannot function properly. Creating a PCB board design is the same as completing a piece of art wherein a team of engineers spend weeks or months creating the patterns. Developing a PCB layout is not a cakewalk, but anyone with proper guidance and knowledge can also do it.

With this article, we’ll help you understand a few things that let you design the PCB layout process. Take a look!

What is a PCB Layout?

A layout is characterized by the pattern of laying out parts of a particular item or arranging them meaningfully. In the same way, the PCB layout indicates several processes that are required in designing the printed circuit board. It involves creating traces, mounting holes cutouts, putting labels, specifying locations of various components, etc.

A significant concept in PCB design is wire routing, which is one of the most daunting tasks. Routing is the subsequent step once the placement is done. In the placement part, engineers determine the location of different components on the PCB. In routing, wires are added to connect the components as per the design rules.

PCB designing is done manually & automatically. However, to eliminate human errors these days, the designing is done using various PCB designing software having the auto-router feature. This saves time as well as effort and makes the process even simpler. However, it’s not the best option as the designs are not always precise and symmetrical as they should be.

Elements of PCB Layout

Creating & manufacturing the PCB layout involves some of the following elements:-

  1. Schematics–
  2. It is a diagram of components, connections, and circuits that are laid out in an easy-to-understand way. It’s essential while designing a PCB layout as it helps engineers understand & construct the system of the circuit.

  3. High-Frequency Signals –
  4. The PCBs that support higher frequencies have special requirements. Most of the interfaces used today operate at more than 50 MHz, making it essential to have some knowledge of frequencies to avoid issues with high signals.

    With the advancement in technology, the frequency of signals has become significantly high. Therefore, there is a need to understand signal propagation. Also, it would help if you bridged the gap between analog & digital design.

  5. Routing Signal & Placement of Components –
  6. When it comes to the placement of components & signal routing, one needs to follow the direction in which the signal & current flow in the PCB board design.

    Make sure that you maintain a distance between the digital and analog signals. The analog circuits are sensitive to a digital signal and can even lead to disruptions on the analog side.

Steps Involved in PCB Designing

PCB designing plays a quintessential role at every point of the printed circuit board production process. Creating a PCB design includes six basic steps:

  1. Concept
  2. Once you have identified the need for a PCB, the next step is to conceptualize the board. The initial phase involves defining the PCB’s functions and interconnection with other circuits, features, placements at the final product, and dimensions. Also, one needs to consider the approximate range of temperature and other environmental factors in which it will operate.

  3. Schematic
  4. Once you’re done with the concept, the next step is to draw the circuit schematic based on the finalized concept. It includes all the information needed for the board’s electrical components to function appropriately. Not only this, but it must also include the details, such as component name, rating, value, and manufacturer part number.

    When creating a schematic, don’t forget to create a bill of materials containing information on all the components you need for the PCB.

  5. PCB Mechanical Constraints
  6. You need to define Mechanical constraints such as Board dimension, thickness, cutouts, Mounting holes, Keepout regions, Mating and I/O connector locations.

  7. Component Placement
  8. The next and very critical step in designing a PCB layout is the component’s placement. A proper component placement ensures good electrical connection between Circuits and as well enabling the PCB to be assembled and tested efficiently.

  9. Routing
  10. The next important and tedious task in PCB layout is routing. The performance of High speed interfaces, RF, Analog and High power signals is determined by the routing. A good routing between circuits improves the Signal and Power Integrity of the PCB. While the electrical requirements are taken care, all Manufacturing related constraints to be addressed to improve PCB fab yield.

  11. Validation
  12. This is the final step; after you’ve completed the design, you must run a series of Quality and Manufacturing (DRC) checks to meet all the requirements. The design gets completed once the checks are passed, but if not, you have to go back to the previous phases, where you need to make changes and adjustments.

How Tessolve Provides Turnkey Solutions for PCB Design?

As the leading semiconductor engineering solution provider, Tessolve is determined to serve clients and meet their needs. We develop ATE, system and the evaluation boards that help our customers evaluate their product functionality before mass production. We provide the board developments with a team of experts in High-Speed Processors, Analog, RF domains, and Mixed signals. So, make sure to get the perfect design with a combination of hardware engineering with Tessolve and get the best PCB design that you want.

For better assistance from our experienced engineers, email us today

Embedded System | 9 Main Concepts About Embedded Engineering

By | Blogs, Thought leadership | No Comments

About Embedded System

An embedded system is also termed an integrated system. It is a computer system designed by an embedded engineer to facilitate special functions, and its parts are mounted together onto a motherboard. A microcontroller or a microprocessor that consists of input and output interfaces and a small memory carries out the system’s central processing.

The programing language of the microprocessor or microcontroller, such as C, C++, Linux, and C#, can be used directly to program the systems. Real-time computing tasks can be carried out by designing embedded systems. Specific use cases can be achieved using Tessolve MAGIK-II SOM+CB combination based on various SoCs, i.e., NXP, Qualcomm, TI, Renesas, etc., dedicated to developing and designing prototypes and applications with embedded systems.

Let us dive into detail about the concepts related to designing embedded systems.

What Is a Microprocessor Unit?

The processor initially consisted of separate components interlinked together through buses. For instance, the oscillator and the registers that signal the clock are all individual components. With the development in integration and technology, the various parts were coming together within the same circuit. Therefore, the earlier processor used to have multiple interconnected integrated circuits, and eventually, all the components came to be incorporated within a single circuit, known as a microprocessor.

The microprocessor is a part of the central processing unit (CPU). The arithmetic logic unit (ALU) is present within the microprocessor and performs all the mathematical operations. The registers save the data for the moment, and the control unit harmonizes the working of the rest of the parts, that is, a ROM memory in which instructions are stored and other components.

Microprocessors are not used individually but are integrated with other systems for a particular function.

What Is a Microcontroller Unit?

A microcontroller is a computer with limited functionality. They have a simple design with low speed and are small. Computers have a processor and RAM. A microcontroller is an individual chip in which RAM, ROM, processor, and other components are mounted together to aid programmers. DAC and ADC converters are placed together in different formats.

Therefore, they are not designed to manage an extensive software infrastructure. Most of the time, microcontrollers are directly programmed despite an embedded operating system. Because of this finite capability, a wide array of microcontrollers is established by different elements based on their use. The versatility allows you to choose the microcontroller that suits the project’s requirement and is the primary reason they are so favored in embedded systems.

About Development Kit

A development kit is a hardware component that aids in programming and testing another hardware element, such as a microcontroller, FPGA, or microprocessor. Usually, they are boards with the element in question that you would like to use along with different additional elements that simplify prototyping and programming.

The primary purpose is to help engineers learn, who later need to work with microcontrollers and microprocessors. Tessolve MAGIK-II development kits are good platforms based on various MCUs, MPUs/SoCs, and FPGA, which can help set up a development environment quickly and get started directly on application development for learning and POC purpose.

MAGIK-II platforms and their purpose

Tessolve has its own SOM Module Family MAGIK-2 modules based on the SMARC/Q7 standard, containing a complete software suite including Device Drivers, BSP, and support for various OS allowing effective productization. Our SOM & EVK solutions allow Customers to start their software development before manufacturing and help faster time to market.

MAGIK-II SOM family is ready to use a platform based on well know processors from NXP, Qualcomm, Mediatek, Texas Instruments, and Renesas with Linux/Android OS/RTOS support and can be used for learning and developing POCs for application development for use-cases:

  • Industrial
  • Avionics
  • Automotive
  • Medical
  • Internet of Things

About FPGA (Field Programmable Gate Arrays)

The reconfigurable hardware development obtained one of the most significant advantages, namely FPGA. Testing and designing hardware components are a hectic and time-consuming process that involves a lot of costs. There was no way of confirming that it worked until printing a design on a plate, and the printing process required time and money.
FPGAs are the solution to this problem. They are hardware parts interlinked with each other in a configurable manner, allowing you to select the parts you need and link them without printing them on the hardware. Embedded engineers need to use a particular language for the design, namely Hardware Description Language (HDL). An implement offered by the producer of the FPGA transforms that language into closed or open connections in the internal parts of the FPGA. The hardware circuit would remain the same and would perform the same function as it had been printed.

It made the building and designing process more convenient and allowed every design modification to be examined quickly. FPGAs were previously used for designing and prototyping but not as a finished product, whereas now, some FPGAs are being incorporated into the final product.

What Is SoC?

SoC stands for system on a chip and consists of a set of components that were initially separate but have been later integrated into a single chip. A CPU can form SoCs and FPGAs or ESP32, a microcontroller SoC. It is a broad term that incorporates any technology fused within a single chip or board.

What Is DSP?

DSP stands for digital signal processor and is used to deal with digital signals. It has widespread usage in treating video, audio, and telecommunications, and most of the technology we use regularly contains DSPs.

What Are Real-Time Systems?

Real-time systems can maintain exact time measurements that can be utilized in situations where the reaction time is crucial. The validity of results relies on whether the stipulated time limit has been met. All modern cars have control systems that are based on real-time systems.

Designing embedded systems is significant as they play an essential role in our daily lives. All technical devices require embedded systems to function correctly and provide limitless opportunities for every sector. Tessolve has expert embedded engineers who build designs that enhance the efficiency of the embedded systems. For better assistance from our experienced engineers, email us today at

Embedded Technology Convention Event 2022

By | Events | No Comments

Join us at the Embedded Technology Convention Event 2022, between 8th and 9th June, 2022at Las Vegas Convention Center.

The Embedded Technology Convention USA is the central hub to discover the latest technological innovations and trends, expand industry knowledge and extend the global professional network.

At Tessolve, we would participate in Embedded Technology Convention Event 2022 with the industry’s global leaders and suppliers to discover more cost-effective ways in implementing new embedded technology, systems, and solutions into their business model.

More Details
Embedded Technology Convention Event 2022
Booth Number: 4000
June 8th and 9th, 2022
LV Convention Center,

Tessolve Showcases Advanced Product Engineering at the SemiconIndia 2022 Conference.

By | News/Press Releases

Tessolve participated at the SemiconIndia 2022, the post-COVID gigantic conference in the Semiconductor industry. The Hon’ble Prime Minister of India, Shri Narendra Modi, inaugurated the conference via Video Conference on 29th April 2022 to make India a global hub for Semiconductor Design, Manufacturing, and Technology Development.

At the event booth, Tessolve highlighted the story of defining engineering success end to end through Design Test & Production. In meaningful conversations, the embedded team participating at the event demonstrated Tessolve’s Product Engineering service and IoT offerings on Industrial, Connected Cars, Smart Lighting, IoT Bricks-Sensors, Connectivity Modules, and Gateway. Our engineering team has displayed our Load boards and the various embedded products interestingly with appropriate brochures. We had visitors from Startups, Academia, and Global Industry Leaders to learn more about Tessolve, our services portfolio, and our role in the latest technologies.

Tessolve Strengthens Its Leadership Team With the Appointment of Huzefa Cutlerywala as SVP of Sales and Marketing and Madhav Rao as SVP VLSI Design

By | News/Press Releases

Tessolve, a Hero Electronix venture and an end-to-end engineering solution partner for semiconductor and system companies, is pleased to announce the appointment of two industry veterans, Huzefa Cutlerywala as Senior VP of Worldwide Sales and Marketing, and Madhav Rao as Senior VP VLSI Design.

Read the full PR article here:

Tessolve inaugurates the Test Engineering Lab in the heart of Silicon Valley San Jose on Mar 23, 2022

By | News/Press Releases

Tessolve announces its inaugural run of its Test Engineering Lab in San Jose on Mar 23. We offer access to test engineering and program development experts and access to testers. Our lab will be designed and equipped with test instruments:

  • Advantest, 93k Smartscale STH, and CTH configurations
  • Advantest, 93k Exascale CX
  • Teradyne, ETS 364
  • Chroma, MPVI
  • Semic, Opus 3 Tri Temp Prober
  • Seiko Epson Handler
  • Chroma Handler
  • Thermostream
  • and standard diagnostics equipment

First Bin – A Newsletter for the Semiconductor Engineering Community, Issue Jan 2022

By | News/Press Releases

We are glad to announce the release of the Jan 22 edition of our Newsletter, First Bin.

The newsletter contains a note from our CEO’s Desk, Tessolve Showcase article, and Tessolve Challenge Case Study. Thanks to all the contributing authors and the technical committee members.

To know more, please download the Newsletter:

Tessolve collaborates with DynamoEdge to introduce innovative TERA

By | News/Press Releases

Tessolve’s and DynamoEdge have announced a partnership to deliver the fastest end-to-end mobility solutions powered by AT&T 5G. The strategic collaboration of Tessolve with DynamoEdge has paved the way to deploy Real-Time AI analytics software ( on our Automotive Service Gateway platform (TERA).

Read the full PR article here:

Download the brochure for NXP S32G2 SMARC SoM

Tessolve Datasheet NXPS32G2

Design Automation Conference 2021

By | Events | No Comments

Join us at the 58th Design Automation Conference (DAC) in San Francisco, between December 5-9, 2021.
DAC, a premier conference for the design and automation of electronic systems, the event will bring together researchers, designers, practitioners, tool developers, students, and vendors. The 58th DAC focuses on the latest methodologies and technology advancements in electronic design.
At Tessolve, we would participate at DAC with leading EDA, design on the cloud, and IP companies.

More Details
Design Automation Conference (DAC) 2021
Booth Number: 2448
December 5-9, 2021
San Francisco

Tessolve is now a Worldwide PDH (Preferred Design House) Partner of Infineon to provide Customer technical support and HW/SW design services on Infineon solutions portfolios such as AURIX™ Microcontrollers and related topics.

By | News/Press Releases

The partnership will allow showcasing our end-to-end capabilities in supporting Industrial and Automotive OEM’s safety-related Hardware modules, associated Software technology, innovative Automotive product development, and system validation for various customers across the globe. This strategic association will enable Infineon through Tessolve to provide 24-hrs response time to the customer by email and/or phone to AURIX™, Traveo II™, AUTO PSoC-related inquiries.

Moreover, Tessolve’s expertise & Infineon product synergy will extend technical help and advice on the Infineon solutions, Tessolve supports HW/SW Engineering to achieve optimal and effective performances and paves a way to explore new avenues for the design of ADAS / Radar / Motor Control / Lighting system. Check out the link to know more about this partnership.

Tessolve – Infineon Technologies

Tessolve Joins GlobalFoundries’ Design Enablement Network Program as a Design Partner to Bring Advanced Design Solutions to Accelerate Customer Product Development

By | News/Press Releases

Tessolve has joined the GlobalFoundries® (GF®) Design Enablement Network Program. The strategic partnership with GF aims to bring state-of-the-art design solutions across multiple end markets including automotive, industrial, server, graphics, and mobile platforms. Read the full PR article here:

Tessolve is recognized and featured by SiliconIndia among The 10 Best Electronics Companies to Work For in Bangalore 2021.

By | News/Press Releases

We are thrilled to share another milestone to Tessolve’s journey with the recognition Tessolve has achieved by SiliconIndia among The 10 Best Electronics Companies to Work For in Bangalore 2021.

Explore here to know more about this prestigious recognition and see Tessolve featuring in the listing on SiliconIndia’s website. Click here to view the article featuring Tessolve, honorable CEO Srini Chinamilli has shed some insight about Tessolve creating & sustaining a winning workplace culture and how our company has earned excellent credibility in the Semiconductor engineering space.

PCB West 2021 Conference and Exhibition

By | Events | No Comments

On 5th October, join us at the 2021 edition of PCB West at the Santa Clara Convention Center, California. A leading conference for the design and fabrication of Printed Circuit Boards, the event will assemble design engineers, expert fabricators, and assemblers.Join us at the event between October 5 – 8, 2021 as we elaborate advances in design and fabrication of PCBs for new-age applications in high-reliability and high-performing electronics.

More Details
PCB West 2021
Booth Number: 417
5-8 October
Santa Clara Convention Center

Changes in Global Chip Supply Chain Driving Demand for Technology Porting

By | Thought leadership

In the past year and a half, COVID has impacted the semiconductor industry, disrupting the supply chains. These supply chain disruptions have compelled organizations to review their silicon supply strategy and consider foundry technology porting to overcome chip shortages and build resilient supply chains.

Read this blog to explore Tessolve’s extensive expertise in porting multiple designs, making it your preferred fab switching partner.

First Bin July 2021 Edition – A Newsletter for the Semiconductor Engineering Community

By | Brochure/Newsletter | No Comments

We are glad to announce the release of the July-21 edition of our Newsletter, First Bin. Kudos to our Newsletter teams, all the contributing authors, and the technical committee members for doing a great job in bringing out this July 2021 edition!

System Level Testing – The Differentiator

By | Thought leadership

System-Level Test (SLT) for Volume is one of the Centers of Excellence (COE) initiatives that Tessolve had taken in the Test Business Unit (BU). In this blog, we caught up in a candid conversation with Yogan Senthilkumar, VP of Engineering Tessolve an industry veteran, who has been instrumental in heading multiple teams in R&D, Test engineering, and PCB divisions at Tessolve and played a pivotal role in building the SLT solution for Tessolve.

Read this blog to explore more about SLT, key trends, the differentiator from traditional testing, customer challenges, Tessolve’s SLT solution, competitive advantage for customers, and more.

Tessolve joins the Arm approved Design partner program to accelerate time to market for product development

By | News/Press Releases

Tessolve is now a member of the Arm® Approved Design Partner program, a global network of product design service companies endorsed by Arm.
Tessolve’s strategic partnership with ARM aims at accelerating time to market for product development and paves a way to explore new avenues of semiconductor design! Read the full PR article here:

Tessolve in collaboration with InCore Semiconductor brings to you an open-source RISC-V Core verification tool – RiVer Core

By | Blogs, Thought leadership | No Comments

RiVer Core is a python based extensible and scalable framework aimed at providing a central control point for all major aspects of a RISC-V processor verification flow. The tool is fully open source under the permissive BSD-3 Clause License.
Read this blog to explore more about RiVer Core framework, the major components, its holistic approach and its advantages.

Read More

Tessolve expands its operations to multiple locations globally this year, including Japan, Taiwan, Thailand, Philippines, and Vietnam

By | News/Press Releases | No Comments

Tessolve, a Hero Electronix venture expands its operations to multiple locations globally this year, including Japan, Taiwan, Thailand, Philippines, and Vietnam to accelerate Tessolve’s ability to provide value to customers globally. Today, though Tessolve offers its solutions across the globe, we see a need for a more integrated approach while supporting our emerging technologies’ customers. We truly become an extended arm of their engineering teams, collaborating from the design drawing board to managing their product orders.

Tessolve raises $40 million from Singapore-based PE firm Novo Tellus

By | News/Press Releases | No Comments

Tessolve, a Hero Electronix venture and an end-to-end engineering solution partner for semiconductor and product companies, announces that leading Singapore based PE firm Novo Tellus Capital Partners has invested $40M in Tessolve.

Tessolve intends to use this additional fund for acquisitions and investments in key areas of growth and expansion of the business. Besides, this investment provides Tessolve a significant opportunity to accelerate the growth of its Chip Design and ASIC engineering capabilities and further strengthen its global footprint.

Know More

Tessolve Semiconductor is now a certified IPC member

By | News/Press Releases | No Comments

We are proud to announce that Tessolve Semiconductor Pvt. Ltd. is now an IPC member facility. The IPC membership is mainly focused on electronic interconnect industries & brings together the PCB designers, PCB Fabrication, PCB Assembly, Suppliers & OEM’s. And it facilitates members with training, market research, public policy advocacy and extended services.

With the recent membership certification from IPC, the credibility of our PCB design and related competencies has gained a remarkable advantage. This is another step to reaffirm the quality of our PCB Design & Development under Tessolve Offerings.